
eZ Publish 3.8
Technical Manual

©1999 – 2012 eZ Systems AS

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License,Version 1.2 or any later version published by the Free Soft-
ware Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license can be downloaded from http://www.gnu.org/copyleft/fdl.html.

Corrections and/or suggestions might be sent to info@ez.no.

This PDF file is generated automatically from the online documentation available at
http://doc.ez.no.

This version was generated on June 8, 2014.

Contents

1 Installation 23

1.1 Normal installation . 25

1.1.1 Requirements for doing a normal installation 26

1.1.2 Installing eZ publish on a Linux/UNIX based system 29

1.1.3 Installing eZ publish on Windows . 32

1.2 Bundled installation . 34

1.2.1 Requirements for doing a bundled installation 35

1.2.2 Installing an eZ publish bundle on a Linux based system 36

1.2.3 Installing an eZ publish bundle on Windows 41

1.3 Manual installation . 45

1.3.1 Requirements for doing a manual installation 46

1.3.2 Manual installation on a Linux/UNIX based system 47

1.3.3 Manual installation on Windows . 48

1.3.4 Manual configuration of eZ publish . 49

1.4 Automated installation . 55

1.4.1 Requirements for doing an automated installation 56

1.4.2 Automated installation of eZ publish 57

1.5 The setup wizard . 60

1.6 Virtual host setup . 73

1.6.1 Virtual host example . 76

1.7 Upgrading . 79

1.7.1 from 3.6.x or 3.7.x to 3.8.0 . 80

1.7.2 from 3.8.x to 3.8.y . 86

1.8 Removing eZ Publish . 92

1.8.1 Removing an eZ Publish bundle . 94

1.9 Extensions . 96

1.9.1 Extracting the files . 97

2

Contents 3

1.9.2 Activating the extension . 99

1.10 Troubleshooting . 101

2 Concepts and basics 103

2.1 The internal structure of eZ publish . 104

2.1.1 Directory structure . 106

2.2 Content and design . 108

2.2.1 Storage . 110

2.3 Content management . 111

2.3.1 Datatypes . 113

2.3.2 The content class . 114

2.3.3 Class attributes . 117

2.3.4 The content object . 120

2.3.5 Object versioning . 123

2.3.6 Multiple languages . 127

2.3.7 The content node . 130

2.3.8 The content node tree . 133

2.3.9 Top level nodes . 136

2.3.10 Node visibility . 138

2.3.11 Object relations . 141

2.3.12 Sections . 142

2.3.13 URL storage . 144

2.3.14 Information collection . 145

2.4 Configuration . 146

2.4.1 Site management . 148

2.4.2 Extension siteaccess settings . 150

2.4.3 Access methods . 151

2.5 Modules and views . 154

2.6 URL translation . 157

2.7 Designs . 160

2.7.1 Design combinations . 162

2.8 Access control . 164

2.9 Webshop . 167

2.10 Workflows . 171

3 Templates 173

Contents 4

3.1 Template basics . 174

3.1.1 Node templates . 177

3.1.2 System templates . 179

3.2 The pagelayout . 181

3.2.1 The page head . 185

3.2.2 Variables in pagelayout . 189

3.3 The template language . 197

3.3.1 Comments . 199

3.3.2 Variable types . 200

3.3.3 Variable usage . 204

3.3.4 Array and object inspection . 208

3.3.5 Control structures . 212

3.3.6 Functions and operators . 216

3.4 Basic template tasks . 218

3.4.1 URL handling . 221

3.5 Information extraction . 224

3.5.1 Outputting node and object data . 226

3.6 The template override system . 229

3.6.1 Template override example . 231

4 Features 234

4.1 Policy functions . 235

4.2 Single Sign On (SSO) handlers . 238

4.3 Multi-language . 239

4.3.1 Configuring your site locale . 242

4.3.2 Configuring the site languages . 244

4.3.3 Managing the translation languages 249

4.3.4 Multilingual objects . 251

4.3.5 Working with translations . 254

4.3.6 The bit-field algorithm . 259

4.3.7 Language based permissions . 261

4.4 Clustering . 263

4.4.1 Setting it up . 266

4.5 Packages . 269

4.5.1 Package types . 271

Contents 5

4.5.2 Creating new packages . 274

4.5.3 Exporting packages to files . 283

4.5.4 Importing packages to the system . 285

4.5.5 Removing packages from repository 286

4.5.6 Installing packages . 287

4.5.7 Uninstalling packages . 292

4.5.8 package.xml format . 294

4.5.9 Custom install scripts . 297

4.6 Cronjobs . 301

4.6.1 The cronjob scripts . 302

4.6.2 Configuring cronjobs . 308

4.6.3 Running cronjobs . 311

4.7 Advanced redirection after login . 314

4.8 VAT charging system . 318

4.8.1 Assigning VAT types to products . 320

4.8.2 Three approaches to VAT charging . 322

4.8.3 Product category . 326

4.8.4 User country . 328

4.8.5 Displaying VATs on the actual site . 331

4.8.6 Managing VAT types . 333

4.8.7 Managing product categories . 335

4.8.8 Managing VAT rules . 338

4.8.9 VAT settings . 340

4.8.10 Creating new VAT handlers . 342

4.9 Improved shipping handling . 344

4.10 Multi-currency . 348

4.10.1 Custom prices and auto prices . 349

4.10.2 Rounding auto prices . 352

4.10.3 Currency rates . 354

4.10.4 Creating a new currency . 356

4.10.5 Editing a currency . 361

4.10.6 Removing a currency . 365

4.10.7 Preferred currency . 366

4.10.8 Multi-price products . 368

4.10.9 Products overview . 372

Contents 6

4.10.10Exchange rates update handlers . 373

4.10.11Upgrading your webshop . 376

4.11 View caching . 378

4.11.1 Configuring the view cache . 381

4.11.2 Clearing the view cache . 384

4.11.3 Smart view cache cleaning . 387

4.11.4 Pre-generation of view cache . 392

4.12 Notifications . 393

4.12.1 Using the admin interface . 395

4.12.2 Using an actual site . 401

4.12.3 Adding a ”Keep me updated” button 404

4.12.4 Customizing the E-mails . 406

4.12.5 Granting access to notifications . 407

4.12.6 Notification events . 413

4.12.7 Notification handlers . 415

4.12.8 Frequently Asked Questions . 418

4.13 Search engine . 420

4.14 WebDAV . 423

4.14.1 Setting it up . 429

5 Reference 432

5.1 Datatypes . 433

5.1.1 Authors . 435

5.1.2 Checkbox . 437

5.1.3 Country . 439

5.1.4 Date . 441

5.1.5 Date and time . 443

5.1.6 E-mail . 445

5.1.7 Enum . 446

5.1.8 File . 447

5.1.9 Float . 450

5.1.10 Identifier . 452

5.1.11 Image . 454

5.1.12 Ini setting . 458

5.1.13 Ini setting . 459

Contents 7

5.1.14 Integer . 460

5.1.15 ISBN . 462

5.1.16 Keywords . 463

5.1.17 Matrix . 465

5.1.18 Media . 467

5.1.19 Multi-option . 470

5.1.20 Multi-price . 472

5.1.21 Object relation . 474

5.1.22 Object relations . 476

5.1.23 Option . 478

5.1.24 Price . 480

5.1.25 Product category . 482

5.1.26 Range option . 483

5.1.27 Selection . 485

5.1.28 Subtree subscription . 487

5.1.29 Text block . 488

5.1.30 Text line . 490

5.1.31 Time . 492

5.1.32 URL . 493

5.1.33 User account . 495

5.1.34 XML block . 497

5.2 Content classes . 512

5.2.1 Content . 513

5.2.2 Media . 529

5.2.3 Users . 536

5.3 Modules . 539

5.3.1 class . 541

5.3.2 collaboration . 560

5.3.3 content . 575

5.3.4 error . 693

5.3.5 ezinfo . 694

5.3.6 form . 699

5.3.7 infocollector . 702

5.3.8 layout . 707

5.3.9 notification . 712

Contents 8

5.3.10 package . 724

5.3.11 pdf . 747

5.3.12 reference . 751

5.3.13 role . 752

5.3.14 rss . 760

5.3.15 search . 766

5.3.16 section . 769

5.3.17 setup . 782

5.3.18 shop . 783

5.3.19 trigger . 824

5.3.20 url . 827

5.3.21 user . 836

5.3.22 workflow . 861

5.4 Views . 873

5.5 Objects . 874

5.5.1 ezauthor . 877

5.5.2 ezbasket . 878

5.5.3 ezbinaryfile . 881

5.5.4 ezcontentbrowsebookmark . 882

5.5.5 ezcontentbrowserecent . 883

5.5.6 ezcontentclass . 884

5.5.7 ezcontentclassattribute . 888

5.5.8 ezcontentclassclassgroup . 891

5.5.9 ezcontentclassgroup . 892

5.5.10 ezcontentlanguage . 893

5.5.11 ezcontentobject . 894

5.5.12 ezcontentobjectattribute . 902

5.5.13 ezcontentobjecttranslation . 906

5.5.14 ezcontentobjecttreenode . 907

5.5.15 ezcontentobjectversion . 912

5.5.16 ezcurrencydata . 916

5.5.17 ezdate . 918

5.5.18 ezdatetime . 919

5.5.19 ezimagealiashandler . 920

5.5.20 ezimagelayer . 925

Contents 9

5.5.21 ezimageobject . 926

5.5.22 ezinformationcollection . 927

5.5.23 ezinformationcollectionattribute . 929

5.5.24 ezkeyword . 931

5.5.25 ezlocale . 932

5.5.26 ezmatrix . 936

5.5.27 ezmedia . 939

5.5.28 ezmultioption . 941

5.5.29 ezmultiprice . 943

5.5.30 eznodeassignment . 945

5.5.31 ezoption . 947

5.5.32 ezorder . 948

5.5.33 ezorderstatus . 952

5.5.34 ezpolicy . 953

5.5.35 ezprice . 954

5.5.36 ezproductcategory . 955

5.5.37 ezproductcollectionitem . 956

5.5.38 ezrangeoption . 957

5.5.39 ezrole . 959

5.5.40 ezsection . 960

5.5.41 ezsimplifiedxmlinput . 961

5.5.42 ezsubtreenotificationrule . 962

5.5.43 eztime . 963

5.5.44 ezurl . 964

5.5.45 ezuser . 965

5.5.46 ezvatrule . 967

5.5.47 ezvattype . 969

5.5.48 ezxhtmlxmloutput . 970

5.5.49 ezxmlinputhandler . 971

5.5.50 ezxmloutputhandler . 972

5.5.51 ezxmltext . 973

5.6 Workflow events . 974

5.6.1 Approve . 975

5.6.2 Multiplexer . 977

5.6.3 Payment gateway . 978

Contents 10

5.6.4 Simple shipping . 980

5.6.5 Wait until date . 981

5.7 Template operators . 982

5.7.1 Arrays . 983

5.7.2 Data and information extraction . 1005

5.7.3 Formatting and internationalization 1015

5.7.4 Images . 1027

5.7.5 Logical operations . 1037

5.7.6 Mathematics . 1064

5.7.7 Miscellaneous . 1091

5.7.8 Strings . 1117

5.7.9 URLs . 1160

5.7.10 Variable and type handling . 1168

5.8 Template functions . 1198

5.8.1 Debugging . 1199

5.8.2 Miscellaneous . 1205

5.8.3 Variables . 1218

5.8.4 Visualization . 1231

5.9 Template control structures . 1250

5.9.1 Conditional control . 1251

5.9.2 Looping . 1257

5.9.3 Deprecated . 1263

5.10 Template override conditions . 1265

5.10.1 class/edit.tpl . 1267

5.10.2 class/groupedit.tpl . 1268

5.10.3 class/view.tpl . 1269

5.10.4 content/advancedsearch.tpl . 1270

5.10.5 content/browse.tpl . 1271

5.10.6 content/collectedinfo/*.tpl . 1272

5.10.7 content/collectedinfo/*.tpl . 1273

5.10.8 content/collectedinfomail/*.tpl . 1274

5.10.9 content/datatype/edit/*.tpl . 1275

5.10.10content/datatype/view/*.tpl . 1276

5.10.11content/edit.tpl . 1277

5.10.12content/search.tpl . 1278

Contents 11

5.10.13content/versions.tpl . 1279

5.10.14content/versionview.tpl . 1280

5.10.15content/view/*.tpl . 1281

5.10.16layout/set.tpl . 1282

5.10.17node/view/*.tpl . 1283

5.10.18node/view/pdf.tpl . 1284

5.10.19pagelayout.tpl . 1285

5.10.20workflow/edit.tpl . 1286

5.10.21workflow/groupedit.tpl . 1287

5.10.22workflow/view.tpl . 1288

5.11 Template fetch functions . 1289

5.12 Template PDF functions . 1290

5.12.1 anchor . 1292

5.12.2 create index . 1293

5.12.3 filled circle . 1294

5.12.4 filled rectangle . 1296

5.12.5 footer . 1298

5.12.6 footer block . 1300

5.12.7 frame header . 1301

5.12.8 frontpage . 1303

5.12.9 header . 1304

5.12.10header block . 1306

5.12.11image . 1307

5.12.12keyword . 1309

5.12.13line . 1310

5.12.14link . 1312

5.12.15new line . 1313

5.12.16new page . 1314

5.12.17page number . 1315

5.12.18set font . 1316

5.12.19set margin . 1318

5.12.20strike . 1319

5.12.21table . 1320

5.12.22text . 1322

5.12.23text box . 1324

Contents 12

5.12.24text frame . 1325

5.12.25toc . 1327

5.12.26ul . 1328

5.13 Configuration files . 1329

5.13.1 binaryfile.ini . 1332

5.13.2 browse.ini . 1333

5.13.3 collaboration.ini . 1334

5.13.4 collect.ini . 1335

5.13.5 content.ini . 1336

5.13.6 contentstructuremenu.ini . 1360

5.13.7 cronjob.ini . 1365

5.13.8 datatype.ini . 1374

5.13.9 datetime.ini . 1375

5.13.10dbschema.ini . 1376

5.13.11debug.ini . 1377

5.13.12design.ini . 1378

5.13.13error.ini . 1387

5.13.14extendedattributefilter.ini . 1388

5.13.15ezxml.ini . 1389

5.13.16fetchalias.ini . 1390

5.13.17file.ini . 1391

5.13.18i18n.ini . 1392

5.13.19icon.ini . 1395

5.13.20image.ini . 1396

5.13.21layout.ini . 1397

5.13.22ldap.ini . 1398

5.13.23logfile.ini . 1400

5.13.24menu.ini . 1405

5.13.25module.ini . 1406

5.13.26notification.ini . 1407

5.13.27override.ini . 1408

5.13.28package.ini . 1409

5.13.29paymentgateways.ini . 1410

5.13.30setup.ini . 1411

5.13.31shopaccount.ini . 1412

Contents 13

5.13.32site.ini . 1413

5.13.33soap.ini . 1648

5.13.34staticcache.ini . 1649

5.13.35template.ini . 1656

5.13.36textfile.ini . 1657

5.13.37texttoimage.ini . 1658

5.13.38toolbar.ini . 1659

5.13.39transform.ini . 1660

5.13.40units.ini . 1661

5.13.41upload.ini . 1662

5.13.42viewcache.ini . 1663

5.13.43webdav.ini . 1673

5.13.44wordtoimage.ini . 1674

5.13.45workflow.ini . 1675

5.14 Libraries . 1685

5.14.1 ezdb . 1686

5.14.2 ezdbschema . 1687

5.14.3 ezfile . 1688

5.14.4 ezi18n . 1689

5.14.5 ezimage . 1690

5.14.6 ezlocale . 1691

5.14.7 ezpdf . 1692

5.14.8 ezsoap . 1693

5.14.9 eztemplate . 1694

5.14.10ezutils . 1695

5.14.11ezwebdav . 1696

5.14.12ezxml . 1697

5.15 XML tags . 1698

List of Figures

1.1 Step 1: Main menu . 36

1.2 Step 2: Confirmation . 37

1.3 Step 3: File extraction . 38

1.4 Step 4: Network interface . 38

1.5 Step 5: Web server port . 39

1.6 Step 6: Summary . 40

1.7 Step 1: Welcome dialog . 41

1.8 Step 2: Component selection . 42

1.9 Step 3: Destination folder . 42

1.10 Step 4: Start menu . 43

1.11 Step 5: Installation in progress . 43

1.12 Step 6: Completion . 44

1.13 Step 1: Welcome page . 61

1.14 Step 2: Issues . 61

1.15 Step 3: Outgoing E-mail . 62

1.16 Step 4: Database choice . 63

1.17 Step 5: Database initialization . 64

1.18 Step 6: Language support . 65

1.19 Step 7: Site selection . 66

1.20 The list of imported packages . 67

1.21 Step 8: Site access configuration . 68

1.22 Step 9: Site details . 70

1.23 Step 10: Site administrator . 71

1.24 Step 11: Site registration . 71

1.25 Step 12: Finished . 72

1.26 Screenshot of extension configuration in administration interface. 99

1.27 The debug output appears at the bottom of the page 102

14

List of Figures 15

2.1 Libraries, kernel and modules. 104

2.2 Content + Design = Web page . 109

2.3 Storage overview . 110

2.4 Example of a content class. 114

2.5 The class edit interface. 115

2.6 Datatypes, attributes, a content class and objects. 120

2.7 Example of a content object that consists of two versions. 123

2.8 Overview of the object states. 126

2.9 Content object structure (with versions and translations). 127

2.10 The list of existing languages for translation of content 128

2.11 Object - node relation . 130

2.12 Objects, nodes and the content node tree 133

2.13 Content node tree . 133

2.14 Objects, node and the content node tree - multiple locations 134

2.15 Content node tree with multiple locations 134

2.16 Top level nodes . 136

2.17 Hiding a visible node . 139

2.18 Hiding an invisible node . 139

2.19 Unhiding a node with a visible ancestor . 140

2.20 Unhiding a node with an invisible ancestor 140

2.21 Example of sections. 143

2.22 Example of a setup with two siteaccesses. 148

2.23 Siteaccess directory example. 149

2.24 Configuration override example. 149

2.25 Objects, nodes and the URL table. 159

2.26 The design fallback mechanism. 162

2.27 Users, groups, policies and roles. 164

2.28 The integrated e-commerce solution. 167

2.29 The workflow system. 171

3.1 Client - server cycle. 175

3.2 The module result as a part of the pagelayout. 175

3.3 Location of pagelayout and full view template in example design. 177

3.4 Pagelayout + node view full template. 177

3.5 The location of the pagelayout (main) template. 181

List of Figures 16

3.6 The structure of the ”ezdate” object. 203

3.7 Typical components of a function call. 216

3.8 Typical components of a template operator call. 217

3.9 The override system. 229

3.10 Template override example. 230

3.11 Example content node tree. 231

3.12 Pagelayout + override templates in example design. 232

3.13 Template override example. 233

4.1 The language selection step in the setup wizard. 245

4.2 The ”Create here” interface. 246

4.3 The list of translation languages. 249

4.4 Adding a new translation language. 250

4.5 The ”Create here” interface. 251

4.6 The list of classes. 252

4.7 The class edit interface. 253

4.8 The language selection interface. 255

4.9 The context menu. 255

4.10 Selecting the language for editing. 256

4.11 The ”My drafts” interface. 257

4.12 The reduced language selection interface. 258

4.13 The policy edit interface. 261

4.14 The policy edit interface. 262

4.15 The role edit interface. 262

4.16 The ”Local” system repository is empty. 274

4.17 The package creation dialog. 275

4.18 The content class export dialog. 275

4.19 The package creation wizard: package information step. 276

4.20 The package creation wizard: information about the package maintainer. . 276

4.21 The package creation wizard: changelog. 277

4.22 The package creation dialog. 277

4.23 The content object export dialog (no objects selected). 277

4.24 Browse the content tree and select which nodes that will be exported. . . . 278

4.25 Browse the content tree and select which subtrees that will be exported. . . 278

4.26 The content object export dialog (one node and one subtree selected). . . . 279

List of Figures 17

4.27 The content object package creation wizard: export properties for content
objects. 279

4.28 The extension package creation wizard. 280

4.29 The site style package creation wizard: choose thumbnail. 281

4.30 The site style package creation wizard: select CSS files. 281

4.31 The site style package creation wizard: add images. 281

4.32 The list of packages. 283

4.33 The package summary view interface. 284

4.34 The list of packages. 285

4.35 The import package interface. 285

4.36 Removing a package. 286

4.37 The content class package summary. 287

4.38 The content class package installation wizard, step 1. 288

4.39 The content class package installation wizard, step 2. 288

4.40 The content object package installation wizard, step 1. 289

4.41 The content object package installation wizard, step 2. 289

4.42 The content object package installation wizard, step 3. 289

4.43 The content object package installation wizard, step 4. 290

4.44 The extension package installation wizard, step 1. 290

4.45 The extension package installation wizard, step 2. 291

4.46 The package uninstallation wizard, step 1. 292

4.47 The package uninstallation wizard, step 2. 293

4.48 The package uninstallation wizard, step 3. 293

4.49 Displaying a custom install script in the list of items during the package
installation process . 298

4.50 Displaying a custom wizard step during the package installation process . . 298

4.51 Class attribute edit interface for the ”Date and time” datatype. 304

4.52 A fragment of the class edit interface. 315

4.53 Setting the redirection URI for the user John 316

4.54 A fragment of the class edit interface. 316

4.55 Setting the redirection URI for the ”Guest accounts” user group 317

4.56 A fragment of the object view interface for the user with two locations. . . . 317

4.57 Setting the VAT type on the object level. 320

4.58 Setting the default VAT type on the class level. 321

4.59 Class attribute edit interface for the ”Product category” datatype. 326

List of Figures 18

4.60 A fragment of the product edit interface. 327

4.61 Class attribute edit interface for the ”Country” datatype. 328

4.62 The list of VAT types. 333

4.63 The newly added VAT type in the list of VAT types. 333

4.64 The confirmation dialog. 334

4.65 The list of product categories. 335

4.66 The newly added category in the list of product categories. 335

4.67 The confirmation dialog. 337

4.68 The list of VAT charging rules. 338

4.69 The VAT charging rule edit interface. 338

4.70 The newly created VAT rule in the list of VAT charging rules. 339

4.71 The base price in USD and two auto prices. 350

4.72 The base price in USD, non-base custom price in NOK and auto price in EUR. 350

4.73 The results of removing the base custom price. 350

4.74 The list of available currencies. 356

4.75 The currency edit interface. 356

4.76 The list of available currencies. 357

4.77 The currency edit interface. 358

4.78 Unknown currency name in the list of currencies. 358

4.79 Displaying inactive currency in the list of currencies. 360

4.80 The list of currencies with disabled possibility to update auto rates. 362

4.81 The list of currencies with updated auto rates. 362

4.82 The list of currencies with removed custom rates. 363

4.83 The list of currencies with one custom rate. 363

4.84 The class edit interface for a product class. 368

4.85 Class attribute edit interface for the ”Multi-price” datatype. 369

4.86 The products overview interface. 372

4.87 The resulting prices after product upgrading. 376

4.88 Clearing the view cache using popup menu. 384

4.89 A part of the site content structure. 389

4.90 The notification filter interface. 394

4.91 Browsing the content tree. 396

4.92 Subscribing to subtree notifications using the context menu. 396

4.93 The ”notification added” confirmation for administrators. 397

4.94 Notification settings for administrators. 397

List of Figures 19

4.95 Browsing the content tree. 398

4.96 The ”Up” button . 398

4.97 Digest settings . 398

4.98 The list of items for subtree notifications. 399

4.99 Settings for collaboration notifications. 400

4.100 The ”keep me updated” button. 401

4.101 The ”notification added” confirmation for users. 401

4.102 Notification settings for users. 402

4.103 The usergroup view interface. 407

4.104 The list of roles. 408

4.105 Adding a new role. 408

4.106 The new policy wizard, step 1. 409

4.107 The new policy wizard, step 2. 409

4.108 The role edit interface. 410

4.109 The role view interface. 410

4.110 Assigning a role to a user group. 411

4.111 The role view interface. 411

4.112 Standard search interface . 420

4.113 Advanced search interface . 421

4.114 Search statistics . 422

4.115 WebDAV - Virtual top folder . 423

4.116 WebDAV - Login . 424

4.117 WebDAV - Top level nodes . 424

4.118 WebDAV - Content node tree . 425

4.119 WebDAV - IE open dialog . 430

4.120 WebDAV - Content node tree . 431

5.1 Class attribute edit interface for the ”Authors” datatype. 435

5.2 Object attribute edit interface for the ”Authors” datatype. 435

5.3 Class attribute edit interface for the ”Checkbox” datatype. 437

5.4 Object attribute edit interface for the ”Checkbox” datatype. 437

5.5 Class attribute edit interface for the ”Country” datatype. 439

5.6 Object attribute edit interface for the ”Country” datatype. 439

5.7 Class attribute edit interface for the ”Date” datatype. 441

5.8 Object attribute edit interface for the ”Date” datatype. 442

List of Figures 20

5.9 Class attribute edit interface for the ”Datetime” datatype. 443

5.10 Object attribute edit interface for the ”Date and time” datatype. 444

5.11 Class attribute edit interface for the ”Email” datatype. 445

5.12 Object attribute edit interface for the ”E-mail” datatype. 445

5.13 Class attribute edit interface for the ”File” datatype. 447

5.14 Object attribute edit interface for the ”File” datatype. 448

5.15 Object attribute edit interface for the ”File” datatype. 448

5.16 Complete directory structure with uploaded files. 449

5.17 Class edit interface for the ”Float” datatype. 450

5.18 Object attribute edit interface for the ”Float” datatype. 451

5.19 Class attribute edit interface for the ”Identifier” datatype. 452

5.20 Class attribute edit interface for the ”Image” datatype. 454

5.21 Object attribute edit interface for the ”Image” datatype. 455

5.22 Object attribute edit interface for the ”Image” datatype. 455

5.23 Example of image path on the filesystem. 456

5.24 Example of an image subdirectory. 456

5.25 Complete directory structure with uploaded image and generated variations. 456

5.26 Class edit interface for the ”Integer” datatype. 460

5.27 Object attribute edit interface for the ”Integer” datatype. 461

5.28 Class attribute edit interface for the ”ISBN” datatype. 462

5.29 Object attribute interface for the ”ISBN” datatype. 462

5.30 Class attribute edit interface for the ”Keywords” datatype. 463

5.31 Object attribute edit interface for the ”Keywords” datatype. 463

5.32 Class attribute edit interface for the ”Matrix” datatype. 465

5.33 Object attribute edit interface for the ”Matrix” datatype. 466

5.34 Class attribute edit interface for the ”Media” datatype. 467

5.35 Object attribute edit interface for the ”Media” datatype (Flash). 468

5.36 Object attribute edit interface for the ”Media” datatype (QuickTime). 468

5.37 Object attribute edit interface for the ”Media” datatype (Real Media). . . . 469

5.38 Object attribute edit interface for the ”Media” datatype (Windows media). . 469

5.39 Class attribute edit interface for the ”Multi-option” datatype. 470

5.40 Object attribute edit interface for the ”Multi-option” datatype. 471

5.41 Class attribute edit interface for the ”Multi-price” datatype. 472

5.42 Object attribute edit interface for the ”Multi-price” datatype. 473

5.43 Class attribute edit interface for the ”Object relation” datatype. 474

List of Figures 21

5.44 Object attribute edit interface for the ”Object relation” datatype. 475

5.45 Class attribute edit interface for the ”Object relations” datatype. 476

5.46 Object attribute edit interface for the ”Object relations” datatype. 476

5.47 Class attribute edit interface for the ”Option” datatype. 478

5.48 Object attribute edit interface for the ”Option” datatype. 479

5.49 Class attribute edit interface for the ”Price” datatype. 480

5.50 Object attribute edit interface for the ”Price” datatype. 481

5.51 Class attribute edit interface for the ”Product category” datatype. 482

5.52 Object attribute edit interface for the ”Product category” datatype. 482

5.53 Class attribute edit interface for the ”Range option” datatype. 483

5.54 Object attribute edit interface for the ”Range option” datatype. 483

5.55 Class attribute edit interface for the ”Selection” datatype. 485

5.56 Object attribute interface for the ”Selection” datatype. 486

5.57 Class edit interface for the ”Text block” datatype. 488

5.58 Object attribute edit interface for the ”Text block” datatype. 489

5.59 Class edit interface for the ”Text line” datatype. 490

5.60 Object attribute interface for the ”Text line” datatype. 491

5.61 Class attribute edit interface for the ”Time” datatype. 492

5.62 Object attribute edit interface for the ”Time” datatype. 492

5.63 Class attribute edit interface for the ”URL” datatype. 493

5.64 Object attribute edit interface for the ”URL” datatype. 493

5.65 Class attribute edit interface for the ”User account” datatype. 495

5.66 Object attribute edit interface for the ”User account” datatype. 496

5.67 Settings interface for the ”User account” datatype. 496

5.68 Class attribute edit interface for the ”XML block” datatype. 498

5.69 Object attribute edit interface for the ”XML block” datatype. 498

5.70 Edit interface for the ”Approve” event. 975

5.71 Edit interface for the ”Multiplexer” event. 977

5.72 Edit interface for the ”Payment gateway” event. 978

5.73 Edit interface for the ”Simple shipping” event. 980

5.74 Edit interface for the ”Wait until date” event. 981

5.75 Text rendered as image using the 1942 font. 1034

5.76 Text rendered as image using the a d mono font. 1034

5.77 Text rendered as image using the archtura font. 1034

5.78 Text rendered as image using the arial font. 1034

List of Figures 22

5.79 Text rendered as image using the gallery font. 1035

5.80 Text rendered as image using the object text font. 1035

5.81 Text rendered as image using the sketchy font. 1035

5.82 Text rendered as image using the smartie font. 1036

5.83 Text rendered as image using the a d mono font. 1036

5.84 The content tree . 1113

Chapter 1

Installation

This chapter explains how to obtain and install eZ Publish using the different installation
methods. In addition, it also describes how to upgrade or remove an existing eZ Publish
installation. If you don’t want to install eZ Publish yourself, you can always hire eZ Systems
to install and setup the software for you. It is also possible to purchase a hosted eZ Publish
solution from various providers and partners.

There are four ways of installing eZ Publish:

1. Normal installation

2. Bundled installation

3. Manual installation

4. Automated installation

Normal installation

This option is the most common and recommended way of installing eZ Publish. It requires
a system which already has the proper environment installed, most notably a web server and
a database. eZ Publish needs to be downloaded and unpacked. A web-based setup wizard
is initiated using a browser. The setup wizard asks a couple of questions and automatically
configures eZ Publish. The method is explained under the ”Normal installation” (page 25)
section.

Bundled installation

A bundled installation contains eZ Publish and additional software that is required to run
the system (Apache, PHP, MySQL, ImageMagick, etc.). Almost everything that is included
in the package is automatically set up by the installer program. The bundled software is
pre-compiled for the Intel x86 hardware architecture. This option is for quick and dirty
testing/demonstration purposes only. In other words, it is not designed for production/live
environments. This installation method is explained in the ”Bundled installation” (page 34)
section.

23

24

1
Manual installation

This option is for experienced users. No wizards or fancy dialogs, no bundled software, no
installers, no nothing. This method requires a system which already has a web-server and
a database set up and ready to go; eZ Publish needs to be downloaded and unpacked. The
system is then configured by manually altering various configuration files and making manual
changes to the database. This method is explained under the ”Manual installation” (page 45)
section.

Automated installation

This installation method (also named kickstart) is for experienced users. It is designed for
system administrators who wish to do pre-configured installations of eZ Publish that require
a minimum of interaction with the web based setup wizard. It requires a system which
already has the proper environment installed, most notably a web server and a database. eZ
Publish needs to be downloaded and unpacked. Instead of clicking through the setup wizard
and manually providing configuration parameters, the system is installed based on a group
of settings defined in a configuration file. This method is explained under the ”Automated
installation” (page 55) section.

1.1 Normal installation 25

1
1.1 Normal installation

The normal installation method is the most common and recommended way of deploying
eZ publish. It requires a system which already has the proper environment installed, most
notably a web server and a database. The necessary requirements are explained in detail
within the next section. A typical normal installation process consists of the following steps:

• Setting up / creating a database

• Downloading a packaged eZ publish distribution

• Unpacking the eZ publish distribution

• Initiating and going through the web based setup wizard

Once the web based setup wizard has completed, eZ publish will be ready for use.

1.1.1 Normal installation / Requirements for doing a normal installation 26

1
1.1.1 Requirements for doing a normal installation

eZ Publish makes use of and depends on four important things:

1. A web server

2. A server-side PHP scripting engine

3. A database server

4. An image conversion system (optional)

The first three things should be in place before an eZ Publish installation is deployed. The
image conversion system is optional and is only needed if you’re planning to use eZ Publish
with images. The web server and the server-side PHP scripting engine has to run on the
same machine. The database server may run on a different computer. For the moment, the
following software solutions can be used:

Web server

Currently, only the Apache web server is supported. It is recommended to use the latest
version of the 1.3 branch. However, it is possible to use the 2.x series. When using Apache
2.x, it must run in ”prefork” mode instead of ”threaded” mode - the reason for this is because
the PHP libraries are not threadsafe. Please note that Apache 2.x for Windows only exists in
”threaded” mode and thus it should not be used to run an eZ Publish solution on Windows.
The Apache web server is the most popular web server on the planet. It is free, open source
and can be downloaded from http://www.apache.org.

Server-side PHP scripting engine

Since most of the eZ Publish system is written using the PHP scripting language, a PHP
(hypertext preprocessor) server-side engine is needed. Make sure you have PHP 4.4. It is
recommended to use the latest version of the 4.4 branch. Please note that eZ Publish will not
work correctly with PHP 5 and thus PHP 5 should not be used. PHP needs to have compiled-in
support for either MySQL or PostgreSQL.

PHP is free software and can be downloaded from http://www.php.net.

PHP CLI

It is strongly recommended to have PHP CLI installed, otherwise some features like notifica-
tions (page 393), delayed search indexing, upgrade scripts, the collaboration system (content
approval), etc. will not work.

PHP memory limit issue

eZ Publish needs at least 64 MB in order to complete the setup wizard. This means that
you’ll have to increase the default ”memory limit” setting which is located in the ”php.ini”

http://www.apache.org
http://www.php.net
http://php.net/manual/en/features.commandline.php

1.1.1 Normal installation / Requirements for doing a normal installation 27

1
configuration file. (Don’t forget to restart apache after editing ”php.ini”.) Normal operation
requires about 16 MB. However, it is highly recommended that you keep the 64 MB setting
since eZ Publish consumes a lot more memory as soon as you use PDF export feature, reindex
the search, etc. Multi-lingual sites that store the content in Unicode (UTF-8) will also require
at least 64 MB.

Database server

eZ Publish stores miscellaneous data structures and actual content using a database. This
means that a database server has to be available for eZ Publish at all times. By default, eZ
Publish is compatible with the following database solutions:

• MySQL 3.23 or later (http://www.mysql.com)
Note that MySQL 5.x is currently not supported.

• PostgreSQL (http://www.postgresql.org)

The setup wizard will automatically detect the database server as long as it is running on the
same computer that functions as the web server.

Note that in order to use UTF-8, you must be running MySQL 4.1 or later (but not MySQL
5.x) as previous versions only support the ISO character set. PostgreSQL also fully supports
UTF-8.

If you are going to use PostgreSQL, make sure the ”pgcrypto” module is installed. On Linux/
UNIX, you may need to install a separate package called ”postgresql-contrib” (refer to the
PostgreSQL documentation for more information), which contains the ”pgcrypto” module.
The ”pgcrypto” module provides cryptographic functions for PostgreSQL, including the ”di-
gest” function, which is needed for eZ Publish. When setting up a PostgreSQL database for eZ
Publish, you will have to register these functions in the database as described in the ”Setting
up a database” part of the installation instructions.

Oracle compatibility

The eZ Publish Extension for Oracle Database makes it possible to use Oracle as a database
for eZ Publish. Refer to the documentation of the database extension for technical details.

Image conversion system (optional)

In order to scale, convert or modify images, eZ Publish needs to make use of an image con-
version system. One of the following software packages (both are free) can be used:

• GD (comes with PHP)

• ImageMagick (http://www.imagemagick.org)

ImageMagick supports more formats than GD and usually produces better results (better
scaling, etc.). The setup wizard will automatically detect the pre-installed image conversion
system(s).

http://www.mysql.com
http://www.postgresql.org
http://www.postgresql.org/docs/8.3/static/pgcrypto.html
http://www.postgresql.org/docs/8.3/static/contrib.html
http://www.imagemagick.org

1.1.1 Normal installation / Requirements for doing a normal installation 28

1
The installation and setup of required software solutions (outlined above) is far beyond the
scope of this document. Please refer to the homepage and documentation of the different
software solutions.

1.1.2 Normal installation / Installing eZ publish on a Linux/UNIX based system 29

1
1.1.2 Installing eZ publish on a Linux/UNIX based system

The requirements for doing a normal installation must be met. Please read the previous
section if you’re not sure about the requirements. Proceed only if you have access to a UNIX
based environment with Apache, PHP, MySQL or PostgreSQL already installed and running.
(Please note that PHP 5 should not be used.) As mentioned earlier, the database server may
run on a different computer than the web server. This section will guide you through the
following steps:

• Setting up a database (MySQL or PostgreSQL)

• Downloading eZ publish

• Unpacking eZ publish

• Initiating the setup wizard

Setting up a database

A database must be created before the initiation of the setup wizard takes place. The following
text explains how to set up a database using either MySQL or PostgreSQL.

MySQL

1. Login as root:

$ mysql -u <mysql_username> -p<mysql_password>

The MySQL client should display a ”mysql>” prompt.

2. Create a new database:

mysql> create database <database> character set <character_set>;

3. Grant access permissions:

mysql> grant all on <database>.* to <username>@<host> identified by

’<password>’;

mysql username The MySQL user (if no user is set up, use
”root”).

mysql password The password that belongs to the mysql
username.

username The username that will be used to access the
database.

password The password you wish to set in order to
limit access to the database.

database The name of the database, for example ”my

1.1.2 Normal installation / Installing eZ publish on a Linux/UNIX based system 30

1
new database”.

host The hostname of the server on which eZ
publish will be running. (may be ”localhost”
if MySQL is installed on the same server).

character set The character encoding scheme to be used
in the database.

PostgreSQL

1. Become the PostgreSQL super user (normally called postgres):

$ su <postgres_super_user>

2. Create a PostgreSQL user:

$ createuser <username>

3. Create a database:

$ createdb -E <encoding> <database>

4. Import the ”pgcrypto” module into the database:

$ psql <database> < /usr/share/pgsql/contrib/pgcrypto.sql

username The username that will be used to access the
database.

database The name of the database, for example ”my
new database”.

encoding The character encoding scheme to be used
in the database.

Downloading eZ publish

The latest stable version of eZ publish can be downloaded from http://ez.no/download/ez
publish.

Unpacking eZ publish

Use your favorite tool to unpack the downloaded eZ publish distribution to a web-served
directory (a directory that is reachable using a web browser). The following example shows
how to do this using the tar utility (to unpack a tar.gz file, assuming that the ”tar” and the
”gzip” utilities are installed on the system):

$ tar zxvf ezpublish-<version_number>.tar.gz -C <web_served_directory>

http://www.postgresql.org/docs/8.3/static/pgcrypto.html
http://share.ez.no/download-develop/downloads
http://share.ez.no/download-develop/downloads

1.1.2 Normal installation / Installing eZ publish on a Linux/UNIX based system 31

1version number The version number of eZ publish that was
downloaded.

web served directory Full path to a directory that is served by the
web server. This can be the path to the doc-
ument root of the web server, or a personal
web-directory (usually called ”public html”
or ”www”, and located inside a user’s home
directory).

The extraction utility will unpack eZ publish into a subdirectory called ”ezpublish-3.x.x”. Feel
free to rename this directory to something more meaningful, for example ”my site”.

Initiating the setup wizard

The setup wizard can be started using a web browser immediately after the previous steps
(described in this section) are completed. It will be automatically run the first time someone
tries to access/browse the index.php file located in the eZ publish directory. Let’s assume that
we are using a server with the hostname ”www.example.com” and that after unpacking, the
eZ publish directory was renamed to ”my site”.

Document root example

If eZ publish was unpacked into a directory called ”my site” under the document root, the
setup wizard can be initiated by browsing the following URL: http://www.example.com/my
site/index.php.

Home directory example

If eZ publish was unpacked to a web-served directory located inside the home direc-
tory of a user with the username ”peter”, (usually called ”public html”, ”www”, ”http”,
”html” or ”web”), the setup wizard can be initiated by browsing the following URL: http:/
/www.example.com/˜peter/my site/index.php.

Please refer to ”The setup wizard (page 60)” section for a detailed description of the web
based setup wizard.

1.1.3 Normal installation / Installing eZ publish on Windows 32

1
1.1.3 Installing eZ publish on Windows

The requirements for doing a normal installation must be met! Please read the ”Requirements
for doing a normal installation” (page 26) section first. Proceed only if you have access to
a Windows based system with Apache, PHP, MySQL already installed and running. (Do not
use Apache 2.x for Windows and PHP 5.x. Please note that eZ publish is supposed to work
with PostgreSQL as well although this combination is not tested on Windows.) As mentioned
earlier, the database server may run on a different computer than the web server. This section
will guide you through the following steps:

• Setting up a MySQL database

• Downloading eZ publish

• Unpacking eZ publish

• Initiating the setup wizard

Setting up a MySQL database

A database must be created before the initiation of the setup wizard takes place. The following
text explains how to set up a database using MySQL:

MySQL

1. Login as root:

$ mysql -u <mysql_username> -p<mysql_password>

The MySQL client should display a ”mysql>” prompt.

2. Create a new database:

mysql> create database <database> character set <character_set>;

3. Grant access permissions:

mysql> grant all on <database>.* to <username>@<host> identified by

’<password>’;

mysql username The MySQL user (if no user is set up, use
”root”).

mysql password The password that belongs to the mysql
username.

username The username that will be used to access the
database.

password The password you wish to set in order to

1.1.3 Normal installation / Installing eZ publish on Windows 33

1
limit access to the database.

database The name of the database, for example ”my
new database”.

host The hostname of the server on which eZ
publish will be running. (may be ’localhost’
if MySQL is installed on the same server).

character set The character encoding scheme to be used
in the database.

Downloading eZ publish

The latest stable version of eZ publish can be downloaded from http://ez.no/download/ez
publish. Windows users should download the ”.zip” archive.

Unpacking eZ publish

Use your favorite utility to unpack the downloaded eZ publish archive to a web-served direc-
tory (a directory that is reachable using a web browser). The extraction utility will unpack
eZ publish into a subdirectory called ”ezpublish-3.x.x”. Feel free to rename this directory to
something more meaningful, for example ”my site”.

Initiating the setup wizard

The setup wizard can be started using a web browser immediately after the previous steps
(described in this section) are completed. It will be automatically run the first time someone
tries to access/browse the index.php file located in the eZ publish directory. Let’s assume that
we are using a server with the hostname ”www.example.com” and that after unpacking, the
eZ publish directory was renamed to ”my site”.

Document root example

If eZ publish was unpacked into a directory called ”my site” under the document root, the
setup wizard can be initiated by browsing the following URL: http://www.example.com/my
site/index.php.

Home directory example

If eZ publish was unpacked to a web-served directory located inside the home direc-
tory of a user with the username ”peter”, (usually called ”public html”, ”www”, ”http”,
”html” or ”web”), the setup wizard can be initiated by browsing the following URL: http:/
/www.example.com/˜peter/my site/index.php.

Please refer to ”The setup wizard” (page 60) section for a detailed description of the web
based setup wizard.

http://share.ez.no/download-develop/downloads
http://share.ez.no/download-develop/downloads

1.2 Bundled installation 34

1
1.2 Bundled installation

A bundled installation contains everything that is needed for eZ publish to run and eZ publish
itself. A bundle contains the following software:

• Apache (web server)

• PHP (server side scripting engine)

• MySQL (database server and client)

• ImageMagick (image conversion software)

• eZ publish

All software included in a bundle is pre-compiled for the Intel x86 hardware architecture. The
binaries/executables are dynamically linked to the shared libraries of the target operating
system (Linux or Windows). Each bundle comes with an easy-to-use installer. The installer
automatically sets up the additional software, which means that no manual configuration of
Apache, PHP, MySQL and ImageMagick is needed. The contents of a bundle is put inside a
temporary directory, totally isolated from the rest of the filesystem. The software included in
the bundle can coexist with previously installed versions of Apache, PHP, MySQL, etc. Bundles
are very easy to install and can be just as easily removed. Bundled installations are available
for the following operating systems:

• Linux distributions (Debian/Gentoo/Mandrake/RedHat/SuSE/etc.)

• Microsoft Windows 95/98/ME/NT/2000/XP

The bundles are designed for getting eZ publish up and running in the fastest possible way on
a computer that doesn’t have the required software installed. However, bundles are meant to
be used for testing/demonstration purposes only. If you plan to use eZ publish for more than
just testing, we recommend that you install it using the normal installation method, which
is described under the Normal installation section. The next sections describe the necessary
requirements, how to install, use and remove eZ publish bundles.

1.2.1 Bundled installation / Requirements for doing a bundled installation 35

1
1.2.1 Requirements for doing a bundled installation

Linux requirements

Root access

An eZ publish bundle can only be installed by the root user. This means that you’ll need to
have root access on the computer that you wish to install the bundle.

Diskspace

Because an eZ publish bundle contains a lot of additional software (Apache, PHP, MySQL,
etc.), it takes up quite a lot of space. You need to have at least 32 MB of free space on the
root partition.

Bash

The installer must be executed from within an instance of the ”Bourne Again Shell” (Bash).

Windows requirements

Administrator access on NT/2000/XP

When installing on Windows NT, 2000 or XP, you need to be logged in with a user that has
administrator privileges (preferably the ”Administrator” user).

Diskspace

Because an eZ publish bundle contains a lot of additional software (Apache, PHP, MySQL,
etc.), it takes up quite a lot of space. You need to have at least 32 MB of free space on the C:
drive.

1.2.2 Bundled installation / Installing an eZ publish bundle on a Linux based system 36

1
1.2.2 Installing an eZ publish bundle on a Linux based system

This section describes how to deploy an eZ publish bundle on a Linux based system:

1. Download the latest Linux compatible eZ publish bundle from
http://ez.no/download/ez publish. Look for ”ezpublish-x.y.z-Linux-
STABLE.i386.tar.gz” where ”x.y.z” is the version number, for example ”3.8.0”.

2. Unpack the bundle:

$ tar zxvf ezpublish-x.y.z-Linux-STABLE.i386.tar.gz

3. Become the root user:

$ su -

4. Start the installation script:

cd ezpublish-x.y.z-Linux-STABLE.i386

./install.sh

The following text explains the various dialog screens of the installation script.

Main menu

(see figure 1.1)

Figure 1.1: Step 1: Main menu

Select the ”Install eZ publish 3” option and hit enter.

http://share.ez.no/download-develop/downloads

1.2.2 Bundled installation / Installing an eZ publish bundle on a Linux based system 37

1
Previous installations

The installation script will automatically detect a previously installed bundle by checking a
lock file. A previous installation must be removed. Use the ”Uninstall eZ publish 3” option
from the main menu, the installer will automatically remove the previous bundle. If a previ-
ous version was removed manually then the lock file may still be present. Remove the lock
file manually by deleting the ”/var/state/ezpublish/ezpublish.lock” file.

Confirmation

(see figure 1.2)

Figure 1.2: Step 2: Confirmation

A dialog will ask for a final confirmation. Choose ”Yes”. The installation script will then
attempt to install all the software included in the bundle. Everything will be put in the ”/opt/
ezpublish” directory (except the lock file, which will be located at ”/var/state/ezpublish/”).

File extraction

(see figure 1.3)
The installation script will extract the files included in the bundle. This may take some time
(a minute or two).

Network interface

(see figure 1.4)

1.2.2 Bundled installation / Installing an eZ publish bundle on a Linux based system 38

1

Figure 1.3: Step 3: File extraction

Figure 1.4: Step 4: Network interface

A dialog will ask for the name of the primary network interface (most likely the Ethernet
controller). The primary network interface is usually called ”eth0”. In case of doubt: bring up
a shell and use the ”ifconfig” command to figure out the name of the interface. It is possible
to use the local loopback interface if no physical network interface is present. The name of
the local loopback interface is ”lo”.

1.2.2 Bundled installation / Installing an eZ publish bundle on a Linux based system 39

1
Web server port

(see figure 1.5)

Figure 1.5: Step 5: Web server port

The installation script will ask for a TCP port number. The bundled web server (Apache) will
communicate with the rest of the world through this port. The port must not be used by any
other service running on the system. The default port for HTTP traffic is 80. If a web server
is already using this port, then another port must be chosen (for example 8085).

Finish

(see figure 1.6)
The final dialog will display information about the installation and how the eZ publish system
can be reached using a web browser. The address will be something like ”http://localhost” or
”http://localhost:XXXX” where ”XXXX” is the actual port number.

The web based setup wizard has to be run after the installation is finished (it will automati-
cally start the first time the site is browsed). You should be able to follow the instructions on
the screen. Refer to ”The setup wizard” (page 60) section for a complete step-by-step guide.

1.2.2 Bundled installation / Installing an eZ publish bundle on a Linux based system 40

1

Figure 1.6: Step 6: Summary

1.2.3 Bundled installation / Installing an eZ publish bundle on Windows 41

1
1.2.3 Installing an eZ publish bundle on Windows

This section describes how to deploy an eZ publish bundle on a Windows based operating
system.

Important note about services

When installing under Windows, you have to be sure that there are no services running/
listening on port 80 and 3306 (which are the default ports for HTTP and MySQL traffic).
Services listening on these ports should be stopped. If Apache or MySQL is already installed,
then the installer will replace these services with the services that are included in the bundle.
Existing installations of Apache and MySQL will not be deleted or removed, only the services
will be stopped and replaced.

Downloading the eZ publish bundle

The eZ publish bundle can be downloaded from http://ez.no/download/ez publish. The
bundle for Windows (95/98/ME/NT/2000/XP) is called something like ”ezpublish-3.8.x-gpl
installer.exe”.

Starting the installation wizard

When installing on Windows NT, 2000 or XP, make sure you’re logged in with a user that
has administrator privileges (preferably the ”Administrator” user). Start the install wizard by
clicking on its icon (double or single click depending on your settings).

Welcome dialog

(see figure 1.7)

Figure 1.7: Step 1: Welcome dialog

http://share.ez.no/download-develop/downloads

1.2.3 Bundled installation / Installing an eZ publish bundle on Windows 42

1
This is the initial screen. Click ”Next” to continue.

Component selection

(see figure 1.8)

Figure 1.8: Step 2: Component selection

The wizard will show a list of the components that will be installed. The installation of the
PHP cache (MM Cache) is optional. Click ”Next” to continue.

Destination folder

(see figure 1.9)

Figure 1.9: Step 3: Destination folder

Choose a destination folder, everything will be put in here. Click ”Next” to continue.

1.2.3 Bundled installation / Installing an eZ publish bundle on Windows 43

1
Start menu

(see figure 1.10)

Figure 1.10: Step 4: Start menu

Choose a start menu folder for the program shortcuts. You may also choose not to create the
shortcuts. Click ”Next” to continue.

Actual installation

(see figure 1.11)

Figure 1.11: Step 5: Installation in progress

Please wait while the wizard copies/installs the files.

1.2.3 Bundled installation / Installing an eZ publish bundle on Windows 44

1
The end

(see figure 1.12)

Figure 1.12: Step 6: Completion

This is the final screen. The installation has finished. Click ”Finish” to end/close the wizard.
The eZ publish setup wizard has to be run after the installation is finished (it will automati-
cally start the first time the site is browsed). The setup wizard is self-explaining and is used to
configure the eZ publish system. You should be able to follow the instructions on the screen.
Please refer to ”The setup wizard” (page 60) section for more information.

1.3 Manual installation 45

1
1.3 Manual installation

This installation method is for advanced users who know what they are doing, all other users
should use the ”Normal installation method” (page 25). The manual installation method
requires an environment which already has a web server, a database and etc. setup and
ready to go; eZ publish needs to be downloaded and unpacked. Instead of running the setup
wizard, all configuration is done manually using the command line interface of the target
operating system. The following sections (depending on the target OS) will take you through
the necessary steps.

1.3.1 Manual installation / Requirements for doing a manual installation 46

1
1.3.1 Requirements for doing a manual installation

The requirements for doing a manual installation are the same as for the normal installation.
Please refer to the ”Requirements for doing a normal installation” (page 26) section.

1.3.2 Manual installation / Manual installation on a Linux/UNIX based system 47

1
1.3.2 Manual installation on a Linux/UNIX based system

The requirements for doing a manual installation must be met. Please read the previous
section (page 46) if you’re not sure about the requirements. Proceed only if you have access
to a UNIX based environment with Apache, PHP, MySQL or PostgreSQL already installed and
running. As mentioned earlier, the database server may run on a different computer than the
web server. A manual installation consists of the following steps:

• Setting up a database (MySQL or PostgreSQL)

• Downloading eZ publish

• Unpacking eZ publish

• Manual configuration of eZ publish

The only difference between a normal and a manual installation is the last step. Instead of
running the web based setup wizard, eZ publish is manually configured by editing a couple
of files. The first three steps are explained under the ”Installing eZ publish on a Linux/UNIX
based system” (page 29) section. The last step is explained under the ”Manual configuration
of eZ publish” (page 49) section.

1.3.3 Manual installation / Manual installation on Windows 48

1
1.3.3 Manual installation on Windows

The requirements for doing a manual installation must be met. Please read the previous
section (page 46) if you’re not sure about the requirements. Proceed only if you have access
to a Windows based system with Apache, PHP, MySQL or PostgreSQL already installed and
running. As mentioned earlier, the database server may run on a different computer than the
web server. A manual installation consists of the following steps:

• Setting up a MySQL database

• Downloading eZ publish

• Unpacking eZ publish

• Manual configuration of eZ publish

The only difference between a normal and a manual installation is the last step. Instead of
running the web based setup wizard, eZ publish is manually configured by editing a couple of
files. The first three steps are explained under the ”Installing eZ publish on Windows” (page
32) section. The last step is explained under the ”Manual configuration of eZ publish” (page
49) section.

1.3.4 Manual installation / Manual configuration of eZ publish 49

1
1.3.4 Manual configuration of eZ publish

This section describes how to manually configure eZ publish instead of using the setup wizard
to do all the work. Please keep in mind that the manual installation method is for expert users
only. It should only be used by people who know what they are doing. The following steps
will work on both Linux/UNIX and Windows environments.

Database initialization

A clean eZ publish database is created using two very important SQL scripts: ”kernel schema”
and ”cleandata” (please note that an empty database should be created before launching
these scripts). The first of them initializes the necessary database structure and the second
one imports the pre-defined data to the database. While the ”kernel schema” script differs for
each database engine, the ”cleandata” script is the same for all solutions.

MySQL

Use the following command to run the MySQL specific ”kernel schema” script:

$ mysql -u USERNAME -pPASSWORD DATABASE < PATH/kernel/sql/mysql/

kernel_schema.sql

Note that the CREATE TABLE statements in the ”kernel schema” script do not specify which
storage engine to use (no ENGINE or TYPE option), and thus the default storage engine will
be used. Normally, it is MyISAM. If you are running MySQL 4.x or later, it is recommended
to use the InnoDB engine instead (if it is available on your server). To do this, set the default
storage engine to InnoDB before you run the ”kernel schema” script (refer to the MySQL
documentation for information about how to set the default engine).
When installing an eZ Publish version downloaded from a subversion repository,
”TYPE=MyISAM” is explicitly specified in ”kernel schema.sql”. To make the script use the
InnoDB storage engine, replace all occurrences of ”TYPE=MyISAM” with ”TYPE=InnoDB”
before you run the script. In addition, set the default storage engine to InnoDB, otherwise
future upgrades might leave you with a mix of table types.
Alternatively, you can run the ”kernel schema” script first and then convert the newly created
tables to InnoDB. You can either use the ”bin/php/ezconvertmysqltabletype.php” script for
database conversion (recommended) or convert the tables individually by using the following
SQL query for each table:

ALTER TABLE <name_of_table> TYPE = innodb;

Use the following command to run the generic ”cleandata” script:

$ mysql -u USERNAME -pPASSWORD DATABASE < PATH/kernel/sql/common/

cleandata.sql

USERNAME The MySQL user (if no user is set up, use
”root”).

PASSWORD The password that belongs to the username.
DATABASE The name of the database, for example ”my

http://dev.mysql.com/doc/refman/4.1/en/storage-engines.html
http://dev.mysql.com/doc/refman/4.1/en/storage-engines.html

1.3.4 Manual installation / Manual configuration of eZ publish 50

1
database”.

PATH The full path to the root directory of your
eZ publish installation, for example ”/opt/
ezpublish/3.8”.

File permissions

Windows users can skip this part. If eZ publish is installed on a Linux/UNIX based system,
some of the file permissions need to be changed. There exists a shell script that takes care of
this. This script must be run, or else, eZ publish will not function properly. The script needs
to be run from within the eZ publish directory:

$ cd /opt/ezpublish/3.8

$ bin/modfix.sh

Replace the ”/opt/ezpublish/3.8” by the full path to the root directory of your eZ publish
installation.

The modfix script recursively alters the permission settings of the following directories inside
the eZ publish installation:

• var/*

• settings/*

• design/*

If you know the user and group of the webserver it is recommended to use a different set of
permissions:

chown -R user.usergroup var/ settings/ design/

chmod -R 770 var/ settings/ design/

The ”user.usergroup” notation must be changed to user and groupname that the webserver
runs as.

Configuring eZ publish

The ”site.ini.append.php” configuration file located in the ”settings/override” directory of
your eZ publish installation must be changed, or else eZ publish will not function properly.
This file is the global override for the site.ini (page 1413) configuration file. There are a lot of
things that need to be configured (database, mail transport system, var directory, etc.). The
following text shows a generic example of a configuration that can be used:

<?php /* #?ini charset="iso-8859-1"?

[DatabaseSettings]

DatabaseImplementation=ezmysql

Server=localhost

1.3.4 Manual installation / Manual configuration of eZ publish 51

1
User=root

Password=

Database=my_database

[FileSettings]

VarDir=var/example

[Session]

SessionNameHandler=custom

[SiteSettings]

DefaultAccess=example

SiteList[]

SiteList[]=example

[SiteAccessSettings]

CheckValidity=false

AvailableSiteAccessList[]

AvailableSiteAccessList[]=example

AvailableSiteAccessList[]=example_admin

MatchOrder=host;uri

Host matching

HostMatchMapItems[]=www.example.com;example

HostMatchMapItems[]=admin.example.com;example_admin

[InformationCollectionSettings]

EmailReceiver=webmaster@example.com

[MailSettings]

Transport=sendmail

AdminEmail=webmaster@example.com

EmailSender=test@example.com

[RegionalSettings]

Locale=eng-GB

ContentObjectLocale=eng-GB

TextTranslation=disabled

*/ ?>

In the example above the ”AvailableSiteAccessList[]” array located in the ”[SiteAccessSet-
tings]” section of this file determines the available siteaccesses (page 148) called ”example”
and ”example admin”. The ”CheckValidity” setting located in the same section should be set
to false, otherwise the setup wizard will be initiated when trying to access the site.

In addition, two siteaccess configurations must be created, a public siteaccess (”example”)
and an administration siteaccess (”example admin”). The following subdirectories have to be
created in the root of your eZ publish installation:

1.3.4 Manual installation / Manual configuration of eZ publish 52

1
• settings/siteaccess/example

• settings/siteaccess/example admin

Both siteaccesses must have a file called ”site.ini.append.php”.

The public siteaccess

The following text shows a generic solution for the ”example” siteaccess:

<?php /* #?ini charset="iso-8859-1"?

[SiteSettings]

SiteName=Example

SiteURL=www.example.com

LoginPage=embedded

[SiteAccessSettings]

RequireUserLogin=false

ShowHiddenNodes=false

[DesignSettings]

SiteDesign=example

[ContentSettings]

ViewCaching=disabled

[TemplateSettings]

TemplateCache=disabled

TemplateCompile=disabled

#ShowXHTMLCode=enabled

#Debug=enabled

[DebugSettings]

DebugOutput=enabled

Debug=inline

#DebugRedirection=enabled

[RegionalSettings]

SiteLanguageList[]

SiteLanguageList[]=eng-GB

ShowUntranslatedObjects=disabled

*/ ?>

The admin siteaccess

The following text shows a generic solution for the ”example admin” siteaccess:

1.3.4 Manual installation / Manual configuration of eZ publish 53

1
<?php /* #?ini charset="iso-8859-1"?

[SiteSettings]

SiteName=Example

SiteURL=admin.example.com

LoginPage=custom

[SiteAccessSettings]

RequireUserLogin=true

ShowHiddenNodes=true

[DesignSettings]

SiteDesign=admin

[ContentSettings]

CachedViewPreferences[full]=admin_navigation_content=0;

admin_navigation_details=0;admin_navigation_languages=0;

admin_navigation_locations=

0;admin_navigation_relations=0;admin_navigation_roles=0;

admin_navigation_policies=0;admin_navigation_content=0;

admin_navigation_translatio

ns=0;admin_children_viewmode=list;admin_list_limit=1;

admin_edit_show_locations=0;admin_url_list_limit=10;admin_url_view_limit=10;

admin_sec

tion_list_limit=1;admin_orderlist_sortfield=user_name;

admin_orderlist_sortorder=desc;admin_search_stats_limit=1;admin_treemenu=1;

admin_boo

kmarkmenu=1;admin_left_menu_width=13

[DebugSettings]

DebugOutput=disabled

Debug=inline

[RegionalSettings]

SiteLanguageList[]

SiteLanguageList[]=eng-GB

ShowUntranslatedObjects=enabled

*/ ?>

Please note that database settings, mail settings, regional and other settings defined in ”set-
tings/override/site.ini.append.php” will be used for each siteaccess regardless of what is spec-
ified in the siteaccess settings. In the example above, the ”Database=my database” is speci-
fied under the ”[DatabaseSettings]” section of this file so this database will be used for both
”example” and ”example admin” siteaccesses. Please refer to the ”Site management (page
148)” and ”Configuration (page 146)” sections of the ”Concepts and basics” chapter for more
information.

1.3.4 Manual installation / Manual configuration of eZ publish 54

1
Unicode support

If you’re using a database which supports Unicode (for example MySQL 4.1.x or later) and
PHP is compiled with multibyte string support, create the file called ”i18n.ini.append.php”
in the ”settings/override/” directory of your eZ publish installation and make sure that it
contains the following lines:

<?php /* #?ini charset="iso-8859-1"?

[CharacterSettings]

Charset=utf-8

MBStringExtension=enabled

*/ ?>

Languages

In eZ publish 3.7 and earlier versions, objects had to be created in the primary language
before they could be translated to additional languages. Multiple translators could not work
simultaneously because the edit process locked the entire version which also contained the
translations. In eZ publish 3.8, the primary language concept is gone and thus objects can
be created using different languages. This means that you can for example have an article
available only in English and another article available only in Norwegian. Multiple translators
can work with different translations at the same time on the same object. (Please refer to the
”Multi-language (page 239)” section of the ”Features” chapter for more information about
new functionality.)

Available languages and their priorities can be controlled per siteaccess using the ”SiteLan-
guageList (page 1500)” configuration setting located under the ”[RegionalSettings]” section
of the siteaccess ”site.ini.append.php” file. If this setting is not specified, the system will
use the old ”ContentObjectLocale” setting and thus only the default language will be shown.
Please note that the ”ContentObjectLocale (page 1508)” INI setting does not specify the pri-
mary language but the default language. This language will be used as the default value in
PHP functions that support an optional parameter for language.

The ”cleandata.sql” script creates only one language which is the British English (eng-GB). All
other languages should be added using ”Setup ? Languages” in the administration interface
(http://admin.example.com in the example above). The following username and password
are set by the ”creandata.sql” script and can be used for logging in to the administration
interface.

• Username: admin

• Password: publish

1.4 Automated installation 55

1
1.4 Automated installation

The automated installation method (also known as ”kickstart”) is for experienced users. It
provides an automated version of the ”Normal installation method” and is designed for system
administrators who wish to roll out pre-configured installations of eZ publish. This method
requires minimum interaction with the web based setup wizard and thus it can be used to
rapidly deploy eZ publish on a massive scale. This method has the same requirements as
the ”Normal installation” method. A typical automated installation process consists of the
following steps:

• Setting up / creating a database

• Downloading a packaged eZ publish distribution

• Unpacking the eZ publish distribution

• Configuring the ”kickstart.ini” file

• Initiating the web based setup wizard

Once the web based setup wizard has completed, eZ publish will be ready for use.

1.4.1 Automated installation / Requirements for doing an automated installation 56

1
1.4.1 Requirements for doing an automated installation

The requirements for an automated installation are the same as for the normal installation
method. Please refer to the ”Requirements for doing a normal installation” (page 26) page
for more information.

At the minimum, a web server, a PHP engine, and a database server must be installed. Ad-
ditional server-side software is only necessary if the kickstart configuration file instructs the
system to make use of such software. For example, ”ImageMagick” has to be available if it
has been specified as the primary image manipulation solution.

The next section (page 57) explains how eZ publish can be configured to do an automated
installation of itself.

1.4.2 Automated installation / Automated installation of eZ publish 57

1
1.4.2 Automated installation of eZ publish

The requirements for doing an automated installation must be met. Please read the previous
section if you’re not sure about the requirements. This section will guide you through the
following steps:

• Setting up a database (MySQL or PostgreSQL)

• Downloading eZ publish

• Unpacking eZ publish

• Configuring the kickstart system

• Starting the installation by initiating the web based setup wizard

Depending on the target system, please refer to either ”Installing eZ publish on a Linux/UNIX
based system” (page 29) or ”Installing eZ publish on Windows” (page 32) for information
about the first three steps (database setup, download and unpacking). The rest of the steps
are explained below.

Configuring the kickstart system

The behavior of the automated installation is controlled by the ”kickstart.ini” configuration
file. This file makes it possible to specify parameters for each installation step of the web
based setup wizard. For example, by providing the database connection parameters, the
corresponding setup wizard step will have the input forms pre-filled. It is also possible to
instruct the wizard to skip certain steps.

Initialization

Create a copy of the ”kickstart.ini-dist” file (located in the root of your eZ publish installation)
and make sure that the copy is named ”kickstart.ini” (located in the root of eZ publish). The
following example shows how this can be done on a Linux/UNIX based system:

1. Navigate into the eZ publish directory:

$ cd /path/to/ezpublish/

2. Copy and rename the configuration file:

$ cp kickstart.ini-dist kickstart.ini

1.4.2 Automated installation / Automated installation of eZ publish 58

1
Security issues

The web server must have read access to the ”kickstart.ini” file during the installation pro-
cess. This might become a security problem at a later stage if the file contains usernames,
passwords, etc. To prevent this from happening, it is recommended to do one of the following:

• Remove the file when the installation has completed.

• Use rewrite rules to make sure that it is not readable from outside.

Configuration blocks

The ”kickstart.ini” file contains a configuration block for every step of the setup wizard. The
block names are encapsulated by square brackets. The following list shows an overview of
the available blocks.

• [email settings]

• [database choice]

• [database init]

• [language options]

• [site types]

• [site access]

• [site details]

• [site admin]

• [security]

• [registration]

In the default kickstart file, everything is commented out. The blocks and the corresponding
settings have to be uncommented in order to take effect. This can be done by removing the
hash (”#”) characters from the start of the lines that you should be activated. Make sure that
there are no leading whitespace characters at the start of the lines.

Configuration parameters

Each parameter takes a text string as an input value. Some parameters are able to handle an
array of strings. The following examples demonstrate the two parameter types.

• Single parameter:

Server=www.example.com

• Array parameter:

1.4.2 Automated installation / Automated installation of eZ publish 59

1
Title[]

Title[news]=The news site

Title[forums]=The forum site

Documentation and examples

The ”kickstart.ini” file contains documentation in the file itself. Please refer to the embedded
instructions and examples for a detailed explanation of the steps. The following table shows
how the examples / inline instructions deal with required and optional parameters.

Syntax Description
<value> Angle brackets indicate that the parameter

value is required, example:
#Server=<hostname>

[value] Squared brackets indicate that the parame-
ter value is optional, example:
#FirstName=[string]

A parameter will only take effect if it has been uncommented. Remove the leading hash (”#”)
and make sure that there ar no whitespace characters at the start of the lines that include the
uncommented parameters.

Skipping steps

A step can be skipped by uncommenting and setting the ”Continue” parameter to ”true”. This
parameter can be used for each step / block. The following table shows the outcome for the
different configurations of the ”Continue” parameter.

Assignment Result
Continue=false The step will be shown and the input val-

ues will be pre-filled with the values (if any)
defined in the ”kickstart.ini” configuration
file. This is the same as when the ”Continue”
parameter is missing or if it has been com-
mented out.

Continue=true The system will automatically use the values
defined in the kickstart file and thus the step
will not be shown. However, if something
goes wrong (missing or wrong values, etc.),
the step will be shown.

Starting the installation

The installation can be started by initiating the web based setup wizard. Please refer to the
”Initiating the setup wizard” part of the ”Normal installation” section.

1.5 The setup wizard 60

1
1.5 The setup wizard

This section contains a comprehensive guide through the web based setup wizard of eZ Pub-
lish. The setup wizard is designed to ease the initial configuration of the system. It can
be started using a web browser when the necessary installation steps (described in the pre-
vious sections) are completed. The setup wizard will automatically start the first time the
”index.php” file (located in the root of the eZ Publish directory) is accessed/browsed.

The setup wizard does not store or modify any data before the final step; thus, it can be
safely restarted by reloading the URL containing only the ”index.php” part. The back button
(located at the bottom) can be used to jump back to previous steps in order to modify settings.
A typical setup cycle consists of 12 steps:

1. Welcome page

2. System check

3. Outgoing E-mail

4. Database choice (optional)

5. Database initialization

6. Language support

7. Site selection

8. Access method

9. Site details

10. Site security

11. Site registration

12. Finish

Please note that some of the steps will be omitted when an eZ Publish bundle (page 34) is
being installed.

Welcome page

(see figure 1.13)
This is the initial page of the setup wizard. By clicking ”Next”, the wizard will either jump to
the ”System Check” page (if some issues need to be fixed) or to the ”Outgoing E-mail” page
(if everything is okay).

System check

(see figure 1.14)
This page usually appears if critical issues/problems are detected. The setup wizard will
display information about the issues that need to be fixed and suggestions describing how
they can be fixed.

1.5 The setup wizard 61

1

Figure 1.13: Step 1: Welcome page

Figure 1.14: Step 2: Issues

1.5 The setup wizard 62

1
Issues

There may be several issues/problems. A suggestion to each problem is presented below the
description of the problem itself. The setup wizard will probably suggest the execution of mis-
cellaneous shell commands (in order to fix ownerships, permissions, etc.). These commands
must be executed using a system shell. Simply copy the commands from the browser window
and paste them into an open shell. The setup wizard will run the system check again when
the ”Next” button is clicked. The ”System check” page will keep reappearing until all issues
have been fixed (or ignored, see the next section). Once everything is okay, the setup wizard
will display the next step.

Ignoring tests

Some issues/problems may be ignored using a checkbox labelled ”Ignore this test”. However,
it is recommended to fix all issues rather than ignoring them.

Outgoing E-mail

(see figure 1.15)

Figure 1.15: Step 3: Outgoing E-mail

eZ Publish uses E-mail to send out miscellaneous notices. This step is used to configure how
eZ Publish delivers outgoing E-mail. There are two options:

• Direct delivery through sendmail (must be available on the server)

• Indirect delivery using an SMTP (Simple Mail Transfer Protocol) relay server

1.5 The setup wizard 63

1
On Linux/UNIX: try to use sendmail; use SMTP if sendmail is unavailable. On Windows: use
the SMTP setting.

Sendmail

Mail is delivered directly using the sendmail transfer agent. The agent must be running on
the same host as the webserver is running on. The sendmail binary is usually available on
most Linux/UNIX systems. If sendmail is not available then SMTP should be used.

SMTP

Mail is delivered through an SMTP server. At the minimum, the hostname of the SMTP server
must be specified.

Database type

(see figure 1.16)

Figure 1.16: Step 4: Database choice

The setup will automatically detect database support that has been made available for the PHP
scripting engine. If both MySQL and PostgreSQL is supported, the database choice dialog will
appear. If PHP only is setup only to support one type of database, eZ Publish will automatically
use it and thus the database choice dialog will not be displayed.

Database initialization

(see figure 1.17)

1.5 The setup wizard 64

1

Figure 1.17: Step 5: Database initialization

Information about the hostname of the server running the database engine, and a username/
password combination needs to be provided. When clicking ”Next” and if MySQL is used, the
setup wizard will attempt to connect to the database. The setup will only continue if it is able
to connect to the specified MySQL server with the specified username/password combination.
PostgreSQL parameters are tested at a later stage during the setup wizard. (Note that even
if the eZ Publish Extension for Oracle Database is installed, the setup wizard will not let
you use an Oracle database. The configuration must be done manually as described in the
documentation of the database extension.)

Language support

(see figure 1.18)
This step allows the user to choose a language configuration for the site that is being installed.
The setup wizard automatically pre-selects one of the languages according to your browser’s
language settings. Use the radio buttons to choose the default language (required), and the
checkboxes to choose the additional languages (optional). All the selected languages will be
added to the system and put on the list of prioritized languages. You will be able to use any of
these languages for creating and translating your content after the setup wizard is finished. In
eZ Publish 3.7 and earlier versions, objects had to be created in the primary language before
they could be translated to additional languages. From 3.8, the primary language concept
is gone and thus objects can be created using different languages (the first language of the
object is recorded as its initial language).

Please note that choosing the default language at this step will determine default language,
system locale (page 242) and the most prioritized language for your site. If you select for
example ”German” as default language, then both locale and default language will be set to
”ger-DE”, your administration interface will be translated into German, and this language will

1.5 The setup wizard 65

1

Figure 1.18: Step 6: Language support

be recorded as the most prioritized one for your site. Languages can be reconfigured at any
time (even when a site is up and running) using the administration interface.

If the ”Enable Unicode setup” checkbox in the bottom is selected then the site will be created
using UTF-8 as character set. In this case, the database should also be created using this
character set.

Note that in order to use UTF-8, you must be running MySQL 4.1 or later as previous versions
only support the ISO character set. PostgreSQL also fully supports UTF-8.

Site selection

(see figure 1.19)
This step allows the user to select one of the standard site packages. These packages are
intended to provide basic examples (News, Shop, Gallery, etc.) mostly for the purpose of
demonstration and learning. However, it is possible to use them as a basic framework which
you can extend/tweak in order to make it suitable for a specific purpose. A demo site usually

1.5 The setup wizard 66

1

Figure 1.19: Step 7: Site selection

contains some artwork (images), CSS code, actual content and template files. The plain type
should be used when starting from scratch.

Site packages do not contain any objects. However, they contain dependencies to other pack-
ages plus specific settings and scripts. The setup wizard automatically fetches the list of
available site packages from remote and internal repositories and asks the user to choose
one. It will automatically download the selected site package and all its dependent packages,
import them to the system and display a list of successfully imported packages as shown in
the following screenshot. (This step will be omitted if all these packages are already stored
under internal repositories.)

(see figure 1.20)

All dependent packages except for the site style package will be automatically installed.

1.5 The setup wizard 67

1

Figure 1.20: The list of imported packages

Dealing with possible problems

If the wizard fails to connect the external packages repository, you will see an error message
at the ”Site selection” step. To solve this problem, you should manually download the desired
site package and all the dependent packages it requires and then upload/import them via the
setup wizard. The following instructions reveal how this can be done.

1. Go to the packages download page. The ”Setup Wizard Sites” section of this page
contains the list of available site packages including the following information for each
of them:

• Name

• Description

• Dependencies

Click on the name of the desired site package to download it. (A package is downloaded
as an ”.ezpkg” file.)

2. Download all the dependent packages required by this site package (these are listed
under ”Dependencies”). You can download a package by clicking on its name. The
packages are downloaded as ”.ezpkg” files.

http://ez.no/download/ez_publish/ez_publish_3_stable_releases/3_8/packages

1.5 The setup wizard 68

1
3. Use the package import interface located at the bottom of the page in the setup wizard

to upload/import the downloaded site package (click the ”Choose” button, select the
downloaded ”.ezpkg” file that contains the site package and click the ”Upload” button).
The imported site package will appear on the list.

4. Upload/import all the dependent packages using the same import interface.

Additional functionality

In eZ Publish 3.7 and earlier versions, the setup wizard included one more step called ”Site
functionality” that allowed to select additional features that should be installed. This step is
no longer used. Additional functionality can be added after the setup wizard is finished by
downloading the desired packages from the ”Site functionality (Content objects)” section of
the packages download page, importing (page 285) the packages and installing (page 287)
them.

Access method

(see figure 1.21)

Figure 1.21: Step 8: Site access configuration

This step allows the configuration of the access method that should be used when eZ Publish
receives a request. There are three options:

• URL

• Port

• Hostname

http://ez.no/download/ez_publish/ez_publish_3_stable_releases/3_8/packages

1.5 The setup wizard 69

1
URL

When the URL access method is used, eZ Publish selects the site that should be accessed based
on the contents of the URL (in particular the part that comes right after ”index.php”). This is
the default and most generic option. It doesn’t require any additional configuration. Use this
setting when installing eZ Publish for the first time.

Port

When the port access method is used, eZ Publish selects the site that should be accessed
based on a port number that is specified in the URL. The port number must be appended
to the hostname of the web server: ”http://www.example.com:81/index.php”. This option
requires additional web server and firewall configuration. Use this setting only if you know
what you’re doing.

Hostname

When this access method is used, each site is assigned a unique hostname. For example,
”www.example.com” and ”admin.example.com” can be assigned to the public and the admin-
istration interface respectively. This option requires additional web and DNS server configu-
ration. Use this setting only if you know what you’re doing.

Site details

(see figure 1.22)
This step allows the modification of settings related to the site that is being installed. Please
note that the ”User path” and ”Admin path” access values depend on which access method
you choose. When the port access method is used these values are port numbers. If you use
the URL access method then ”User path” and ”Admin path” should only contain letters, digits
and underscores. If the hostname access method is used then some additional symbols like
dashes, dots and colons are allowed whereas underscores aren’t.

The available databases will be displayed in the database dropdown menu. The ”Refresh”
button can be used to update the list (if a database is being created at this point). If the user
has chosen Unicode setup on the ”Language support” step then the database that uses UTF-8
as character set is required.

If the selected database already contains data, the ”Site Details” page will reappear and ask
what to do. Possible actions are:

• Leave the data and add new

• Remove existing data

• Leave the data and do nothing

• I’ve chosen a new database

Use the last option if another database has been chosen.

1.5 The setup wizard 70

1

Figure 1.22: Step 9: Site details

Site security

(see figure 1.23)
This step suggests some basic modifications that should be carried out in order to secure
the site being installed. The suggested security tweak protects the configuration files from
unwanted access. Don’t worry about this unless you’re setting up a site for public use.

Please note that the administrator’s username (login) is set to ”admin” by default and can not
be changed. If you need another username for site administrator, you can install eZ Publish,
create a new administrator user, log in as this user and remove the old one.

Site registration

(see figure 1.24)
This step allows you to control whether the setup should send an information E-mail to eZ
Systems or not. The information will be used internally for statistics and for improving eZ
Publish. No confidential data will be transmitted and eZ Systems will not misuse or sell these
details. The following information will be sent:

• System details (OS type, etc)

• The test results

1.5 The setup wizard 71

1

Figure 1.23: Step 10: Site administrator

Figure 1.24: Step 11: Site registration

• The type of database that is being used

• The name of the site

• The URL of the site

• The languages that were chosen

1.5 The setup wizard 72

1
Finished

(see figure 1.25)

Figure 1.25: Step 12: Finished

The setup wizard has finished, eZ Publish is ready for use. Click on one of the links to access
the various interfaces (public site, administration interface, etc.).

Please note that it is possible to restart the installation wizard after its successful finishing by
specifying ”CheckValidity=true” in the ”settings/override/site.ini.append.php” file so that the
setup wizard will be initiated when trying to access the site.

1.6 Virtual host setup 73

1
1.6 Virtual host setup

This section describes how to set up a virtual host for eZ publish using the Apache webserver.
A virtual host setup is only needed if eZ publish has been configured to use the host access
method, which is the most secure method.

By making use of virtual hosts, it is possible to have several sites running on the same server.
The sites are usually differentiated by the name they are accessed. Apache will look for a
specified set of domains and use different configuration settings based on the domain that is
accessed.

Generic virtual host setup

Virtual hosts are usually defined at the end of ”httpd.conf”, which is the main configuration
file for Apache. Adding a virtual host for eZ publish can be done by copying the following
lines and replacing the text encapsulated by the square brackets with actual values. Please
refer to the next section for a real life example of using virtual hosts.

NameVirtualHost [IP_ADDRESS]

<VirtualHost [IP_ADDRESS]:[PORT]>

<Directory [PATH_TO_EZPUBLISH]>

Options FollowSymLinks

AllowOverride None

</Directory>

<IfModule mod_php4.c>

php_admin_flag safe_mode Off

php_admin_value register_globals 0

php_value magic_quotes_gpc 0

php_value magic_quotes_runtime 0

php_value allow_call_time_pass_reference 0

</IfModule>

DirectoryIndex index.php

<IfModule mod_rewrite.c>

RewriteEngine On

Rewriterule ^/var/storage/.* - [L]

Rewriterule ^/var/[^/]+/storage/.* - [L]

RewriteRule ^/var/cache/texttoimage/.* - [L]

RewriteRule ^/var/[^/]+/cache/texttoimage/.* - [L]

Rewriterule ^/design/[^/]+/(stylesheets|images|javascript)/.* - [L]

Rewriterule ^/share/icons/.* - [L]

Rewriterule ^/extension/[^/]+/design/[^/]+/

(stylesheets|images|javascripts?)/.* - [L]

Rewriterule ^/packages/styles/.+/(stylesheets|images|javascript)/[^/

]+/.* - [L]

RewriteRule ^/packages/styles/.+/thumbnail/.* - [L]

RewriteRule ^/favicon\.ico - [L]

1.6 Virtual host setup 74

1
RewriteRule ^/robots\.txt - [L]

Uncomment the following lines when using popup style debug.

RewriteRule ^/var/cache/debug\.html.* - [L]

RewriteRule ^/var/[^/]+/cache/debug\.html.* - [L]

RewriteRule .* /index.php

</IfModule>

DocumentRoot [PATH_TO_EZPUBLISH]

ServerName [SERVER_NAME]

ServerAlias [SERVER_ALIAS]

</VirtualHost>

[IP ADDRESS] The IP address of the virtual host, for ex-
ample ”128.39.140.28”. Apache allows the
usage of a wildcards here (”*”).

[PORT] The port on which the webserver listens for
incoming requests. This is an optional set-
ting, the default port is 80. The combination
of an IP address and a port is often referred
to as a socket. Apache allows the usage of a
wildcards here (”*”).

[PATH TO EZPUBLISH] Path to the directory that contains eZ pub-
lish. This must be the full path, for example
”/var/www/ezpublish-3.6.0”.

[SERVER NAME] The host or the IP address that Apache
should look for. If a match is found, the vir-
tual host settings will be used.

[SERVER ALIAS] Additional hosts/IP addresses that Apache
should look for. If a match is found, the vir-
tual host settings will be used.

Please note that the ”mod rewrite” module must be enabled in ”httpd.conf” in order to use
the Rewrite Rules.

NameVirtualHost

The ”NameVirtualHost” setting might already exist in the default configuration.
Defining a new one will result in a conflict. If Apache reports errors such
as ”NameVirtualHost [IP ADDRESS] has no VirtualHosts” or ”Mixing * ports and
non-* ports with a NameVirtualHost address is not supported”, try skipping the
NameVirtualHost line. For more info about the NameVirtualHost directive, see
http://httpd.apache.org/docs/1.3/mod/core.html#namevirtualhost.

SOAP and WebDAV

If you would like to use the SOAP and/or the WebDAV features of eZ publish, you’ll have to
add the following lines in the virtual host configuration:

http://httpd.apache.org/docs/1.3/mod/core.html#namevirtualhost

1.6 Virtual host setup 75

1
RewriteCond %{HTTP_HOST} ^webdav\..*

RewriteRule ^(.*) /webdav.php [L]

RewriteCond %{HTTP_HOST} ^soap\..*

RewriteRule ^(.*) /soap.php [L]

ServerAlias soap.example.com

ServerAlias webdav.example.com

1.6.1 Virtual host setup / Virtual host example 76

1
1.6.1 Virtual host example

This example demonstrates how to set up a virtual host on the Apache web server for an
eZ publish installation located in ”/var/www/example”. Let’s say that we want to access eZ
publish by using the following URLs:

• http://www.example.com (actual website for public access)

• http://admin.example.com (administration interface for the webmaster)

In order to achieve this, we need to set up both eZ publish and the web server so that they
respond correctly to the different requests.

eZ publish configuration: siteaccess settings

eZ publish needs to be configured to use the host access method. This can be done from
within the web based setup wizard or by manually editing the global override for the site.ini
configuration file: ”/settings/override/site.ini.append.php”. A typical configuration would
look something like this:

...

[SiteAccessSettings]

AvailableSiteAccessList[]

AvailableSiteAccessList[]=example

AvailableSiteAccessList[]=example_admin

MatchOrder=host

HostMatchMapItems[]=www.example.com;example

HostMatchMapItems[]=admin.example.com;example_admin

...

This configuration tells eZ publish that it should use the ”example” siteaccess if a re-
quest starts with ”www.example.com” and ”example admin” if the request starts with ”ad-
min.example.com”. For more information about site management in eZ publish, please refer
to the ”Site management” (page 148) part of the ”Concepts and basics” chapter.

Apache configuration: virtual host settings

Assuming that...

• eZ publish is located in ”/var/www/example”

• the server’s IP address is 128.39.140.28

• we wish to access eZ publish using ”www.example.com” and ”admin.example.com”

...the following virtual host configuration needs to be added at the end of ”http.conf”:

1.6.1 Virtual host setup / Virtual host example 77

1
NameVirtualHost 128.39.140.28

<VirtualHost 128.39.140.28>

<Directory /var/www/example>

Options FollowSymLinks

AllowOverride None

</Directory>

<IfModule mod_php4.c>

php_admin_flag safe_mode Off

php_admin_value register_globals 0

php_value magic_quotes_gpc 0

php_value magic_quotes_runtime 0

php_value allow_call_time_pass_reference 0

</IfModule>

DirectoryIndex index.php

<IfModule mod_rewrite.c>

RewriteEngine On

Rewriterule ^/var/storage/.* - [L]

Rewriterule ^/var/[^/]+/storage/.* - [L]

RewriteRule ^/var/cache/texttoimage/.* - [L]

RewriteRule ^/var/[^/]+/cache/texttoimage/.* - [L]

Rewriterule ^/design/[^/]+/(stylesheets|images|javascript)/.* - [L]

Rewriterule ^/share/icons/.* - [L]

Rewriterule ^/extension/[^/]+/design/[^/]+/

(stylesheets|images|javascripts?)/.* - [L]

Rewriterule ^/packages/styles/.+/(stylesheets|images|javascript)/[^/

]+/.* - [L]

RewriteRule ^/packages/styles/.+/thumbnail/.* - [L]

RewriteRule ^/favicon\.ico - [L]

RewriteRule ^/robots\.txt - [L]

Uncomment the following lines when using popup style debug.

RewriteRule ^/var/cache/debug\.html.* - [L]

RewriteRule ^/var/[^/]+/cache/debug\.html.* - [L]

RewriteRule .* /index.php

</IfModule>

DocumentRoot /var/www/example

ServerName www.example.com

ServerAlias admin.example.com

</VirtualHost>

Please note that it isn’t necessary to create a separate virtual host block for ”ad-
min.example.com”, it can be added to the existing block using the ”ServerAlias” directive.

You can have apache1 and apache2 part in the sample vhost. That way allows to use one
vhost for both servers.

1.6.1 Virtual host setup / Virtual host example 78

1
<IfModule mod_php4.c>

If you are using Apache 2, you have to use <IfModule sapi_apache2.c>

instead of <IfModule mod_php4.c>.

some parts/addons might only run safe mode on

php_admin_flag safe_mode Off

security just in case

php_admin_value register_globals 0

performance

php_value magic_quotes_gpc 0

performance

php_value magic_quotes_runtime 0

#http://www.php.net/manual/en/

ini.core.php#ini.allow-call-time-pass-reference

php_value allow_call_time_pass_reference 0

</IfModule>

<IfModule sapi_apache2.c>

If you are using Apache 2, you have to use <IfModule sapi_apache2.c>

instead of <IfModule mod_php4.c>.

some parts/addons might only run safe mode on

php_admin_flag safe_mode Off

security just in case

php_admin_value register_globals 0

performance

php_value magic_quotes_gpc 0

performance

php_value magic_quotes_runtime 0

#http://www.php.net/manual/en/

ini.core.php#ini.allow-call-time-pass-reference

php_value allow_call_time_pass_reference 0

</IfModule>

1.7 Upgrading 79

1
1.7 Upgrading

All the information related to the upgrade of an eZ publish solution has been moved to the
”Upgrading” chapter.

1.7.1 Upgrading / from 3.6.x or 3.7.x to 3.8.0 80

1
1.7.1 from 3.6.x or 3.7.x to 3.8.0

This section describes how to upgrade your existing eZ Publish 3.6.x / 3.7.x installation to
version 3.8.0. If you are upgrading from a version prior to eZ Publish 3.6.0, you need to first
upgrade to 3.6.0 before you can upgrade to 3.8.0.

Important note

Before continuing, note that it is recommended to upgrade directly to the latest stable release
in the 3.8 branch, which is version 3.8.10. Refer to ”Upgrading from 3.a.b to 3.x.y” and
”Upgrading from 3.8.x to 3.8.y” to learn how this can be done. Note that there is a significant
problem with eZ Publish 3.8.0-3.8.8. More precisely, the discount functionality of the shop
module contains a security vulnerability. The issue has been fixed in version 3.8.9. Refer to
the announcement and the upgrade instructions for details.

Make sure that you have a working backup of the site before you do the actual upgrade. The
upgrade procedure consists of the following steps:

1. Upgrading the distribution files to 3.8.0

2. Upgrading the database to 3.8.0

3. Running the system upgrade scripts

4. Updating the system configuration

5. Clearing the caches

Step 1: Upgrading the distribution files

The easiest way to upgrade the distribution files is to unpack eZ Publish 3.8.0 to a directory
and then copy the directories that contain site-specific files from the existing installation.
Make sure that you copy the following directories:

• design/example

• design/example admin

• var

• settings/siteaccess

• settings/override

Replace ”example” and ”example admin” with actual names used by your siteaccesses.

Custom extensions

If you are using custom extensions then the subdirectories inside the ”extension” directory
will also have to be copied. However, make sure that you do not overwrite any extensions
that come with eZ Publish (for example the ”PayPal” extension).

http://ez.no/community/news/ez_publish_security_fixes_3_9_3_and_3_8_9

1.7.1 Upgrading / from 3.6.x or 3.7.x to 3.8.0 81

1
Step 2: Upgrading the database

The following text describes how a 3.6.0 database can be upgraded to 3.8.0.

MySQL

1. Navigate into the eZ Publish 3.8.0 directory.

2. Run the database upgrade script:

mysql -u <username> -p<password> <database> < update/database/mysql/3.8/

dbupdate-3.6.0-to-3.8.0.sql

Note that the CREATE TABLE statements in the database upgrade script do not specify which
storage engine to use (no ENGINE or TYPE option), and thus the default storage engine will
be used. Normally, it is MyISAM (starting from MySQL v.3.23). If you are using InnoDB, make
sure the default storage engine is set to InnoDB before you run the database upgrade script
(refer to MySQL documentation for information about how to set the default engine). If you
were not able to change the MySQL configuration on your server, and the upgrade left you
with a mix of table types, you can use the ”bin/php/ezconvertmysqltabletype.php” script for
database conversion. It is also possible to convert the newly created tables to InnoDB using
ALTER TABLE statements as shown in the following example:

ALTER TABLE table_name1 TYPE = innodb;

ALTER TABLE table_name2 TYPE = innodb;

...

Replace ”table name1”, ”table name2” with the actual names of the tables that need to be
converted.

PostgreSQL

1. Navigate into the eZ Publish 3.8.0 directory.

2. Run the database upgrade script:

psql -d <database> -U <dbowner> < update/database/postgresql/3.8/

dbupdate-3.6.0-to-3.8.0.sql

Step 3: Running the system upgrade scripts

The 3.8.0 version of eZ Publish introduces a couple of new features. In order to make sure
that your site is compatible with these features, you’ll have to run a couple of upgrade scripts.

http://dev.mysql.com/doc/refman/5.0/en/storage-engines.html

1.7.1 Upgrading / from 3.6.x or 3.7.x to 3.8.0 82

1
Improved multi-language functionality

The 3.8.0 version of eZ Publish introduces improved multi-language functionality. In order
to make sure that your site is compatible with this new feature, you will have to update the
configuration settings and run the ”updatemultilingual.php” script. This step must be done
even though your site has only one language.

Configuring languages

Before running the upgrade script you need to configure how the languages must be displayed
on your site (page 244).

For the public siteaccess(es) where only specific languages should be shown, add the fol-
lowing lines into the ”[RegionalSettings] (page 1498)” section of the ”settings/siteaccess/
example/site.ini.append.php” file (replace ”example” with the actual name of the siteaccess):

SiteLanguageList[]

SiteLanguageList[]=<my-first-language>

SiteLanguageList[]=<my-second-language>

ShowUntranslatedObjects=disabled

e.g. for British English and German languages you would do:

SiteLanguageList[]

SiteLanguageList[]=eng-GB

SiteLanguageList[]=ger-DE

ShowUntranslatedObjects=disabled

This will tell the system that English has the highest priority and German is the second lan-
guage. Any other languages will not be shown.

For the siteaccess(es) like administration interface where all languages should be shown,
add the following lines into the ”[RegionalSettings]” section of the ”settings/example admin/
site.ini.append.php” file (replace ”example admin” with the actual name of the siteaccess):

SiteLanguageList[]

SiteLanguageList[]=<my-first-language>

SiteLanguageList[]=<my-second-language>

ShowUntranslatedObjects=enabled

e.g. for British English and German languages you would do:

SiteLanguageList[]

SiteLanguageList[]=eng-GB

SiteLanguageList[]=ger-DE

ShowUntranslatedObjects=enabled

This will tell the system that English has the highest priority and German is the second lan-
guage. All other languages will still be shown (and editable) but will have less priority. The
”ShowUntranslatedObjects” setting controls whether all languages are shown or not.

http://ez.no/download/ez_publish/changelogs/ez_publish_3_8/multi_language_features_for_the_content_model

1.7.1 Upgrading / from 3.6.x or 3.7.x to 3.8.0 83

1
Running the upgrade script

The ”updatemultilingual.php” script should be run for all siteaccesses that use different
databases. If you only have a public and an administration siteaccess (which is the most
typical/usual case), then you will only need to run the script for one of the siteaccesses. If the
siteaccess isn’t specified, the default siteaccess will be used. Note that you will need to either
publish or remove all the unpublished drafts in your system before launching this script.

The following example shows how to run the script:

1. Navigate into the eZ Publish 3.8.0 directory.

2. Run the script (replace ”example” with the actual name of your siteaccess):

php update/common/scripts/updatemultilingual.php -s example

It is strongly recommended to read the information the script provides before continuing. If
unsure press Control + C on your keyboard while the shell/console is active.

RSS import enhancements (optional)

The 3.8.0 version of eZ Publish introduces more generic RSS import that allows using custom
RSS import definitions. If you are using the RSS import functionality on your site, you will
have to run the ”updaterssimport.php” script. This script should be run for all siteaccesses that
use different databases. If you only have a public and an administration siteaccess (which
is the most typical/usual case), then you will only need to run the script for one of the
siteaccesses. If the siteaccess isn’t specified, the default siteaccess will be used.

The following text shows how this can be done.

1. Navigate into the eZ Publish 3.8.0 directory.

2. Run the script (replace ”example” with the actual name of your siteaccess):

php update/common/scripts/updaterssimport.php -s example

Step 4: Updating the system configuration

Treemenu configuration

In eZ Publish 3.8, the default configuration for the left treemenu in the administration in-
terface has changed i.e. only folder, forum, gallery and user group objects are visible in the
menu by default. (In previous versions, objects of any class were shown in the treemenu and
this could cause problems when the number of objects in the system increased.)

The classes that the visible objects belong to are determined by the ”ShowClasses[]” array
located under the ”[TreeMenu]” section of the ”settings/contentstructuremenu.ini” configu-
ration file. The following configuration is used by default:

http://pubsvn.ez.no/nextgen/trunk/doc/features/3.8/generic_rss_import.txt

1.7.1 Upgrading / from 3.6.x or 3.7.x to 3.8.0 84

1
[TreeMenu]

ShowClasses[]

ShowClasses[]=folder

ShowClasses[]=forum

ShowClasses[]=gallery

ShowClasses[]=user_group

If you want to display other objects in the treemenu, e.g. user and article objects, do the
following:

1. Open the ”contentstructuremenu.ini.append.php” configuration file located in the ”set-
tings/override” or ”settings/siteaccess/example admin” directory (replace ”example
admin” with the actual name of your admin siteaccess) and edit it. If the file does
not exist, create it.

2. Add the following lines under the ”[TreeMenu]” section:

[TreeMenu]

ShowClasses[]=user

ShowClasses[]=article

where ”user” and ”article” are class identifiers.

It is possible (but not recommended) to make the treemenu showing objects of all classes
as in previous versions of eZ Publish. To do this, use the following configuration in the
”contentstructuremenu.ini.append.php” file:

[TreeMenu]

ShowClasses[]

Binary files indexing configuration

In eZ Publish versions prior to 3.8.0, the following default settings for binary file indexing
were specified in the ”binaryfile.ini” configuration file:

[HandlerSettings]

MetaDataExtractor[text/plain]=plaintext

MetaDataExtractor[application/pdf]=pdf

MetaDataExtractor[application/msword]=word

In eZ Publish 3.8.0, the default settings for binary file indexing have been changed. This is
how the new settings look like:

[HandlerSettings]

MetaDataExtractor[text/plain]=ezplaintext

MetaDataExtractor[application/pdf]=ezpdf

MetaDataExtractor[application/msword]=ezword

If you have overridden these settings in your ”binaryfile.ini.append.php” then you need to
review your settings.

http://ez.no/products/ez_publish/documentation/configuration/configuration/search_engine/configuring_binary_file_indexing

1.7.1 Upgrading / from 3.6.x or 3.7.x to 3.8.0 85

1
Default configuration of unique user emails

In eZ Publish versions prior to 3.8.0, the default configuration does not allow different users to
be registered with the exact same email address. This is just a built-in precaution mechanism
which can be easily turned off by setting the ”RequireUniqueEmail (page 1632)” directive
within the [UserSettings] block of a configuration override for ”site.ini” to ”false”. However,
this default configuration has been accidentally changed in eZ Publish version 3.8.0 (refer to
http://issues.ez.no/9643 for more information). The change is reverted in eZ Publish version
3.8.7. If you are going to use eZ Publish 3.8.0-3.8.6, it is recommended to add the following
line to the [UserSettings] block of the ”override/site.ini.append.php” configuration file:

RequireUniqueEmail=true

Step 5: Clearing the caches

Whenever an eZ Publish solution is upgraded, all caches must be cleared in a proper way.
This should be done from within a system shell:

1. Navigate into the eZ Publish 3.8.0 directory.

2. Run the clear cache script:

bin/shell/clearcache.sh --clear-all

Make sure that all caches are cleared. Sometimes the script is unable to clear caches because
of restrictive file/directory permission settings. Make sure that all caches have been cleared
by inspecting the contents of the various cache subdirectories within the ”var” directory.

http://issues.ez.no/9643

1.7.2 Upgrading / from 3.8.x to 3.8.y 86

1
1.7.2 from 3.8.x to 3.8.y

This section describes how to upgrade your existing eZ Publish 3.8.x installation to version
3.8.y, for example from 3.8.0 to 3.8.10. If you are upgrading from a version prior to eZ
Publish 3.8.0, you should first upgrade to 3.8.0 as described in this section.

Important note

Before continuing, note that version 3.8 is no longer supported. Instead of running eZ Publish
3.8, you should consider upgrading to one of the supported versions. If you want to run 3.8
anyway, make sure you upgrade to version 3.8.10, which is the latest stable release in the 3.8
branch. Refer to the changelogs for more information about the issues that were fixed in the
latest 3.8.x releases or view the short list of changes below.

• There is a significant problem with eZ Publish 3.8.0 - 3.8.8. More precisely, the discount
functionality of the shop module contains a security vulnerability. The same bug exists
in eZ Publish 3.9.0 - 3.9.2. The issue was fixed in eZ Publish 3.8.9, 3.9.3 and 3.10.0.
Refer to the announcement for details.

• eZ Publish versions 3.8.0 - 3.8.9 contain a security vulnerability that can be used to show
hidden content on a public siteaccess. The same bug exists in eZ Publish 3.9.0 - 3.9.3.
This issue was fixed in eZ Publish 3.8.10, 3.9.4 and 3.10.0. Refer to the announcement
for details.

Make sure that you have a working backup of the site before you do the actual upgrade. The
upgrade procedure consists of the following steps:

1. Upgrading the distribution files to 3.8.10

2. Upgrading the database to 3.8.10

3. Running the system upgrade scripts

4. Updating the system configuration

5. Clearing the caches

Step 1: Upgrading the distribution files

The easiest way to upgrade the distribution files is to unpack eZ Publish 3.8.10 to a directory
and then copy the directories that contain site-specific files from the existing installation.
Make sure that you copy the following directories:

• design/example

• design/example admin

• var

• settings/siteaccess

• settings/override

Replace ”example” and ”example admin” with actual names used by your siteaccesses.

http://ez.no/developer/security#supported_versions
http://pubsvn.ez.no/nextgen/stable/3.8/doc/changelogs/3.8/
http://ez.no/community/news/ez_publish_security_fixes_3_9_3_and_3_8_9
http://ez.no/developer/news/ez_publish_security_fixes_3_9_4_and_3_8_10

1.7.2 Upgrading / from 3.8.x to 3.8.y 87

1
Important bug fix for the ”user” module

In eZ Publish 3.8.10, the ”register” view of the ”user” module contains a bug. It prevents
the system from registering new users when the ”VerifyUserEmail (page 1641)” setting is
enabled (it is enabled by default). The same bug exists in eZ Publish 3.9.4 and 3.10.0 (refer
to http://issues.ez.no/11598 for more information). This issue will be fixed in the upcoming
eZ Publish 3.9.5 and 3.10.1 releases. In order to make your user registration mechanism work
properly in 3.8.10, you have to download the updated version of ”kernel/user/register.php”
from http://pubsvn.ez.no and replace the corresponding file in your installation.

Custom extensions

If you are using custom extensions then the subdirectories inside the ”extension” directory
will also have to be copied. However, make sure that you do not overwrite any extensions
that come with eZ Publish (for example the ”PayPal” extension).

Step 2: Upgrading the database

To upgrade 3.8.0 database to 3.8.10, you should navigate into the eZ Publish 3.8.10 directory
and run the following database upgrade scripts one after another:

1. dbupdate-3.8.0-to-3.8.1.sql

2. dbupdate-3.8.1-to-3.8.2.sql

3. dbupdate-3.8.2-to-3.8.3.sql

4. dbupdate-3.8.3-to-3.8.4.sql

5. dbupdate-3.8.4-to-3.8.5.sql

6. dbupdate-3.8.5-to-3.8.6.sql

7. dbupdate-3.8.6-to-3.8.7.sql

8. dbupdate-3.8.7-to-3.8.8.sql

9. dbupdate-3.8.8-to-3.8.9.sql

10. dbupdate-3.8.9-to-3.8.10.sql

Note that there are seven version-focused upgrade scripts, meaning that seven of the scripts
in the list contain only two lines (that simply update the version number) and can be skipped.
Therefore, the list of scripts to run contains three items instead of ten:

1. dbupdate-3.8.0-to-3.8.1.sql

2. dbupdate-3.8.4-to-3.8.5.sql

3. dbupdate-3.8.9-to-3.8.10.sql

Running these three scripts is equivalent to running all the ten scripts mentioned above.

http://issues.ez.no/11598
http://pubsvn.ez.no/nextgen/stable/3.8/kernel/user/register.php

1.7.2 Upgrading / from 3.8.x to 3.8.y 88

1
MySQL

The database upgrade scripts are located in the ”update/database/mysql/3.8/” directory of
your eZ Publish installation. Each of these scripts can be launched using the following shell
command:

mysql -u <username> -p<password> <database> < update/database/mysql/3.8/

dbupdate-3.8.x-to-3.8.y.sql

PostgreSQL

The database upgrade scripts are located in the ”update/database/postgresql/3.8/” directory
of your eZ Publish installation. Each of these scripts can be launched using the following shell
command:

psql -d <database> -U <dbowner> < update/database/postgresql/3.8/

dbupdate-3.8.x-to-3.8.y.sql

Step 3: Running the system upgrade scripts

Custom classes in XML tags

In eZ Publish 3.8.0 and earlier versions, you could use custom classes in XML tags without
having to specify them first. From eZ Publish 3.8.1, you have to specify the names of all
custom classes that are used within XML tags. The names of the classes must be added to the
global (or siteaccess) ”content.ini.append.php” configuration file. For example, you will not
be able to use ”pRed” and ”pBlue” classified paragraphs in your XML blocks unless you have
the [paragraph] section in ”content.ini.append.php” containing the following lines:

AvailableClasses[]

AvailableClasses[]=pRed

AvailableClasses[]=pBlue

If you are using XML tag classes that are not listed in ”content.ini” on your site, you will need
to add the necessary configuration settings manually or run the ”correctxmltextclasses.php”
script. (If your installation does not include the ”correctxmltextclasses.php” script, you need
to download it here.)

If all your siteaccesses are using the same database, run the script with the ”--global” option
as described below.

1. Navigate into the eZ Publish directory.

2. Run the script using the following shell command:

php update/common/scripts/correctxmltextclasses.php --global

http://pubsvn.ez.no/nextgen/stable/3.8/update/common/scripts/

1.7.2 Upgrading / from 3.8.x to 3.8.y 89

1
The script will go through the XML blocks stored in the database, check which classes are
in use and add missing settings (if any) to the ”settings/override/content.ini.append.php”
configuration file. If you do not wish to update this configuration file automatically, run the
script like this:

php update/common/scripts/correctxmltextclasses.php --dump-only

The script will output the list of classes that need to be specified, for example:

Element ’paragraph’: class ’pBlue’ is not defined.

Element ’paragraph’: class ’pRed’ is not defined.

In case if your siteaccesses are using different databases, the classes that are used within XML
tags must be specified per siteaccess. This means that the upgrade script must be run for each
of your siteaccesses.

1. Navigate into the eZ Publish directory.

2. Run the script (replace ”example” with the actual name of your siteaccess):

php update/common/scripts/correctxmltextclasses.php -s example

The script will automatically update the ”settings/siteaccess/example/
content.ini.append.php” configuration file.

If the siteaccess is not specified then the default siteaccess (page 1589) will be used.

Changes to roles and policies

From 3.8.9, users (typically the anonymous role) need to have access to the ”tipafriend”
function of the ”content” module in order to use the ”Tip a friend” feature. Because of com-
patibility reasons, you need to run the ”updatetipafriendpolicy.php” script.

Note for Windows users: in eZ Publish 3.8 the ”updatetipafriendpolicy.php” script contains a
bug that prevents it from granting access to the ”Tip a friend” feature to the users. Refer to
http://issues.ez.no/11663 for more information about the problem and the solution.

The following example shows how to run the script:

1. Navigate into the eZ Publish 3.8.10 directory.

2. Run the script using the following shell command:

php update/common/scripts/3.8/

updatetipafriendpolicy.php -s example_admin -l login -p password

Replace ”example admin” with the actual name of your admin siteaccess, use the ad-
ministrator’s login and password instead of ”login” and ”password”.

The script will add a new role that grants access to the ”Tip a friend” feature and ask for
confirmation about assigning this role to each user or user group located one level beneath
the ”Users” top level node.

http://issues.ez.no/11663

1.7.2 Upgrading / from 3.8.x to 3.8.y 90

1
Step 4: Updating the system configuration

Updating INI settings for ”html” classification

In eZ Publish versions from 3.8.0 to 3.8.3 it is possible to include HTML code in XML blocks
by using the ”html” classification. However, this feature can also be used to insert JavaScript
code, making it possible for users with sufficient privileges to make an XSS exploit. This
feature is therefore disabled by default in eZ Publish 3.8.4 and later, and should only be
enabled if you really trust your editors.

To enable html classification, add the following lines to your ”content.ini.append.php” file:

[literal]

The class ’html’ is disabled by default because it gives editors the

possibility to insert html and javascript code in XML blocks.

Don’t enable the ’html’ class unless you really trust all users who has

privileges to edit objects containing XML blocks.

AvailableClasses[]=html

Enabling the Online Editor extension (optional)

eZ Publish 3.8.1 and later versions include the Online Editor extension licensed under the
GPL. If you wish to use this extension, make sure it is enabled (refer to this section for more
information).

Default configuration of unique user emails

In eZ Publish versions prior to 3.8.0, the default configuration does not allow different users to
be registered with the exact same email address. This is just a built-in precaution mechanism
which can be easily turned off by setting the ”RequireUniqueEmail (page 1632)” directive
within the [UserSettings] block of a configuration override for ”site.ini” to ”false”. However,
this default configuration has been accidentally changed in eZ Publish version 3.8.0 (refer to
http://issues.ez.no/9643 for more information). The change is reverted in eZ Publish version
3.8.7. If you are going to use eZ Publish 3.8.0-3.8.6, it is recommended to add the following
line to the [UserSettings] block of the ”override/site.ini.append.php” configuration file:

RequireUniqueEmail=true

Step 5: Clearing the caches

Whenever an eZ Publish solution is upgraded, all caches must be cleared in a proper way.
This should be done from within a system shell:

1. Navigate into the eZ Publish 3.8.10 directory.

2. Run the clear cache script:

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://issues.ez.no/9643

1.7.2 Upgrading / from 3.8.x to 3.8.y 91

1
bin/shell/clearcache.sh --clear-all

Make sure that all caches are cleared. Sometimes the script is unable to clear caches because
of restrictive file/directory permission settings. Make sure that all caches have been cleared
by inspecting the contents of the various cache subdirectories within the ”var” directory.

1.8 Removing eZ Publish 92

1
1.8 Removing eZ Publish

This section describes how to completely remove an eZ Publish installation from a system. If
you have installed eZ Publish using a bundle package, please refer to the ”Removing an eZ
Publish bundle” (page 94) section.

Removing eZ Publish is done in four steps:

1. Deleting the eZ Publish directory

2. Removing of the database

3. Reconfiguring Apache (optional)

4. Removing the cron job (optional)

WARNING! By following these steps, you will remove both eZ Publish and all the data/content
that you have put into the system. Everything will be lost.

Deleting the eZ Publish directory

Remove the eZ Publish directory using your favorite tool.

Linux/UNIX

On Linux/UNIX systems, the removal would most likely be carried out using the ”rm” com-
mand:

$ rm -Rf /path/to/ez_publish

Please note that some file/directory permissions might be messed up. If this is the case, it will
prevent a regular user from removing all eZ Publish files. You’ll probably have to gain root
access to solve this problem.

Windows

Windows users may simply delete the eZ Publish directory using the ”Explorer”.

Removing the database

MySQL

1. Start the MySQL client, log in using your username and password:

$ mysql -u <username> -p

If the username/password is correct, the client will then present a ”mysql>” prompt.

1.8 Removing eZ Publish 93

1
2. Delete/remove the database using the drop command followed by the name of the

database used by eZ Publish:

mysql> drop database <database-name>;

PostgreSQL

1. Remove the database by executing the PostgreSQL dropdb command from shell:

$ dropdb <database-name>

Reconfiguring Apache (optional)

If a virtual host setup was used, it is likely that the Apache configuration file contains eZ
Publish specific settings. These settings will not be needed anymore and thus they can be
removed. Open the ”httpd.conf” file using a text editor, scroll down to the bottom and remove
the eZ Publish specific virtual host settings. Remember to restart Apache after altering the
configuration file.

Removing cron jobs (optional)

Windows users should skip this part. If cron was configured to run eZ Publish specific jobs,
then these will have to be removed. You may have to edit a global cron file (under ”/etc/
cron*”) or use the ”crontab” command with the -e (edit) parameter to edit a user’s private
cron file. Remove the eZ Publish specific entries.

1.8.1 Removing eZ Publish / Removing an eZ Publish bundle 94

1
1.8.1 Removing an eZ Publish bundle

This section describes how to remove a bundled eZ Publish installation from both Linux based
systems and Windows.

Removing an eZ Publish bundle from a Windows system

1. Log in using the ”Administrator” account.

2. Make sure there are no applications running.

3. Choose ”Add/Remove” programs from the ”Control Panel.”

4. Select eZ Publish and click ”Remove”.
The eZ Publish bundle will be automatically removed.

Removing an eZ Publish bundle from a Linux/UNIX based system

Automated removal

1. Become the root user:

$ su -

2. Start the installation wizard (from where the bundle was unpacked):

cd /path/to/ezpublish-x.x-x.OS-DISTRO/

./install.sh

3. Choose ”Uninstall” from the main menu.
The eZ Publish bundle will be automatically removed.

Manual removal

Use this method if the install wizard fails or if the directory where the eZ Publish bundle was
unpacked to has been removed.

1. Become the root user:

$ su -

2. Stop the services (Apache and MySQL):

/opt/ezpublish/bin/ezpublish stop

3. Remove the eZ Publish bundle directory:

1.8.1 Removing eZ Publish / Removing an eZ Publish bundle 95

1
rm -fr /opt/ezpublish

4. Remove the lock directory (contains the lock file):

rm -fr /var/state/ezpublish

1.9 Extensions 96

1
1.9 Extensions

Extensions are plugins to eZ publish, providing additional custom functionality. Various exten-
sions are available for eZ publish. All of them require the same basic steps for an installation.
This chapter will show how to perform the following:

1. Extract the compressed archive containing the extension

2. Activate the extension

Some extensions might require further action to make them fully functional, e.g. creating new
database tables, adding certain content classes to eZ publish, etc. Such additional measures
are explained in the documentation for each extension.

As outlined before, this section deals with the basic steps only. For demonstration purposes,
the installation will be examplified by an imaginery extension called ”ezfoo”.

1.9.1 Extensions / Extracting the files 97

1
1.9.1 Extracting the files

Each extension is distributed as a compressed archive. The name of the archive file includes
the name of the extension and its release version. Furthermore, the compression type is
indicated by the file ending, either ”tgz”, ”tar.gz”, ”bz2”, or ”zip”. For example:

• ezfoo-extension-1.0.tgz

• ezfoo-extension-1.0.tar.gz

• ezfoo-extension-1.0.bz2

• ezfoo-extension-1.0.zip

Extension base directory

The archive must be copied into the ”extension/” directory in the root of the eZ publish
installation. If this directory does not exist yet, then create it. Make sure that you do not
create the folder with the plural naming ”extension s/” - this is a common error.

For example, on a Linux system do

create extension/ directory

mkdir /path/to/ezpublish/extension/

copy the archive

cp /download/dir/ezfoo-extension-1.0.tar.gz /path/to/ezpublish/extension/

Unpack the archive

Next, unpack the files from the archive. See the following table for the correct command to
chose on a Linux-like system, depending on the compression type:

archive type command to extract
tar.gz or tgz

tar -zxvf ezfoo-extension-1.0.tar.gz

or
tar -zxvf ezfoo-extension-1.0.tgz

bz2
tar -jxvf ezfoo-extension-1.0.bz2

zip
unzip ezfoo-extension-1.0.zip

Windows users can extract an archive with common tools like WinZip, which preferably work
with the ”zip” file.

Extracting the archive will add the directory ”ezfoo/” to the extension folder:

1.9.1 Extensions / Extracting the files 98

1
/path/to/ezpublish/extension/ezfoo/

1.9.2 Extensions / Activating the extension 99

1
1.9.2 Activating the extension

Each extension needs to be activated, which means that it is being registered for eZ publish to
be available from within the eZ publish framework. Every extension can either be activated in
the eZ publish administration interface or in a configuration file. Furthermore, the activation
can be done either for the whole eZ publish installation or for only certain siteaccesses.

Administration interface

Go to the administration interface of your eZ publish installation and navigate to ”Setup
/ Extensions”. The sample extension should be available in the list by the name ”ezfoo”.
Register this extension by activating the checkbox, then click ”Apply changes”.

(see figure 1.26)

Figure 1.26: Screenshot of extension configuration in administration interface.

This will activate the extension for all siteaccesses of an eZ publish installation.

Configuration file

Alternativley, an extension can be enabled manually in the site.ini (page 1413) configuration
file.

Activating for the whole installation

To do so, edit ”site.ini.append[.php]” in the folder

1.9.2 Extensions / Activating the extension 100

1
/root_of_ezpublish/settings/override/

If this file does not exist, create it. Locate (or add) the configuration block (page 146) ”[Ex-
tensionSettings]” and add the line which is registering the extension:

[ExtensionSettings]

ActiveExtensions[]=ezfoo

Multiple extensions can be present within the ”[ExtensionSettings]” block.

Activating for certain siteaccesses

If you run several virtual sites aka siteaccesses based on a single eZ publish installation and
only some of the sites should use the extension, then make the changes in the override file of
that siteaccess. This file could be located e.g. at

/root_of_ezpublish/settings/siteaccess/news/site.ini.append[.php]

Notice that the line registering the extension is not called ”ActiveExtensions”, but ”ActiveAc-
cessExtensions”:

[ExtensionSettings]

ActiveAccessExtensions[]=ezfoo

1.10 Troubleshooting 101

1
1.10 Troubleshooting

This section will explain what can be done if installation fails because of some unknown
reason.

First of all, make sure that all the requirements without exception are met. The requirements
are strict and extremely important. Please read them very carefully. (We usually receive a lot
of questions from people who try to use eZ publish 3 with PHP 5.x, Apache 2.x for Windows
etc although the requirements do not allow this.)

If all the requirements are met but you still have problems, it is recommended to check
the debug information during the installation process. To enable the debug output, do the
following:

1. Go to the ”settings/override” directory of your eZ publish installation.

2. Create a new file called ”site.ini.append.php” and put the following lines to it:

[DebugSettings]

DebugOutput=enabled

The debug output will appear at the bottom of the page as shown in the following screenshot.

(see figure 1.27)

The debug output will be displayed in the setup wizard, in the administration interface and on
the actual site. This option can be disabled at any time by replacing ”enabled” with ”disabled”
in the same place of the configuration file.

Please note that the ”CheckValidity (page 1582)” setting located in the ”[SiteAccessSettings]”
section of the same file controls if the setup wizard should automatically start the first time
the site is accessed/browsed. If you want to restart the wizard after its successful finishing,
you can specify ”CheckValidity=true” in the ”settings/override/site.ini.append.php” file so
that the setup wizard will be initiated when trying to access the site.

1.10 Troubleshooting 102

1

Figure 1.27: The debug output appears at the bottom of the page

Chapter 2

Concepts and basics

The purpose of this chapter is to introduce and describe the most important concepts of
eZ publish. A rookie developer should definitively read through this chapter in order to
understand the basic terms, models, structures and building blocks of the system. This chapter
is more generic than technical, it is meant to teach the concepts rather than explaining details.
People previously unfamiliar with eZ publish should be able to collect enough information in
order to understand the following issues:

• The way eZ publish is built up

• The main directory structure

• The concept and necessity of separating content and design

• How eZ publish stores and manages content

• How eZ publish handles issues related to design

• How eZ publish manages different sites

• The concept of modules and views

• The way eZ publish works with URLs

• The configuration system

• The structure of the workflow system

• How the access/permission system works

• How the webshop works

• A typical page request cycle

103

2.1 The internal structure of eZ publish 104

2

2.1 The internal structure of eZ publish

This section describes the internal structure of eZ publish by presenting an brief overview of
the different software-layers of the system. eZ publish is a complex, object oriented applica-
tion written in the PHP language. The system consists of three major parts:

• Libraries

• Kernel

• Modules

The following illustration shows how the different parts of the system are connected.

(see figure 2.1)

Figure 2.1: Libraries, kernel and modules.

The libraries

The libraries are the main building blocks of the system. These are reuseable general purpose
PHP classes. The libraries are in no way dependent on the eZ publish kernel. However,
some of them are strongly interconnected and thus inseparable. People looking for general
PHP libraries should take a look in the ”lib” folder within the root directory of an eZ publish
installation. The reference chapter contains a complete list and a short description of the
currently available libraries (page 1685).

The kernel

The eZ publish kernel can be described as the system core. It takes care of all the low level
functionality like content handling, content versioning, access control, workflows, etc. The
kernel consists of various engines that build upon and make use of the general purpose li-
braries.

2.1 The internal structure of eZ publish 105

2

The modules

An eZ publish module offers an HTTP interface which can be used for web based interaction
with the system. While some modules offer an interface to kernel functionality, others are
more or less independent of the kernel. eZ publish comes with a collection of modules that
cover the needs of typical everyday tasks. For example, the content module provides an
interface that makes it possible to use a web browser to manage content. The reference
chapter contains a complete list and a short description of all the currently available modules
(page 539). A module can be broken down into the following components:

• Views

• Fetch functions

A view provides an actual web interface. For example, the ”search” (page 683) view of the
”content” (page 575) module provides a web interface to the built-in search engine. Every eZ
publish module provides at least one view. A fetch function makes it possible to extract data
through a module from within a template. For example, the ”current user” (page 839) fetch
function of the ”user” (page 836) module makes it possible to access information related to
the user who is currently logged in. Some modules provide fetch functions, some don’t.

2.1.1 The internal structure of eZ publish / Directory structure 106

2

2.1.1 Directory structure

The eZ publish root directory contains multiple subdirectories. Each subdirectory is dedicated
to a specific part of the system and contains a collection of logically related files. The following
table gives an overview of the main eZ publish directories.

Directory Description
bin The ”bin” directory contains various PHP,

Perl and shell scripts. For example, it con-
tains the ”clearcache” script which can be
used to clear all eZ publish caches from
within a system shell. The scripts are mainly
used for manual maintenance.

cronjobs The ”cronjobs” directory contains miscella-
neous scripts for automated periodical main-
tenance.

design The ”design” directory contains all design
related files such as templates, images,
stylesheets, etc.

doc The ”doc” directory contains documentation
and change logs.

extension The ”extension” directory contains eZ pub-
lish plugins. The extension system of eZ
publish allows external code to plug in and
coexsit with the rest of the system. By using
extensions it is possible to create new mod-
ules, datatypes, template operators, work-
flow events and so on.

kernel The ”kernel” directory contains all the kernel
files such as the core kernel classes, mod-
ules, views, datatypes, etc. This is where
the core of the system resides. Only experts
should tamper with this part.

lib The ”lib” directory contains the general pur-
pose libraries. These libraries are collec-
tions of classes that perform various low
level tasks. The kernel makes use of these
libraries.

packages The ”packages” directory contains the bun-
dled packages (themes, classes, templates,
etc.) that can be installed using either the
setup wizard or the administration interface.

settings The ”settings” directory contains dynamic,
site specific configuration files.

share The ”share” directory contains static config-
uration files such as codepages, locale de-
scriptions, translations, icons, etc.

support The ”support” directory contains the source
code for additional applications that can be
used to do various advanced tasks. For ex-

2.1.1 The internal structure of eZ publish / Directory structure 107

2

ample, it contains the ”lupdate” program
that can be used to create and maintain eZ
the translation files.

update The ”update” directory contains various
scripts that should be used when an eZ pub-
lish installation is being upgraded.

var The ”var” directory contains cache files and
logs. It also contains actual content that
doesn’t go into the database (images and
files). The size of this directory will most
likely increase as the system is being used.

2.2 Content and design 108

2

2.2 Content and design

This section explains the fundamental concepts of content and design. It is important to
understand what content and design actually are, how they interconnect and how the system
handles these fundamental elements.

Content

In the world of eZ publish, content and design are separated. By content we mean information
that is to be organized and stored using some structure. For example, it may be the actual
contents of a news article (title, intro, body, images), the properties of a car (make, model,
year, color) and so on. In other words, all custom information that is stored for the purpose
of later retrieval is referred to as content.

Design

The information stored in a content structure must be presented somehow, preferably in a
way that is easily understood by humans. While content means actual data, design is all
about the way the data is marked up and visually presented. When talking about design,
we’re talking about the things that make up a web interface: HTML, style sheets, images that
are not a part of the content, etc.

Templates

eZ publish uses templates as the fundamental unit of site design. For example, a template
might dictate that a page should appear with the site’s title bar on the top, and then main
content in the middle. When the page is accessed, it then becomes the content management
system’s job to ”flow” the content into the appropriate places in the template. An eZ publish
template is basically a custom HTML file that describes how some particular type of content
should be visualized. In addition to standard HTML syntax, it is possible to use eZ publish
specific code to for example extract content from the system. The HTML syntax in the built-
in/default templates follow the XHTML 1.0 Transitional specification.

The separation of content and design

While content is all about storing and structuring custom/raw data, the purpose of the design
is to dictate how the content should be visualized. The result of a combination of these
elements is a complete interface, as illustrated in the following diagram.

(see figure 2.2)

This distinction, and the system’s ability to handle it is one of the key features of eZ publish.
The separation of content and design opens up an entire range of possibilities that simply
cannot be achieved otherwise. The following list outlines some of the most important benefits
of this technique:

• Content authors and designers can work separately without conflicts

2.2 Content and design 109

2
Figure 2.2: Content + Design = Web page

• Content can be published easily in multiple formats

• Content can easily be transferred and re-purposed

• Global redesigns/changes can be applied by simple modifications

2.2.1 Content and design / Storage 110

2

2.2.1 Storage

This section explains where eZ publish stores information that belongs to a site (not the
system itself). A typical eZ publish site consists of the following elements:

• Actual content

• Design related files

• Configuration files

Actual content is structured and stored inside a database. This is true for all content except
for images and files, which are stored on the filesystem. The main reason for this is because
the filesystem is much faster than the database when it comes to the storage and retrieval
of large data chunks. Having the files on the filesystem allows the webserver to serve them
directly without the need of going through the database. In addition, this technique makes
it easier to use external tools to manipulate/scan/index the contents of the uploaded files.
For example, the built in search engine is capable of using external utilities to index the
contents of miscellaneous files (PDF, Word documents, Excel sheets, etc.). Having the files
on the filesystem dramatically decreases the size of the database and thus makes it easier to
copy and handle. Everything that is related to design (template files, CSS files, non content
specific images, etc.) and configuration settings are also stored on the filesystem. A backup
of an eZ publish site must therefore contain both a dump of the database and a copy of the
necessary files. The following illustration shows an overview of how the system makes use of
the database and the filesystem to store the different elements of a site.

(see figure 2.3)

Figure 2.3: Storage overview

2.3 Content management 111

2

2.3 Content management

The role of a content management system is to organize and store content regardless of type
and complexity. The main goal of such a system is to provide a well structured, automated
yet flexible solution allowing information to be freely distributed and instantly updated across
various communication channels (such as the world wide web, intranets and miscellaneous
front and back-end systems). This section describes how eZ publish actually handles content.

A typical example

Let’s consider a scenario at a university with a need of storing information about students.
Most off-the-shelf content management systems will offer a selection of built in content types.
There might for example exist a ”Person” type, consisting of fields like ”name”, ”birthdate”,
”phone number” and so on. However, the custom student data will probably not fit perfectly
into this predefined model since it might consist of information that is specific for the univer-
sity (for example student ID, department, etc.). Even though some systems allow the creation
of custom structures, the solution is often a complicated and timeconsuming process that re-
quires both programming and manipulation of the database. In addition, once the solution is
in use, future alternation of the structure itself will most likely become a problem.

Content management in eZ publish

Unlike other content management systems, eZ publish does not make use of a predefined
”one-size-fits-all” approach. Instead of desperately trying to fit data into predefined and rigid
structures, the system allows the creation of custom structures by the way of a unique object
oriented approach. For example, the site developer can build custom structures that perfectly
satisfies the storage needs of the university. This is one of the key features that make eZ pub-
lish a flexible and successful system. In addition to offering the freedom of custom structures,
it also allows the modification of the content structures at runtime. In other words, if the
custom student structure used in the example above needs to be modified, then eZ publish
will automatically alter it based on the administrator’s commands.

Although the possibility to create and modify content structures is a wonderful feature, there
isn’t always need for using it. This is why an eZ publish distribution comes with a selection of
predefined content structures and thus allows the developer to choose between the following
scenarios:

• Use the standard/built-in structures

• Use modified versions of the standard/built-in structures

• Use only custom structures

• Use a combination of standard, modified and custom structures

An object oriented content structure

The eZ publish content structure is based on ideas borrowed from the object oriented world
of popular programming languages like Smalltalk, C++, JAVA, etc. Superficially, object-
oriented means nothing more than looking at the world in terms of objects. In real life,

2.3 Content management 112

2

people are surrounded by several objects: furniture, cars, pets, humans, etc. Each of these
objects have traits that we use to identify them. This is also the way eZ publish defines and
manages content.

The system offers a selection of fundamental building blocks and mechanisms that together
provide a flexible content management solution. An actual data structure is described using
something called a content class. A content class is built up of attributes. An attribute can
be thought of as a field, for example the ”birthdate” field in a structure designed to store
information about students. The description of the entire structure would be refferred to as
the ”student class”. The characteristics of an attribute inside the class are determined by the
datatype that was chosen to represent that attribute.

It is important to understand that a content class is just a definition of an arbitrary structure.
In other words, the class itself describes the structure but it does not store any actual data.
Once a content class has been defined, it is possible to create instances of that class. An
instance of a content class is called a content object. Actual content is stored inside objects
of different types. A content object consists of one or more versions. The versioning layer
makes it possible to have different versions of the same content. Each version consists of one
or more translations. The translation layer makes it possible to represent the same version of
the same content in multiple languages. A translation consists of attributes. The attributes
are the final elements in the content structure chain, this is where actual data is stored.

The content objects are wrapped and organized by the way of nodes that are placed inside
a tree-like structure. This tree is often refferred to as the node tree. The following sections
contain comprehensive explanations related to the elements that were introduced above.

2.3.1 Content management / Datatypes 113

2

2.3.1 Datatypes

A datatype is the smallest possible entity of storage. It determines how a specific type of in-
formation should be validated, stored, retrieved, formatted and so on. eZ publish comes with
a collection of fundamental datatypes that can be used to build powerful and complex con-
tent structures. In addition, it is possible to extend the system by creating custom datatypes
for special needs. Custom datatypes have to be programmed in PHP. However, the built in
datatypes are usually sufficient enough for typical scenarios. The following table gives an
overview of the most basic datatypes that come with eZ publish.

Datatype Description
Text line (page 490) Stores a single line of unformatted text
Text block (page 488) Stores multiple lines of unformatted text
XML block (page 497) Validates and stores multiple lines of format-

ted text
Integer (page 460) Validates and stores a numerical integer

value
Float (page 450) Validates and stores a numerical floating

point value

Please refer to the ”Datatypes” (page 433) section of the reference chapter for a compre-
hensive list of all the built-in datatypes. Additional datatypes can be downloaded from
http://ez.no/community/contribs/datatypes; they are created by the members of the eZ pub-
lish community.

Input validation

As the list above indicates, some datatypes take care of more than just storing data. For exam-
ple, the ”XML block” datatype apparently supports validation. This means that the inputted
XML will be validated before it is actually stored in the database. In other words, the system
will only accept and store the data if it is a valid XML structure. Input validation is supported
by most (but not all) of the built in datatypes. The validation feature of a datatype can not be
turned on or off. In other words, if a datatype happens to support validation, it will always try
to validate the incoming data and thus the system will never allow the storage of incorrectly
formatted input.

http://ez.no/community/contribs/datatypes

2.3.2 Content management / The content class 114

2

2.3.2 The content class

A content class is a definition of an arbitrary data structure. It does not store any actual data.
A content class is made up of attributes. The characteristics of an attribute are determined by
the datatype that is chosen for that specific attribute. By combining different datatypes, it is
possible to represent complex data structures. The following illustration shows the anatomy
of a content class called ”Article”, which defines a data structure for storing news articles. It
consists of attributes dedicated for storing the title, an introduction text and the actual body
of an article.

(see figure 2.4)

Figure 2.4: Example of a content class.

An eZ publish distribution comes with a set of general purpose classes (page 512) that are
designed for typical web scenarios. For example, the default image class defines a structure
for storing image files. It consists of attributes for storing the name of the image, the actual
image file, the caption and an alternative image text. The built-in classes can be modified
in order to become more suitable for a specific case. In addition, it is possible to create
completely new and custom classes. Content classes can be created, modified and removed
easily using the administration interface. When a content class is removed, all instances
of that class (containing actual data) will also be removed from the system. The following
screenshot shows the class edit interface in action.

(see figure 2.5)

Class structure

A content class consists of the following elements:

• Name

• Identifier

• Object name pattern

• Container flag

• Default object availability flag

• Attributes

2.3.2 Content management / The content class 115

2

Figure 2.5: The class edit interface.

Name

The name is for storing a user friendly name which describes the data structure that the
class defines. A class name can consist of letters, digits, spaces and special characters. The
maximum length is 255 characters. For example, if a class defines a data structure for storing
information about graduate students, the name of the class would most likely be ”Graduate
student”. This name will appear in various class lists throughout the administration interface,
but it will not be used internally by the system. If a blank name is provided, eZ publish will
automatically generate a unique name when the class definition is stored.

Identifier

The identifier is for internal use. In particular, class identifiers are used in configuration files,
templates and in PHP code. A class identifier can only consist of lowercase letters, digits and
underscores. The maximum length is 50 characters. For example, if a class defines a data
structure for storing information about graduate students, the identifier of the class would
probably be ”graduate student”. If a blank identifier is provided, eZ publish will automatically
generate a unique identifier when the class definition is stored.

Object name pattern

The object name pattern controls how the name of an actual object (an instance of a class)
will be generated. A pattern usually consists of attribute identifiers (described later) that tell
eZ publish about which attributes it should use when generating the name of an object. Each
attribute identifier has to be encapsulated by angle brackets. Text outside the angle brackets

2.3.2 Content management / The content class 116

2

will be included directly. If a blank pattern is provided, eZ publish will automatically use the
identifier of the first attribute.

Container flag

The container flag controls whether an instance of the class should be allowed to have sub
items (often called child nodes, children) or not. This setting only affects the administration
interface, it was added in order to provide a more convenient environment for administrators
and content authors. In other words, it doesn’t control any actual low level logic, it simply
controls the way the graphical user interface behaves.

Default object availability flag

This flag is related to the multi-language features that were added in eZ publish 3.8. It simply
dictates the default value of the ”object availability” flag for new instances (objects) of the
class. This flag can be further controlled (on the object level) by a checkbox labelled ”Use
the main language if there is no prioritized translation” in the ”Languages” window of the
administration interface. In other words, the object availability can be modified individually
for each object. When the flag is set, an object that does not exist in one of the site/prioritized
languages will be shown using it’s initial/main language. If the flag isn’t set, the object will
not be shown as long as it does not exist in one of the prioritized languages.

Attributes

As pointed out earlier, it is the structure and type of the attributes that make up the actual
data structure that the class defines. A content class must at least have one attribute. On the
other hand, a class can contain virtually an unlimited number of attributes. Class attributes
can be added, removed and rearranged at any time using the administration interface. If an
attribute is added to a class, it will be added to all current and upcoming instances of that
class. If an attribute is removed, it will also be removed from all instances.

Although it is possible to remove and add attributes using the administration interface, in
some cases these operations may corrupt the database. This usually happens when there
are too many instances that need to be updated. If the required processing time exceeds
the maximum execution time for PHP scripts, the sequence will be interrupted and thus the
database will most likely be left in an inconsistent state. At the time of writing, this problem
can only be solved by increasing the maximum execution time, which is defined in ”php.ini”
as ”max execution time”. The default value is 30 seconds, it should be increased to a couple of
minutes. A more reliable solution (a PHP script that takes care of adding/removing attributes
and run it from within a shell) will probably be added in the future.

2.3.3 Content management / Class attributes 117

2

2.3.3 Class attributes

A content class is made up of one or more attributes where each attribute is represented by
a datatype. The characteristics of an attribute are determined by the datatype that is chosen
for that specific attribute. An attribute is made up of the following elements:

• Name

• Identifier

• Generic controls

• Datatype specific controls

Name

The name is for storing a user friendly name for the attribute. For example, if the attribute is
supposed to store birthdates, the name of the attribute would most likely be ”Date of birth”.
This string will appear in various parts of the administration interface, but it will not be used
internally by the system. The name of an attribute can consist of letters, digits, spaces and
special characters. The maximum length is 255 characters. If a blank name is provided, eZ
publish will automatically generate a unique name for the attribute when the class definition
is stored.

Identifier

The identifier of an attribute is for internal use. In particular, attribute identifiers are used
in configuration files, templates and in PHP code. An attribute identifier can only consist of
lowercase letters, digits and underscores. The maximum length is 50 characters. For example,
if the attribute is supposed to store birthdates, the identifier of the attribute would probably
be ”date of birth”. If a blank identifier is provided, eZ publish will automatically generate a
unique identifier when the class definition is stored.

Generic controls

Each attribute has a set of generic controls. These controls are the same for each attribute,
regardless (but not independent) of the datatype that represents the attribute. The generic
controls are a set of switches that can be turned on or off:

• Required

• Searchable

• Information collector

• Translatable

2.3.3 Content management / Class attributes 118

2

Required

The required switch controls the behavior of the storage procedure for content objects (in-
stances of a content class). It can be used regardless of the datatype that represents the
attribute. When the required flag of an attribute is set, the system will keep rejecting the
inputted data until all required information is provided. If the required flag is unset, eZ pub-
lish will not care whether any actual data was provided or not. When an attribute is added,
the required switch is off. Please note that inputted data will be validated according to the
chosen datatype’s validation rules regardless of the state of the attribute’s required switch.
Input validation is supported by most (but not all) of the built in datatypes. The following
example demonstrates how these features actually work.

Let’s say that we have created a content class that defines a data structure for storing infor-
mation about prisoners. The class would typically consist of various attributes for storing
different kinds of data: name, identification number, date of birth, cell, block, etc. Having at
least the name and the birthdate attributes required will eliminate the possibility of storing
convicts without names and/or birthdates. If the birthdate attribute is represented by the
built-in ”date” datatype, the system will only accept the input if the birthdate is provided
using a correct date format.

Searchable

The searchable switch can be used to control whether the actual data stored using the at-
tribute should be indexed by the search engine or if it should be left unindexed. Search in-
dexing is supported by the majority of the built-in datatypes. Please refer to the ”Datatypes”
(page 433) section of the reference chapter to see which datatypes that support search index-
ing.

Information collector

The information collector switch can be used to control the attribute’s behavior in view mode.
The default view mode behavior results in the display of the information that was provided
in edit mode. For example, when viewing a news article, the contents of the article are
displayed but can not be edited. However, if an attribute is marked as a collector, it will allow
information to be input in view mode. At first, this feature might seem a bit odd. However, it is
actually quite handy. For example, it can be used to quickly create simple feedback forms. The
contents of a form created using this technique will be e-mailed to the site administrator (or
to a specified address) once the form is submitted. Information collection is only supported
by a small set of the built in datatypes. The following example demonstrates how this feature
could be used to create a basic feedback form.

Let’s say that we have created a content class called ”Feedback form” using the following
attributes: name, subject and message. The subject and the message attributes would be
marked as information collectors. When an instance of this class is viewed, the subject and
the message attributes will be displayed as input fields along with a ”Send” button.

2.3.3 Content management / Class attributes 119

2

Translatable

The translatable switch controls whether actual data stored using the attribute should exist
in only one language (the default language) or if it should be possible to translate it using the
additional languages. The translation mechanism is completely independent of the datatype
layer. In other words, this switch can be used regardless of the datatype that was chosen to
represent the attribute.

When an attribute is added, the translation switch is ”on”. Turning it off is typically useful
when the attribute is supposed to store non-translatable input. For example, translating dates,
numerical values, prices, email addresses, etc. doesn’t make much sense.

Datatype specific controls

An attribute can have a set of additional controls that are specific for the datatype that was
chosen to represent that attribute. Some datatypes allow fine grained customization, some
not. For example, the built-in ”Text line” datatype provides two settings: default value and
maximum length.

2.3.4 Content management / The content object 120

2

2.3.4 The content object

A content object is an instance of a content class. While the class only defines the data
structure, it is the content objects themselves that contain actual data. Once a content class
is defined, several content objects / instances of that class can be created. For example, if a
class for storing news articles is created, several article objects (each containing a different
story) can then be instantiated. The following illustration summarizes and shows the relation
between datatypes, attributes, a content class and content objects.

(see figure 2.6)

Figure 2.6: Datatypes, attributes, a content class and objects.

Please note that the illustration above is a simplified version of the reality. It doesn’t show
the exact structure of the objects since the versioning and the translation layers have been
left out. The following text gives a more in-depth explanation of the object structure. The
versioning and the translation layers will be explained in the upcoming sections.

Object structure

A content object consists of the following elements:

• Object ID

• Name

• Type

• Owner

• Creation time

• Modification time

• Status

2.3.4 Content management / The content object 121

2

• Section ID

• Versions

• Current version

Object ID

Every object has a unique identification number. The ID numbers are used by the system to
organize and keep track of different objects. These ID numbers are not recycled. In other
words, if an object is deleted, the ID number of that object will not be reused when a new
object is created.

Name

The name of an object is nothing more than a friendly name that appears in various lists
throughout the administration interface. It helps the user to identify different objects by their
names instead of having to deal with identification numbers. An object’s name is generated
automatically by the system when the object is published. It is the object name pattern
definition of a class that dictates how objects of that class should be named. This mechanism
makes it possible to automatically generate names based on the object’s attributes. Since the
object name is not used by the system, different objects can have the exact same name.

For example, when dealing with news articles, the title of the article would most likely be used
to generate the object names. When an article object is published, its name will be a copy
of the object’s title attribute. The name of the object will be updated every time the object is
published. In other words, if the title is changed, the object’s name will automatically also be
changed.

Type

The type information indicates which class that was used to create the object.

Owner

The object’s owner contains a reference to the user who initially created the object. At any
time, an object can only be owned by one user. This reference is set by the system the first
time the object is published. The ownership of an object can not be manipulated and will not
change even if the owner the object is removed from the system.

Creation time

The published field contains a timestamp pinpointing the exact date and time when the object
was published for the first time. This information is set by the system and it can not be
modified. The published timestamp will remain the same regardless of what happens to the
object.

2.3.4 Content management / The content object 122

2

Modification time

The modified field contains a timestamp revealing the exact date and time when the object
was modified. This information is set by the system and it can not be modified. The modified
timestamp will change every time the object is published.

Status

The status indicates the current state of the object. There are three possibilities:

• (0) Draft

• (1) Published

• (2) Archived

When initially created, the object’s status is set to draft. This status will remain until the
object is published and thus the status will be set to published. Once published, the object can
not become a draft. When a published object is moved to the trash, the status will be set to
archived. If a published object is removed from the trash (or removed without being put in
the trash first), it will be permanently deleted.

Section

The section ID of an object denotes which section that object belongs to. Each object can
belong to one section. By assigning different sections to objects, it is possible to have different
groups of objects. The section mechanism is explained under ”Sections” (page 142).

Versions

The actual contents of an object is stored inside different versions. A version can be thought
of as a timestamped collection of data (the object’s attributes) that belongs to a specific user.
Every time the contents of an object is edited, a new version is created. It is always the new
version that will be edited. The current / published version along with earlier versions will
remain untouched. This makes it possible to revert unwanted or accidental changes. An
object always has at least one version of its content. Each version is identified by a number
which is automatically increased for every new version that is created. The structure and
logic of the versioning mechanism is explained in the next section.

Current version

The current version is a number that pinpoints the currently published version of the object.
As described above, the contents of an object may exist in several versions. However, only one
of them can be the current version (also referred to as the published version). The current/
published version is the version that will be displayed when the object is viewed.

2.3.5 Content management / Object versioning 123

2

2.3.5 Object versioning

eZ publish comes with a built in versioning system which is implemented at the object level.
This mechanism makes it possible to have several versions of the contents (attributes) of an
object. It basically provides a generic, out-of-the-box version control framework that can be
used with any kind of content. The different versions are encapsulated by the object itself.
The following illustration shows a more detailed example of the object structure seen from
the outside world.

(see figure 2.7)

Figure 2.7: Example of a content object that consists of two versions.

Every time an object is edited, a new version of the object’s contents will be created. It is
always the new version that will be edited, the old version(s) remains untouched. This is
how eZ publish keeps track of changes made by various users. An accidental or unwanted
change can thus be undone by simply reverting an object back to the previous version.

Version limitations

Since every edit procedure results in the creation of a new version (unless the new version
is discarded), the database can be quickly filled up by different versions of the same content.
In order to prevent this problem, the versioning system can be limited to a certain number
of versions per object. It is possible to assign different version limitations for different object
types (different classes). The default limitation is 10, which means that every object can have
a maximum number of 10 versions of its content. If the maximum count is reached, the oldest
version will be automatically deleted and thus a free slot will be available for the new one.
This is the default behavior. An alternative setting can be used to disallow the creation of new
versions until an existing version is manually deleted by a user.

2.3.5 Content management / Object versioning 124

2

Version structure

A version consist of the following elements:

• Version number

• Creation time

• Modification time

• Creator

• Status

• Translations

Version number

Every version has a unique version number. This number is used by the system to organize
and keep track of the different versions of an object. The version number is automatically
increased for each version that is created inside an object.

Creation time

The creation time contains a timestamp pinpointing the exact date and time when the ver-
sion was initially created. This information is set by the system and will remain the same
regardless of what happens to the version.

Modification time

The modification time contains a timestamp revealing the exact date and time when the ver-
sion was last modified. This information is set by the system every time the version is stored
and when the version is finally published. When a version is published, the modification time
of the object itself will be updated (it will simply be set to the same value as modification
time of the version that was published).

Creator

The version’s creator contains a reference to the user that created the version. Although a
content object can only belong to a single user (revealed by the ”Owner” field), each version
may belong different users. The creator reference is set by the system when the version is
created. It can not be manipulated and will not change even if the user who created the
version is removed from the system.

Status

The state of a version is determined by its status. There are five possibilities:

2.3.5 Content management / Object versioning 125

2

• Draft (0)

• Published (1)

• Pending (2)

• Archived (3)

• Rejected (4)

From 3.8, there is an additional possibility: if a version of a content object is created but
not modified (for example, if someone clicked an ”Add comments” button but didn’t actually
post anything), the status of the version will be ”Internal draft (5)”. In the administration
interface, status ”5” drafts are called ”untouched drafts”. If you configure the ”internal drafts
cleanup.php” cronjob script to be run periodically, it will automatically remove internal drafts
that have been in the system for over 24 hours.

A newly created version is a draft. This status will remain until that version becomes pub-
lished. Although an object can have many versions, there can only be one published version
(the others are usually drafts and archived versions). The published version can be consid-
ered as the ”current” version and it is the one that is accessed when the object is viewed.
A published version can not become a draft. However, it will become archived as soon as
another version is published. The following illustration shows how the versioning system
actually works.

(see figure 2.8)

The illustration above shows the most common states of a content object. When a new object
is created (step 1), eZ publish will also create a new draft version. Because the object has
not been published yet, its status is set to draft and the current version is unknown. Storing
the draft (steps 2a and 2b) will not change the state of the object. The only thing that will
happen is that the contents of the draft will be stored in version 1. If the draft (which is the
only existing version) is discarded, the object is completely removed from the system (step
2c). When the draft is published (step 2), both the draft and the object’s states will be set
to published. In addition, the current version will be set to 1, which reveals the currently
published version of the object. When published, the contents of the object can be viewed
by others. A published object can be removed/deleted from the system (step 3a). When
removed, the object’s state will be set to ”Archived” and thus it will be in the trash. The object
can be recovered from the trash to its previous state. Among other things, this involves the
status field being set to ”Published” again. When a published object is edited (step 4), the
current version (version 1 in this case) will remain untouched and a completely new version
will be created. The contents of the new version (version 2 in this case) will be a copy of the
contents of the current version. Again, storing the draft (steps 4b and 4c) will not change the
state of the object. If the draft is discarded (step 4a), it will be completely removed from the
system and thus the object will be in the exact same state as it was in before it was edited.
If the newly created and edited draft is published, it will become the current version of the
object and thus the previous version (version 1 in this case) will be set to ”Archived”. Step 5a
illustrates what would happen if the object (now with two versions) would be removed.

The pending and the rejected states are used by the collaboration system. When a version is
waiting to be approved by an editor, the status is set to pending. If the version is approved,
it will be automatically published and thus the status will be set to published. On the other
hand, if a pending version is rejected by the editor, the status will be set to rejected.

2.3.5 Content management / Object versioning 126

2

Figure 2.8: Overview of the object states.

A version can only be edited if it is a draft and it can only be edited by the same user who
initially created it. In addition, rejected versions can also be edited. When a rejected version
is edited, it will become a draft. Published and archived versions can not be edited. However,
it is possible to make copies of them. When a published or an archived version is copied,
the status of the copy is set to draft and thus it becomes editable. When/if the new draft
is published, the system automatically sets the status of the previously published version to
archived and the new draft will become the published version.

Translations

The actual contents of a version is stored inside different translations. A translation is a
representation of the information in a specific language. In other words, the translation layer
allows a version of the object’s actual contents to exist in different languages. A version
always has at least one translation of the content (which represents the data in the default/
standard language).

2.3.6 Content management / Multiple languages 127

2

2.3.6 Multiple languages

In addition to the versioning system, the content model of eZ publish also provides a built-in
multilanguage framework. This feature allows an object’s contents to exist in several lan-
guages. The system is able to support up to 30 different languages at the same time.

The multi-language feature provides a generic one-to-one translation mechanism that can be
used to translate any kind of content. A one-to-one translation solution makes it possible to
represent the exact same content in multiple languages. For example, when a news article
is available in English, Norwegian and Hungarian (same content in all three cases), we say
that we have one-to-one translation of the content. The translation mechanism is completely
independent of the datatypes. In other words, any kind of content can be translated regardless
of the datatypes that are used to realize the content’s structure. It is possible to start with
only one language and when time comes, add translations and thus extend the spectrum of
the target audience.

The following illustration shows a simplified example of an object with two versions where
each version exists in several languages. A language in this case is often referred to as a
translation.

(see figure 2.9)

Figure 2.9: Content object structure (with versions and translations).

As the illustration indicates, each version can have a different set of translations. At mini-
mum, a version always has one translation which by default is the initial/main translation.
The initial/main translation can not be removed. However, if the object exists in several lan-
guages, it is possible to select which of the translations that should be initial/main and thus
the previous initial/main translation can be removed.

It is important to note that from 3.8, when a user edits an object, it is no longer the entire

2.3.6 Content management / Multiple languages 128

2

version that gets edited. Instead, a combination of a version and a translation that is edited.
This approach avoids the locking of entire versions (along with all the translations) and thus
it allows multiple translators to work with the same content in several languages at the same
time.

The global translation list

An object can only be edited/translated using languages that exist in the global translation
list. Initially, this list contains the languages that were selected during step six of the setup
wizard. Additional languages can be added at any time while the site is up and running.
The following screenshot shows the global translation list as it appears in the administration
interface (under ”Setup” and ”Languages”).

(see figure 2.10)

Figure 2.10: The list of existing languages for translation of content

The global translation list simply keeps track of the languages that users are allowed to use
when editing/translating content. A translation added to the list will immediately become
available for use. Note that from 3.8, it is no longer possible to remove languages from the
global translation list unless they are not used by any objects. The global translation list is
capable of handling up to 30 languages.

Differences between 3.8 and earlier versions

In eZ publish 3.7 and earlier versions, objects had to be created in the primary language
before they could be translated to additional languages. Multiple translators could not work
simultaneously because the edit process locked the entire version which also contained the
translations.

In eZ publish 3.8, the primary language concept is gone and thus objects can be created using
different languages. This means that you can for example have an article available only in
English and another article available only in Norwegian. Multiple translators can work on
the same object because when editing, they actually edit the translation itself instead of the
entire version. This means that if you have written an article in English, different translators
can go ahead and add translations (for example Hungarian, Norwegian and Russian) to the
object simultaneously. They no longer have to wait for eachother because they can work with
different translations at the same time on the same object. However, this also means that a
user can no longer work with multiple translations at the same time. The problem is that the
user must leave the edit interface in order to be able to add (and then edit) new translations
for an object. There are some other drawbacks as well. For example, unless a user is editing

2.3.6 Content management / Multiple languages 129

2

the very first version of an object, it is no longer possible to change the object’s locations from
the edit interface. However, the locations can still be changed using the ”Locations” window
when the object isn’t being edited.

Whenever an object is published, the system automatically collects all the latest translations
that the previous version(s) of the object contains and puts them into the version being pub-
lished. The result is a version that contains all the up-to-date translations. The contents of an
object can be translated to a maximum number of 30 languages.

Please refer to the ”Updating INI settings for multi-language” part of the ”Upgrading from
3.6.x (3.7.x) to 3.8.0” page for information about multi-language related INI settings.

Non-translatable attributes

The data structure defined by a class is built up of attributes where each attribute is repre-
sented by a datatype. Among other things, an attribute of a class can be made translatable
or not. If an attribute is translatable, the system will allow the translation of its contents
when an object of that class is being edited. This is typically convenient when the attribute
contains actual text. For example, the written part of a news article can be translated into
different languages. However, some attributes are non-translatable by nature. This is typical
for images without text, numbers, dates, e-mail addresses and so on. Such attributes can be
made non-translatable and thus their contents will simply be copied from the initial/main
translation. The copied values can not be edited.

For example, let’s say that we need to store information about furniture in multiple languages.
We could build a furniture class using the following attributes: name, photo, description,
height, width, depth and weight. Allowing the translation of anything else then the descrip-
tion attribute would be pointless since the values stored by the other attributes are the same
regardless of the language used to describe the furniture. In other words, the name, photo,
height, width, depth and weight would be the same in for example both English and Nor-
wegian. Conversion between different measuring units would have to be done within the
template that is used to display the information.

Access control

It is possible to control whether a user (or a group of users) should be able to translate
content or not. This policy can be controlled on a class, section, language and owner basis.
In particular, the language limitation makes it possible to control which user (or user groups)
should be able to edit and/or translate different parts of the content using different languages.
In addition, it is also possible to control access to the global translation list. This makes it
possible to allow users other than the site administrator to add and remove translations on a
global basis.

Please refer to the multi-language (page 239) part of the features section for further details.

2.3.7 Content management / The content node 130

2

2.3.7 The content node

When the system is in use, new content objects are created on the fly. For example, when a
news article is composed, a new article object is created. Obviously, the content objects can’t
just hover around in space, they have to be organized in some way. This is where the nodes
and the content node tree comes in. A content node is nothing more than an encapsulation
of a content object. In eZ publish, every object is usually represented by one or more nodes.
The following illustration shows a simplified example of a node and a corresponding object
(which is referenced by the node) as it would have been represented inside the system.

(see figure 2.11)

Figure 2.11: Object - node relation

The content node tree is built up of nodes. A node is simply a location of an object within the
tree structure. The tree is the actual mechanism used to hierarchically organize the objects
that are present on the system. The content node tree is explained in the next section.

Node structure

A content node consists of the following elements:

• Node ID

• Parent node ID

• Object ID

• Sort method

• Sort order

• Priority

Node ID

Every node has a unique identification number. The ID numbers are used by the system to
organize and keep track of the different nodes. These ID numbers are not recycled. In other
words, if a node is deleted, the ID number of that node will not be reused when a new node
is created.

Parent node ID

The parent node ID of a node reveals the node’s superior node in the tree.

2.3.7 Content management / The content node 131

2

Object ID

Every object that exists in the system has a unique identification number. The object ID of a
node pinpoints the actual object that the node encapsulates.

Sort method

The sorting method of a node determines how the children of the node should be sorted. The
following sorting methods are possible:

Method ID Description
Class identifier 6 The nodes are sorted by the

class identifiers of the ob-
jects.

Class name 7 The nodes are sorted by the
class names of the objects.

Depth 5 The nodes are sorted by
their depth in the tree. A
node further down in the
three has a higher level of
depth. The root node has a
depth of 1.

Modified 3 The nodes are sorted by the
modification time of the ob-
jects.

Modified subnode 10 The nodes are sorted based
on the modification time of
their children.

Name 9 The nodes are sorted by the
names of the objects.

Path 1 The nodes are sorted by
their path strings.

Priority 8 The nodes are sorted by
their priority. Every node
has a priority field that can
be set by the user. This so-
lution allows the nodes to
be sorted in a custom or-
der. The priority field is de-
scribed below.

Published 2 The nodes are sorted by the
creation time of the objects’
current/published versions.

Section 4 The nodes are sorted by the
section IDs of the objects.

Please note that it is possible to combine the available sort methods in order to sort nodes in a
more complex way. However, since a node is incapable of ”remembering” a combination (you
can only set one method and one order for each node), this has to be done in the templates.

2.3.7 Content management / The content node 132

2

Sort order

The sorting order determines the order in which the children of the node should be sorted.
There are two possibilities:

• Descending (0 / FALSE)

• Ascending (1 / TRUE)

For example, if the sorting method is set to ”Name” and the sort method is set to ”Ascending”,
the underlying nodes will be alphabetically sorted from A to Z. If the sort method is set to
”Descending”, the underlying nodes will be sorted from Z to A.

Priority

The priority field allows a user to assign both positive and negative integer values to a node
(zero is also allowed). This field makes it possible to sort nodes in a custom way. If the
sorting method of a node is set to ”Priority”, the children of that node will be sorted by their
priorities.

2.3.8 Content management / The content node tree 133

2

2.3.8 The content node tree

The content node tree is a hierarchical organization of the objects. Each leaf in the tree is
a node (also known as a location). Each node refers to one object. The usual case is that
an object is referenced by only one node. Because of the node-encapsulation of objects, any
type of content object can be placed anywhere in the tree. At the minimum, the tree consists
of one node, called the root node. The identification number of the root node is 1. The
root node is a virtual node, it does not encapsulate an actual object. A node that is directly
below the root node is called a top level node (the top level nodes are described in the next
section). The depth and width of the tree is virtually unlimited. The following illustration
shows a simplified example of how objects are referenced by nodes which together make up
the content node tree.

(see figure 2.12)

Figure 2.12: Objects, nodes and the content node tree

The following illustration shows the same node structure seen from the outside world.

(see figure 2.13)

Figure 2.13: Content node tree

2.3.8 Content management / The content node tree 134

2

Multiple locations

An object may be referenced by several nodes, which means that the same object can appear
at different locations within the tree. This feature can for example be used to place a specific
news article at two locations: the frontpage and the archive. In the case of multiple nodes/
locations, only one node can be considered as the main node of an object. The main node
usually represents the object’s original location in the tree. The other nodes can be thought of
as additional nodes / locations. If an object is referenced by a single node then of course that
node would be the main node. Among other things, the main node is used to avoid multiple
search hits, infinite recursive loops, smart filtering, etc. The following illustration shows an
example of a structure where an object has multiple locations in the tree. It will simply be
empty and will have the possibility to contain a different set of sub items.

(see figure 2.14)

Figure 2.14: Objects, node and the content node tree - multiple locations

The following illustration shows the same node structure seen from the outside world.

(see figure 2.15)

Figure 2.15: Content node tree with multiple locations

2.3.8 Content management / The content node tree 135

2

Pitfall

A very common mistake when planning the structure of a site is thinking of multiple locations
as shortcuts/links on a filesystem. Unfortunately, this is not how the node tree works. When
a new location is added to an object, eZ publish will not go through and create replica of the
node structure below the object’s original location. For example, if a folder containing several
subfolders with articles, images, etc. is assigned a secondary location, the subfolders with
articles, images, etc. will not be automatically available below the new location of the folder.

Additional notes

Only published objects appear in the tree. A newly created object (status set to draft) does not
get a node assignment until the object is published for the first time. An object is considered
to be deleted (status set to archived) when all nodes referencing that object are removed from
the tree. A deleted object will appear in the system trash. It is important to understand that
the trash in eZ publish is a flat structure. This is different from what people are used to from
the trash implementation in modern operating systems. When an object is to be recovered/
undeleted, it must be manually placed in the tree since the deleted object doesn’t contain
any information about its previous location. For example, if a folder containing some news
articles is deleted, both the folder and the articles will appear on the same level within the
trash. Recovering the folder itself will not bring back the articles since the links between the
folder and the articles got lost when the nodes were deleted.

2.3.9 Content management / Top level nodes 136

2

2.3.9 Top level nodes

A typical eZ publish installation comes with the following set of top level nodes:

• Content

• Media

• Users

• Setup

• Design

The top level nodes can not be deleted. However, they can be swapped with other nodes. The
swap function can be used to change the type of a top level node. For example, the ”Content”
node references a folder object. By swapping it with another node which refers to a different
kind of object, it is possible to change the type of the top level node itself. The following
illustration shows the virtual root node and the standard top level nodes:

(see figure 2.16)

Figure 2.16: Top level nodes

Content

The actual contents of a site is placed under the ”Content” node. This node is typically used
for organizing folders, articles, information pages, etc. and thus defines the actual content
structure of the site. A sitemap can be easily created by traversing the contents of this top
level node. The default identification number of the ”Content” node is 2. The contents of this
node can be viewed by selecting the ”Content structure” tab in the administration interface.
By default, this node references a ”Folder” object.

Media

The ”Media” node is typically used for storing and organizing information that is frequently
used by the nodes located below the ”Content” node. It usually contains images, animations,
documents and other files. For example, it can be used to create an image gallery containing
images that are used in different news articles. The default identification number of the
”Media” node is 43. The contents of this node can be viewed by selecting the ”Media library”
tab in the administration interface. By default, this node references a ”Folder” object.

2.3.9 Content management / Top level nodes 137

2

Users

The built-in multiuser solution makes use of the native content structure of eZ publish. An
actual user is just an instance of a class that contains the ”User account” (page 495) datatype.
The user nodes are organized within ”User group” nodes below the ”Users” top level node. In
other words, this node contains the actual users and user groups. The default identification
number of the ”Users” node is 5. The contents of this node can be viewed by selecting the
”User accounts” tab in the administration interface. By default, this node references a ”User
group” object.

Setup

The ”Setup” node contains miscellaneous nodes related to configuration and is used internally.
The default identification number of the ”Setup” node is 48. By default, this node references
a ”Folder” object.

Design

The ”Design” node contains miscellaneous nodes related to design issues and is used inter-
nally. The default identification number of the ”Design” node is 58. By default, this node
references a ”Folder” object.

2.3.10 Content management / Node visibility 138

2

2.3.10 Node visibility

Since publishing means adding an object (by the way of a node) to the content tree, unpub-
lishing would imply the removal of the object from the tree. Once an object is published,
it can not be unpublished because eZ publish does not provide such a feature. Instead, the
system provides a hiding mechanism which can be used to change the visibility of nodes. The
hide feature makes it possible to prevent the system from displaying the contents of pub-
lished objects. This is achieved by denying access to the nodes. A single node or a subtree of
nodes can be hidden either by a user or by the system. A node can have one of the following
visibility statuses:

• Visible

• Hidden

• Hidden by superior

All nodes are visible by default and thus the objects they reference can be accessed. A user
can hide or unhide a node using the administration interface. Once a node is hidden, all
its descendants will automatically be marked ”Hidden by superior” and thus the descendants
will also become hidden. A node can not become visible if its parent is hidden.

A hidden node will not be available unless the ”ShowHiddenNodes” directive within the
”[SiteAccessSettings]” block of a configuration override for ”site.ini” is set to true. The most
common way to use this setting is to disallow all but the administration interface to show
hidden nodes.

Implementation

Each node has two flags: ”H” and ”X”. While ”H” means ”hidden”, ”X” means ”invisible”. The
hidden flag reveals whether the node has been hidden by a user or not. A raised invisibility
flag means that the node is invisible either because it was hidden by a user or by the system.
Together, the flags represent the three visibility statuses that were described above:

H X Status
- - The node is visible.
1 1 The node is invisible. It was

hidden by a user.
- 1 The node is invisible. It was

hidden by the system be-
cause its ancestor is hidden/
invisible.

If a user tries to hide an already invisible node then the node’s hidden flag will be set in
addition to the invisible flag. If a node is hidden and its parent becomes visible, the node will
remain hidden while the descendants will remain invisible. The following illustrations show
how the node hiding algorithm works.

2.3.10 Content management / Node visibility 139

2

Case 1: Hiding a visible node

The following illustration shows what happens when a visible node is hidden by a user. The
node will be marked hidden. Underlying nodes will be marked invisible (hidden by supe-
rior). The visibility status of underlying nodes already marked hidden or invisible will not be
changed.

(see figure 2.17)

Figure 2.17: Hiding a visible node

Case 2: Hiding an invisible node

The following illustration shows what happens when an invisible node (hidden by superior)
is explicitly hidden by a user. The node will be marked as hidden. Since the underlying nodes
are already either hidden or invisible, their visibility status will not be changed.

(see figure 2.18)

Figure 2.18: Hiding an invisible node

2.3.10 Content management / Node visibility 140

2

Case 3: Unhiding a node with a visible ancestor

The following illustration shows what happens when a user unhides a node that has a visi-
ble ancestor. Underlying invisible nodes will become visible. An underlying node that was
explicitly hidden by a user will remain hidden (and its children will be remain invisible).

(see figure 2.19)

Figure 2.19: Unhiding a node with a visible ancestor

Case 4: Unhiding a node with an invisible ancestor

The following illustration shows what happens when a user unhides a node that has an invis-
ible ancestor. Since the target node is unhided in a subtree that is currently invisible (because
a node further up in the hierarchy has been explicitly hidden), the node will not become visi-
ble. Instead, it will be marked as invisible and will become visible when the hidden superior
node is unhided.

(see figure 2.20)

Figure 2.20: Unhiding a node with an invisible ancestor

2.3.11 Content management / Object relations 141

2

2.3.11 Object relations

The content model of eZ publish makes it possible to create relations between different ob-
jects. Any type of object can be connected to any other type of object. This feature is typically
useful in situations when there is a need to bind and/or reuse information that is scattered
around in the system.

For example, the concept of related objects makes it possible to add images to news articles.
Instead of using a fixed set of image attributes, the images are stored as separate objects
outside the article. These objects can then be related to the article and used directly in
attributes represented by the ”XML block” (page 497) datatype. This approach is quite flexible
because it does not enforce any limitations when it comes to the amount and the type of
information that is to be included.

Relation types

A relation between two objects can be created either at the object level or at the object
attribute level. The system stores the different types of relations using the same database
table. An object can not have a relation to itself.

Relations at the object level

This method is completely generic and it is always available for use. It allows the users to add
objects to an object’s related object array. This array is available for all objects; it is nothing
more than a collection of the related objects’ ID numbers. In other words, the relations can
not be grouped in any way.

Relations at the attribute level

This method can be achieved using either the ”Object relation” (page 474) or the ”Object
relations” (page 476) datatypes. While the first one allows only a single relation, the second
allows multiple relations. Again, there is no grouping of the relations. However, by making
use of several attributes that are represented by one of these datatypes, it is possible to create
a structure with grouped relations.

2.3.12 Content management / Sections 142

2

2.3.12 Sections

A section is a number that can be assigned to an object. The section ID of an object denotes
which section the object belongs to. Each object can belong to one section. By assigning
different sections to objects, it is possible to have different groups of objects. Although the
sectioning mechanism is implemented at the object level, it is more likely to be used in con-
junction with the content node tree. This is why the administration interface makes it possible
to manage sections on the node level. Using sections makes it possible to:

• Segment the node tree into different subtrees

• Set up custom template override rules

• Limit and control access to content

• Assign discount rules to a group of products

A default eZ publish installation comes with the following sections:

ID Name Description
1 Standard The ”Standard” section is

the default section. The
”Content” top level node
makes use of this section.

2 Users The ”Users” section is dedi-
cated for user accounts and
user groups that exist on
the system. The ”Users” top
level node makes use of this
section.

3 Media The ”Media” section is used
by the ”Media” top level
node.

4 Setup The ”Setup” section is used
by the ”Setup” top level
node.

Section definitions can be added, modified and removed using the administration interface.
The following illustration shows an example of how the section feature can be used to seg-
ment the content node tree.

(see figure 2.21)

Behavior

When a new object is created, its section ID will be set to the default section (which is usually
the standard section). When the object is published, it will automatically inherit the section
that is assigned to the object encapsulated by the parent node. For example, if an object is
created in a folder that belongs to section 13, the section ID of the newly created object will
be set to 13. If an object has multiple node assignments then it is always the section ID of
the object referenced by the parent of the main node that will be used. In addition, if the

2.3.12 Content management / Sections 143

2

Figure 2.21: Example of sections.

main node of an object with multiple node assignments is changed then the section ID of that
object will be updated.

The administration interface makes it possible to assign sections to objects using the node
tree. When a section is assigned to a node, the section ID of the object referenced by that
node will be updated. In addition, the section assignment of all subsequent children of that
node will also be changed. For example, if the section ID of a folder containing news articles
is changed, then the section ID of the articles in that folder will also be changed.

The removal of sections may corrupt permission settings, template output and other things
in the system. In other words, a section should only be removed if it is completely unused.
When a section is removed, it is only the section definition itself that will be removed. Other
references to the section will remain and thus the system will most likely be in an inconsistent
state. The section ID numbers are not recycled. If a section is removed, the ID number of that
section will not be reused when a new section is created.

2.3.13 Content management / URL storage 144

2

2.3.13 URL storage

Every address that is input as a link into an attribute using the ”XML block” (page 497) or
the ”URL” (page 493) datatype is stored in a separate part of the database. Actual data
stored using these datatypes only contain references to entries in the separate URL table.
This feature makes it possible to inspect and edit the published URLs without having to in-
teract with the content objects. The addresses in the URL table can be checked by running
the ”linkcheck.php” script (which is also executed by the cronjob script) that comes with eZ
publish. This script will simply check if the links in the table actually work by accessing them
one by one. If the target server of a URL returns an invalid response (404 Page not found,
500 Internal Server Error, 403 Access Denied, etc.) or if there is simply no response, the URL
will be marked invalid. Invalid URLs and the objects that are using them can be easily filtered
out and edited using the ”URL management” part of the administration interface. An entry in
the URL table consists of the following data:

• ID

• Address

• Creation time

• Modification time

• Last checked

• Status

Every URL has a unique identification number. The address contains the actual link. The
creation time is the exact date/time when the object containing that URL was published.
The modification time is updated every time the URL is changed using the URL management
part of the administration interface (and not when the object containing that URL is edited).
Whenever a URL is checked by the script, the last checked field will be updated. The status of
a URL can be either valid or invalid. By default, all URLs are valid. When the cronjob script
is running, it will automatically update the status of the URLs. If a broken link is found, its
status will be set to ”invalid”. Whenever an already existing URL is stored, the system will
simply reuse the existing entry in the table.

Please note that the link check script must be able to contact the outside world through port
80. In other words, the firewall must be opened for outgoing HTTP traffic from the web
server that is running eZ publish.

2.3.14 Content management / Information collection 145

2

2.3.14 Information collection

The information collection feature makes it possible to gather user input when a node refer-
encing an information collector object is viewed. It is typically useful when it comes to the
creation of feedback forms, polls, etc.

An object can collect information if at least one of the class attributes is marked as an informa-
tion collector. When the object is viewed, each collector attribute will be displayed using the
chosen datatype’s data collector template. Instead of just outputting the attributes’ contents,
the collector templates provide interfaces for data input. The generated input interface de-
pends on the datatype that represents the attribute. The following table reveals the datatypes
that are capable of collecting information.

Datatype Input interface Input validation
Checkbox (page 437) Checkbox. No.
E-Mail (page 445) Single line of text. Yes.
Option (page 478) Radio buttons or a drop- No.

down menu.
Text block (page 488) Multiple lines of unformat- No.

ted text.
Text line (page 490) Single line of unformatted No.

text.

The input interfaces must be encapsulated by an HTML form that posts the data using a sub-
mit button named ”ActionCollectInformation” to ”/content/action” (the ”action” (page 661)
view of the ”content” (page 575) module). The submitted data will be stored in a dedicated
part of the database, separated from but related to the object itself. In addition, whenever
the object collects any data, the information can be sent to a specified E-mail address. The
”Collected information” section within the ”Setup” part of the administration interface can be
used to view and delete information that was collected through content objects.

2.4 Configuration 146

2

2.4 Configuration

This section explains the configuration model of eZ publish. The default configuration files
end with a ”.ini” extension and are located in the ”/settings” directory. Each file controls
the behavior of a specific part of the system. For example, the ”content.ini” file controls the
behavior of the content engine, the ”webdav.ini” file controls the behavior of the WebDAV
subsystem, and so on. The main and most important configuration file is called ”site.ini”.
Among other things, it tells eZ publish which database, design, etc. that should be used.
The default configuration files contain all the possible directives (with default settings) along
with brief explanations. These files files should only be used for reference. In other words,
they should never be modified. The ”Configuration files” (page 1329) section of the reference
chapter contains a comprehensive explanation of the different configuration files and their
settings.

File structure

An eZ publish configuration file is divided into blocks, each block contains a collection of
settings. The following example shows a part of the main (site.ini) configuration file.

...

This line contains a comment.

[DatabaseSettings]

Server=localhost

User=allman

Password=qwerty

Socket=disabled

SQLOutput=enabled

This line contains another comment.

[ExtensionSettings]

ActiveExtensions[]=ezdhtml

ActiveExtensions[]=ezpaypal

...

The example above shows two blocks: ”DatabaseSettings” and ”ExtensionSettings”. Each
block has several settings which control the behavior of the system. A setting can usually
be set to enabled/disabled, a string of text or an array of strings. If the name of a setting
ends with a pair of square brackets, it means that the setting accepts an array of values.
In the example above, the ”ActiveExtensions” setting tells eZ publish to use two different
extensions: ”ezdhtml” and ”paypal”. Lines starting with a hash are treated as comments.

Configuration overrides

As pointed out earlier, the default configuration files should never be modified because they
will most likely be overwritten by a new set of files during an upgrade. Making a backup will
still not be sufficient because the configuration settings change over time. For example, a pre-
vious version of the files will not contain settings that were recently added. Because of these

2.4 Configuration 147

2

issues, custom configuration settings must be placed elsewhere. Global configuration over-
rides can be placed in the ”/settings/override” directory . The settings of the configuration
files located in this directory will override the default settings. The name of the configuration
files in the override directory must end with one of the following extensions:

• .ini.append

• .ini.append.php

If an override configuration file exist with both ”.ini.append” and ”.ini.append.php” exten-
sions, eZ publish will process the one which ends with ”.php”. Because of possible security
issues, the latter (.ini.append.php) should be used; specially if eZ publish is running in a non
virtual host environment. The ”.php” extension will trick the web server into handling the
configuration file as a PHP script. If someone attempts to read it using a browser, the server
will not display the contents. Instead, it will attempt to process it as PHP, which again will
not produce any output since the configuration settings are commented out (see below). This
method makes it more difficult for a hacker to get access to the configuration settings (for
example the database password) by attempting to access one of the configuration files from
outside. In order for this to work, the contents of the configuration file must be encapsulated
by a pair of PHP comment markers: /* and */. The following example shows how an override
(for example ”test.ini.append.php”) should be set up:

<?php /* #?ini charset="iso-8859-1"?

These are my example settings

[ExampleSettings]

ExampleSettingOne=enabled

ExampleSettingTwo=disabled

...

*/ ?>

The ”charset” directive reveals the character set that was used to construct the ini file (usually
ISO-8859-1).

2.4.1 Configuration / Site management 148

2

2.4.1 Site management

A single eZ publish installation is capable of hosting multiple sites by making use of some-
thing called the siteaccess system. This system makes it possible to use different configuration
settings based on a set of rules. The rules control which group of settings that should be
used in a particular case. The siteaccess rules must be specified in the global override for the
site.ini configuration file (”/settings/override/site.ini.append.php”).

Siteaccess

A collection of configuration settings is called a siteaccess. When a siteaccess is in use, the
default configuration settings will be overridden by the settings that are defined for the siteac-
cess. Among other things, a siteaccess dictates which database, design and var directory that
should be used (these are sometime referred to as ”resources”). By making use of different
siteaccesses, it is possible to combine different content and designs. A typical eZ publish site
consists of two siteaccesses: a public interface for visitors and a restricted interface for ad-
ministrators. Both siteaccesses use the same content (same database and same var directory)
but they use different designs. While the administration siteaccess would most likely use the
built in administration design, the public siteaccess would use a custom design. The following
illustration shows this scenario.

(see figure 2.22)

Figure 2.22: Example of a setup with two siteaccesses.

A siteaccess is nothing more than a set of configuration files that override the default settings
when the siteaccess is used. A single eZ publish installation can virtually host an unlimited
number of sites by the way of siteaccesses. The configuration settings for a siteaccess are
located inside a dedicated subdirectory within the ”/settings/siteaccess” directory. The name
of the subdirectory is the actual name of the siteaccess. (Please note that siteaccess name
should only contain letters, digits and underscores.) The following illustration shows a setup
with two siteaccesses: admin and public.

2.4.1 Configuration / Site management 149

2

(see figure 2.23)

Figure 2.23: Siteaccess directory example.

When a siteaccess is in use, eZ publish reads the configuration files using the following se-
quence:

1. Default configuration settings (/settings/*.ini)

2. Siteaccess settings (/settings/siteaccess/[name of siteaccess]/*.ini.append.php)

3. Global overrides (/settings/override/*.ini.append.php)

In other words, eZ publish will first read the default configuration settings. Secondly, it will
determine which siteaccess to use based on the rules that are defined in the global override for
”site.ini” (”/settings/override/site.ini.append.php”). When it knows which siteaccess to use,
it will go into the directory of that siteaccess and read the configuration files that belong to
that siteaccess. The settings of the siteaccess will override the default configuration settings.
For example, if the siteaccess uses a database called ”Amiga”, the system will see this and
automatically use the specified database when an incoming request is processed. Finally,
eZ publish reads the configuration files in the global override directory. The settings in the
global override directory will override all other settings. In other words, if a database called
”CD32” is specified in the global override for ”site.ini” then eZ publish will attempt to use that
database regardless of what is specified in the siteaccess settings. If a setting is not overridden
by either the siteaccess or from within a global override then the default setting will be used.
The default settings are set by the ini files located in the ”/settings” directory. The following
figure illustrates how the system reads the configuration files using the ”site.ini” file as an
example. As already mentioned, settings placed in the override files will be used instead of
the default ones.

(see figure 2.24)

Figure 2.24: Configuration override example.

2.4.2 Configuration / Extension siteaccess settings 150

2

2.4.2 Extension siteaccess settings

The extension siteaccess settings makes it possible to place siteaccess specific settings in the
extensions.

The directory structure must be as follows :
extension/<my extension>/settings/siteaccess/<my siteaccess>/<file.ini.append.php>

Example:
extension/ezno/settings/siteaccess/ezno/override.ini.append.php :

<?php /*

[article_full_ezno]

Source=node/view/full.tpl

MatchFile=article/full.tpl

Match[class_identifier]=article

Subdir=templates

*/ ?>

Note:
All settings except debug settings and including/activating extensions can be set this way.

2.4.3 Configuration / Access methods 151

2

2.4.3 Access methods

Based on a set of rules, eZ publish determines which siteaccess it should use every time it
processes an incoming request. The rules must be set up in the global override for the site.ini
configuration file: ”/settings/override/site.ini.append.php”. The behavior of the siteaccess
system is controlled by the ”MatchOrder” setting within the [SiteAccessSettings] block. This
setting controls the way eZ publish interprets the incoming requests. There are three possible
methods:

• URI

• Host

• Port

The following text gives a brief explanation of the different access methods. Please note that
the access methods can be combined. The documentation page of the ”MatchOrder” (page
1576) directive reveals how this can be done.

URI

This is the default setting for the ”MatchOrder” directive. When the URI access method is
used, the name of the target siteaccess will be the first parameter that comes after the ”in-
dex.php” part of the requested URL. For example, the following URL will tell eZ publish to use
the ”admin” siteaccess: http://www.example.com/index.php/admin. If another siteaccess by
the name of ”public” exists, then it would be possible to reach it by pointing the browser
to the following address: http://www.example.com/index.php/public. If the last part of the
URL is omitted then the default siteaccess will be used. The default siteaccess is defined by
the ”DefaultAccess (page 1589)” setting within the [SiteSettings] block. The following exam-
ple shows how to set up ”/settings/override/site.ini.append.php” in order to make eZ publish
use the URI access method and to use a siteaccess called ”public” by default:

...

[SiteSettings]

DefaultAccess=public

[SiteAccessSettings]

MatchOrder=uri

...

The URI access method is typically useful for testing / demonstration purposes. In addition
it is quite handy because it doesn’t require any configuration of the web server and the DNS
server.

Host

The host access method makes it possible to map different host/domain combinations to
different siteaccesses. This access method requires configuration outside eZ publish. First of

2.4.3 Configuration / Access methods 152

2

all, the DNS server must be configured to resolve the desired host/domain combinations to
the IP address of the web server. Secondly, the web server must be configured to trigger a
virtual host configuration (unless eZ publish is located in the main document root). Please
refer to the ”Virtual Host Setup” (page 73) part of the installation chapter for information
about how to set up a virtual host for eZ publish. Once the DNS and the web server is
configured properly, eZ publish can be set up to use different siteaccesses based on the host/
domain combinations of the incoming requests. The following example shows how to set
up ”/settings/override/site.ini.append.php” in order to make eZ publish use the host access
method. In addition, it reveals the basic usage of the host matching mechanism.

...

[SiteAccessSettings]

MatchOrder=host

HostMatchType=map

HostMatchMapItems[]=www.example.com;public

HostMatchMapItems[]=admin.example.com;admin

...

The example above tells eZ publish to use the ”public” siteaccess if the requested URL starts
with ”www.example.com”. In other words, the configuration files in ”/settings/siteaccess/
public” will be used. If the requested URL starts with ”admin.example.com”, then the ad-
min siteaccess will be used. The example above demonstrates only a fragment of the host
matching capabilities of eZ publish. Please refer to the reference documentation for a full
explanation of the ”HostMatchType” (page 1569) directive.

Port

The port access method makes it possible to map different ports to different siteaccesses. This
access method requires configuration outside eZ publish. The web server must be configured
to listen to the desired ports (by default, a web server typically listens for requests on port 80,
which is the standard port for HTTP traffic). In addition, the firewall will most likely have
to be opened so that the traffic on port 81 actually reaches the web server. The following
example shows how to set up ”/settings/override/site.ini.append.php” in order to make eZ
publish use the port access method. It also shows how to map different ports to different
siteaccesses.

...

[SiteAccessSettings]

MatchOrder=port

[PortAccessSettings]

80=public

81=admin

...

The example above tells eZ publish to use the ”public” siteaccess if the requested URL is sent
to the web server using port 80. In other words, the configuration files inside ”/settings/
siteaccess/public” will be used. If the URL is requested on port 81 (usually by appending a

2.4.3 Configuration / Access methods 153

2

:81 to the URL, like this: http://www.example.com:81), then the admin siteaccess will be
used.

2.5 Modules and views 154

2

2.5 Modules and views

A module offers an HTTP interface which can be used for web based interaction with eZ
publish. While some modules offer an interface to kernel functionality, others are more or
less independent of the kernel. The system comes with a collection of modules that cover
the needs of typical everyday tasks. For example, the content module provides an interface
that makes it possible to use a web browser to manage actual content. It is possible to
extend the system by creating custom modules for special needs. Custom modules have to be
programmed in PHP. The following table gives an overview of some of the most commonly
used modules that come with eZ publish.

Module Description
Content (page 575) The ”Content” module provides an interface

to the content engine in the eZ publish ker-
nel. This module makes it possible to dis-
play, edit, search and translate the contents
of objects, manage the node tree and so on.

User (page 836) The ”User” module provides an interface to
the user management system in the kernel.
This module makes it possible to log users
in and out of the system. In addition, it also
provides functionality related to user regis-
tration, user activation, password changing,
etc.

Role (page 752) The ”Role” module provides an interface to
the access control system in the kernel. This
module makes it possible to create, modify
and delete roles and policies. In addition, it
provides functionality for assigning roles to
different users and user groups.

Please refer to the ”Modules” (page 539) section of the reference chapter for a comprehensive
list of all the built-in modules.

Module execution

Every time eZ publish is accessed using a web browser, the client application indirectly in-
teracts with one of the modules that are present in the system. The requested URL tells eZ
publish about which module it should execute in order to process the request. In particular,
the first part of the URL reveals the name of the module. This is usually the part that comes
directly after ”index.php” unless the URI access method is used. The following example shows
a typical eZ publish URL:

http://www.example.com/index.php/content/edit/13/03

A quick glance at this URL reveals that the request is directed at the content module. Another
typical example of an eZ publish URL could be something like this:

2.5 Modules and views 155

2

http://www.example.com/index.php/user/login

By looking at the URL, we can immediately tell that eZ publish will attempt to execute the
user module when processing this request. Obviously, some additional information is also
specified in the URLs. In the first example, the name of the module is followed by ”/edit/13/
03”. In the second example, the name of module is followed by ”/login”. These additional
strings control the behavior of the requested module and are explained below.

Module views

A module consists of a set views. A view can be thought of as an interface to a module. By
using views, it is possible to reach various functions that a module provides. For example,
among other things, the content module provides views for displaying, editing, searching and
translating the contents of objects. The name of the view that should be accessed appears
after the name of the module (separated by a slash) in the URL. In the first example above,
eZ publish is instructed to access the ”edit” view within the content module. In the second
example, eZ publish is instructed to access the ”login” view within the user module.

When a view is called, eZ publish starts up the program code that is associated with that view.
Upon completion, the view returns a result to the module, which in turn returns it to the rest
of the system. The result is put inside a template variable called $module result.content which
is available from the main template, the pagelayout. Please refer to the ”Template generation”
section of the ”Templates” chapter for more information about this part of the system.

View parameters

Some views support on one or more parameters. A view parameter makes it possible to pass
information to the view itself and thus allows the view to be controlled from within the
requested URL. The view parameters are appended after the name of the view in the URL.
In the first example above, the following parameters are passed to the view: ”13” and ”03”.
These parameters will instruct the edit view of the content module to provide an interface for
editing the third version of the thirteenth content object in the system. The URL given in the
second example does not make use of any view parameters. The view mechanism supports
two types of parameters:

• Ordered parameters

• Unordered parameters

The ordered parameters have to be separated by slashes and they must come after the name
of the view. In addition, they have to be provided in the same order as it is specified in the
module’s definition. For example, if the view parameters in the first example get mixed up, eZ
publish will attempt to edit the thirteenth version of object number three (instead of version
number three of object number thirteen).

As the name suggests, the unordered parameters can be provided in an arbitrary order. If the
view supports ordered parameters, the unordered parameters must come after the ordered
parameters If the view doesn’t support ordered parameters, the unordered parameters will

2.5 Modules and views 156

2

come directly after the name of the view in the URL. The unordered parameters must be
provided in pairs. A pair consists of the parameter’s name and value separated by a slash. The
following example shows an imaginary eZ publish URL with unordered parameters passed to
the requested view:

http://www.example.com/index.php/video/dvd/button/play

The address in the example above tells eZ publish to run the imaginary ”video” module and
execute the ”dvd” view. A variable called ”button” will be created and made available for the
view code. The value of the variable will be set to ”play”. It is up to the PHP code of the view
to discover this variable and to carry out a necessary sequence of actions.

POST variables

Some views make use of parameters that are submitted by the way of forms through the
HTTP POST method. For example, the action view of the content module makes an extensive
use of POST variables.

The default request

In order to be able to produce proper output, eZ publish must know which module it should
run and which view that should be executed. In other words, every URL has to contain
at least the name of an existing module and a view. If an incomplete or mistyped URL is
provided, eZ publish will display an error page revealing what’s wrong (missing/mistyped
module or view). If the requested URL doesn’t contain anything after ”index.php” (except
maybe a slash), the default module/view combination will be executed. The default module/
view combination can be configured using the ”IndexPage” setting under ”[SiteSettings]” in
an override for ”site.ini”. The default setting is ”/content/view/full/2”. It instructs eZ publish
to show a full view of node 2, the content top level node. In other words, if the following
request is made:

http://www.example.com/index.php

...eZ publish will behave as if the following URL was requested:

http://www.example.com/index.php/content/view/full/2

No redirection or page reload will be made, which means that the address field of the browser
will remain unchanged.

2.6 URL translation 157

2

2.6 URL translation

This section explains the different URL types that can be used with eZ publish and how the
URL translator works. By default, eZ publish is capable of handling two types of URLs:

• System URLs

• Virtual URLs

System URLs

A system URL tells eZ publish about which module that should be run and which view that
should be executed. It may contain additional parameters/values that are passed to the
view itself. Every system URL follows the same structure and can be broken down into the
following components:

• Module name

• View name

• View parameters

The view parameters are optional and may consist of ordered and/or unordered values. A
comprehensive description of the view parameters can be found in the ”Modules and views”
(page 154) section. The following model shows the required sequence of the different URL
components:

http://www.example.com/index.php/<module>/<view>/[<ordered_view_parameters>]/

[<unordered_view_parameters>]

URL component Description
Module The name of the module that should be run.
View The name of the view that should be exe-

cuted.
Ordered view parameters Some views make use of ordered parame-

ters.
Unordered view parameters Some views make use of unordered param-

eters.

The following example shows a typical system URL:

http://www.example.com/index.php/content/edit/13/3

By looking at the URL, we can tell that it will instruct eZ publish to run the ”content” module
and execute the ”edit” view. The values ”13” and ”3” are parameters that will be passed to the
view itself. Please note that the exact style of the URLs depend on the access method (page
151) that is used and the way the web server is configured. For example, the web server can
be configured to hide away the ”index.php” part of the address.

2.6 URL translation 158

2

Virtual URLs

A virtual URL (also known as URL alias or nice URL) is nothing more than an alias for an
existing system URL. Virtual URLs are nicer, easier to remember and sometimes shorter than
system URLs. While system URLs reveal a great deal about what eZ publish is instructed to
do, virtual URLs do not reveal any system specific information at all. A virtual URL can not be
broken down to components in the same way as a system URL. The following example shows
a typical virtual URL:

http://www.example.com/company/about

There are actually two types of virtual URLs, ones that are automatically generated and main-
tained by eZ publish and ones that are created and maintained by the site administrator.
However, all virtual URLs are treated equally and thus they are handled in the same way.
The system keeps track of the URLs in a table which basically consists of two columns: vir-
tual/source address and system/destination address. An entry in the URL table might look
something like this:

Virtual/source address System/destination address
company/about content/view/full/46

An actual URL using the virtual address in the table above could be the following:

http://www.example.com/company/about

According to the table above, the virtual URL will be translated internally to the following
system URL:

http://www.example.com/content/view/full/46

Both URLs are perfectly valid and will produce the exact same output, in this case a full
view of node number 46. When the virtual URL is used, the redirection/mapping will be
done internally and thus the user will reach the target node without any glitches in form of
redirections, page reloads, etc.

Automated virtual URL generation and maintenance

Every time an object is published, the system will automatically generate a virtual URL for
each of the object’s node assignments. The generated URL for a node is based on the node’s
location in the tree and the name of the object that the node encapsulates. The virtual URLs
generated for the nodes are handled completely by the system and can not be changed using
the administration interface. The following illustration shows an example of objects, nodes
and a corresponding URL table.

(see figure 2.25)

The example above clearly demonstrates how the virtual URLs are generated. For each node,
the system generates a path of strings separated by slashes. The strings in the path are the
names of the objects that are referenced by the nodes up to and including the target node.
Special symbols are converted to underscores and special characters are converted using the

2.6 URL translation 159

2

Figure 2.25: Objects, nodes and the URL table.

built in transliteration feature. For example, the Norwegian characters ””, ”” and ”¥” are
converted to ”ae”, ”oe” and ”aa”. If the system is about to generate a virtual URL that already
exists, it will simply append an underscore at the end of the newly generated address and
thus the risk of having duplicate URLs is eliminated.

When the name of an object is changed, the system will take care of changing the virtual
URLs for the involved nodes. In addition, an internal redirection will be created, which will
make sure that the old URL still works. The old virtual URL will keep working until the exact
same URL needs to be generated for a node. In this case, the old virtual URL will be deleted.

Manual virtual URLs and translations

It is possible to manually add, edit and remove virtual URLs using the administration inter-
face. The URL translator mechanism makes it possible to add three types of translations:

• New virtual URL for an existing system URL

• Secondary / alternative virtual URL for an existing virtual URL

• Wildcard based URL forwarding

URL handling

When eZ publish receives a request, it looks at the URL that was sent by the web browser.
The address is stripped for unnecessary parts such as for example the host/domain name,
etc. If the address exists as a virtual URL in the table, eZ publish will attempt to process the
corresponding system URL. If the address doesn’t exist, eZ publish will attempt to interpret it
as a system URL.

2.7 Designs 160

2

2.7 Designs

This section explains the concept of designs and how eZ publish handles different designs.
As mentioned in the beginning of this chapter, design is all about the way actual content
is marked up and visually presented. When talking about a design, we’re talking about the
things that make up a web interface: HTML, style sheets, images that are not a part of the
content, etc. All files that are related to appearance reside in the ”design” directory. An
eZ publish installation is capable of handling a virtually unlimited number of designs. Each
design has its own dedicated subdirectory within the main design directory. The name of
a subdirectory also functions as the actual name of a design. A typical eZ publish design
consists of the following components:

• CSS files

• Image files

• Font files

• Template files

Among other things, a siteaccess dictates which design that should be used. By making use
of different siteaccesses, it is possible to combine different content and designs. A typical eZ
publish site consists of two siteaccesses: a public interface for visitors and a restricted inter-
face for administrators. Both siteaccesses use the same content (database and var directory)
but they use different designs. In particular, the administration siteaccess would most likely
use the built in administration design. The public siteaccess would use a custom design.

Default designs

An eZ publish distribution comes with at least two default designs:

• admin

• standard

The ”admin” directory contains all design related files that make up the built in administration
interface. The ”standard” directory contains a set of standard/default design related files such
as the default/standard templates, images, etc. The contents of these directories should not
be tampered with. Instead, custom designs should be used (if/when necessary). A custom
design can be added by creating a new subdirectory within the main ”/design” directory.

Design directory structure

All files that belong to a specific design are located inside the directory of that design. The
name of the directory also functions as the name for the design itself. A eZ publish design
directory typically contains the following subdirectories:

Subdirectory Description
fonts Font files used by the ”texttoimage” (page

2.7 Designs 161

2

1032) template operator which is capable of
visualizing text using truetype fonts.

images Non-content specific images (banners, lo-
gos, graphical layout elements, etc.).

override Custom templates that will be used by in-
stead of the default/standard templates.
These files will be triggered by template
override rules that are specified in a configu-
ration override for ”override.ini”. Please re-
fer to ”The template override system” (page
229) section of the ”Templates” chapter for
more information about this feature.

stylesheets CSS files.
templates Main template(s) (for example the pagelay-

out, header, footer, etc.) and custom tem-
plates that will be used instead of the stan-
dard/default templates.

2.7.1 Designs / Design combinations 162

2

2.7.1 Design combinations

A siteaccess may make use of several designs. This means that the final result generated by
eZ publish (the actual HTML) can be a combination of files originating from various designs.
A siteaccess is capable of using a combination of the following:

• One main design

• None or several additional designs

• One standard design

A siteaccess should always have at least a main design and a standard design. While the
main design can be set to anything, the standard design should not be modified. The default
configuration is to use the built-in standard design. It ensures that eZ publish always finds
the necessary templates and thus any kind of content can be rendered without problems. A
more in-depth explanation is presented below.

Automatic fallback

If eZ publish is unable to find a design specific file (a stylesheet, a template, an image, etc.)
within the main design, it will automatically attempt to locate the file elsewhere. The system
will sequentially go through all the additional designs (if specified), looking for the requested
file. At last, if the requested file still hasn’t been found, eZ publish will attempt to locate the
missing file within the standard design. The following diagram illustrates this functionality.

(see figure 2.26)

Figure 2.26: The design fallback mechanism.

Configuration

The different designs to be used by must be defined in the ”[DesignSettings]” block within an
override for the ”site.ini” configuration file. The following directives can be used:

2.7.1 Designs / Design combinations 163

2

• SiteDesign

• AdditionalSiteDesignList

• StandardDesign

The ”SiteDesign” directive specifies the main design. The ”AdditionalSiteDesignList” directive
specifies an array of additional site designs. The ”StandardDesign” directive specifies the
standard design. Even though it is possible to change the standard fallback design, it is not
a good idea to do so. The ”StandardDesign” directive should always be set to the built-in
standard design. This is already defined in the default ”site.ini” file and thus there is no need
to set the standard design from within an override. If there is a need for a custom fallback
design, it should be specified using the ”AdditionalSiteDesignList” setting. The automatic
fallback mechanism opens up for a lot of possibilities and flexibility. For example, it makes
the reuse and combination of designs an easy matter.

Example

The following example shows how to configure the following design settings in an override
for the ”site.ini” configuration file:

• ”my design” should be the main design

• ”fallback one” should be the first additional design

• ”fallback two” should be the second additional design

• ”standard” should be the standard fallback design

...

[DesignSettings]

SiteDesign=my_design

AdditionalSiteDesignList[]=fallback_one

AdditionalSiteDesignList[]=fallback_two

StandardDesign=standard

...

In this particular case, if eZ publish is unable to find the requested file within the main design
”my design”, it will automatically fallback to the additional designs. At first, the system will
look for the requested file within the ”fallback one” design directory. If the requested file is
not found, the system will look in the ”fallback two” design directory. If the file still hasn’t
been found, the system will attempt to locate it within the ”standard” design directory. The
standard directory will most likely contain the requested file (unless a custom template/
override is requested).

2.8 Access control 164

2

2.8 Access control

This section explains how eZ publish manages user accounts and access permissions. The
system comes with a built-in access control mechanism that can be used to limit access to
content or to certain functions. The access control system is based on the following elements:

• User

• User group

• Policy

• Role

The following illustration shows the relations between the elements in the list above.

(see figure 2.27)

Figure 2.27: Users, groups, policies and roles.

A user defines a valid user account on the system. A user group consists of users and other
user groups. A policy is a rule that grants access to content or a certain system function. For
example, a policy may grant read access to a collection of nodes. A role is a named collection
of policies. A role can be assigned to users and user groups. The following text gives a more
in-depth explanation of the user/group/policy/role elements.

User

An actual user account is represented by a content object (with at least one node assignment)
that contains information about a specific user. The default ”User” (page 537) class allows
the storage of the following elements: first name, last name, E-mail, username and password.
The last three elements (E-mail, username and password) are provided by the ”User account”
(page 495) datatype. This is a special datatype which plugs more deeply into the system.

2.8 Access control 165

2

Instances of any content class containing the ”User account” datatype will function as valid
users on the system. In other words, if there is a need to store additional information about
users, it is possible to either modify the default user class or to create a custom class that con-
tains the datatype. A user account can be enabled or disabled from within the administration
interface. When disabled, the account will continue to exist, but the user will not be able to
log in until the account is enabled.

Please note that the default configuration does not allow different users to be registered
with the exact same E-mail address. This is just a built-in precaution mechanism which can
be easily turned off by setting the ”RequireUniqueEmail” directive within the [UserSettings]
block of a configuration override for ”site.ini” to ”false”.

User ID

Every user has a unique identification number which is the same as the ID number of the
actual object that represents the user account. Among other things, the user IDs are used
by other objects on the system. In particular, an object contains references (by the way of
user IDs) to the initial creator and to all users who have created versions within that object.
Removing a user account might lead to an inconsistent state where objects have owner/
modifier references to nonexisting user accounts. Because of this, it is not recommended to
remove users from the system, the accounts to be removed should be disabled instead.

User group

A user group is a content object (with at least one node assignment) that contains user ac-
counts and other user groups. In other words, a user group is just a collection of users (similar
to a directory containing files and subdirectories on a filesystem).

Policy

A policy is a rule that grants access to a specific function or all functions of a module. A policy
consists of the following elements:

• Module name

• Function name

• Function limitation

The module name reveals the actual module that the policy grants access to. The function
name specifies which function the policy should be limited to. A policy can either be restricted
to a single function or grant access to all functions of a module. A module can have none
or several functions. The functions are assigned to the module’s views and thus the access
requirements for a view are controlled by the functions that are assigned to that view. The
function-view assignments can not be tampered with from within the administration inter-
face. A policy granting access to a module’s function can be further restricted by the way of
function limitations. This can only be done if the function itself supports limitations. A func-
tion may support none, one or several limitations. The following table shows an overview of
the available function limitations.

2.8 Access control 166

2

Limitation Description
Class The ”Class” limitation makes it possible to

limit a policy to objects of certain types.
Language The ”Language” limitation makes it possible

to limit a policy to object versions in specific
languages.

Node The ”Node” limitation makes it possible to
limit a policy to a specific node.

Owner The ”Owner” limitation makes it possible to
limit a policy to objects that are owned by
the user who is logged in.

Parent class The ”Parent class” limitation makes it possi-
ble to limit a policy based on the type of the
object referenced by the parent node.

Section The ”Section” limitation makes it possible to
limit a policy to objects that are assigned to
certain sections.

Siteaccess The ”Siteaccess” limitation makes it possible
to limit a policy to a certain siteaccess.

Status The ”Status” limitation makes it possible to
limit a policy to a certain version status
(published, archived, etc.).

Subtree The ”Subtree” limitation makes it possible to
limit a policy to a certain part of the content
node tree.

Role

A role is a named collection of policies. A role can be assigned to users and user groups. It
is possible to assign a role with additional limitations. The role limitation feature is typically
useful in a case where multiple users with similar permissions have to manipulate different
parts of the content node tree. Instead of creating a role for each user, the site administrator
can create a generic role and assign it with different limitations to the different users. The
role limitations will override the limitations of the role’s policies. The following table shows
an overview of the available role limitations.

Limitation Description
Section The ”Section” limitation makes it possible to

limit a role to objects that are assigned to
certain sections.

Subtree The ”Subtree” limitation makes it possible to
limit a role to a certain part of the content
node tree.

2.9 Webshop 167

2

2.9 Webshop

This section explains the e-commerce capabilities of eZ publish. The system comes with
an integrated shop mechanism that plugs directly into the object / node tree model. The
webshop functionality is built around the following components:

• Products

• Value Added Taxes (VATs)

• Discount rules

• Wishlist

• Basket

• Orders

The following illustration shows how the different components interconnect and work to-
gether.

(see figure 2.28)

Figure 2.28: The integrated e-commerce solution.

An actual product is represented by a content object (with at least one node assignment)
that contains information about the product itself along with a price. The price must be
represented by an attribute that makes use of the built-in price or multi-price datatype. These
are special datatypes which plug more deeply into the system. The main difference is that the

2.9 Webshop 168

2

price datatype allows to specify only one price value for each object (simple price product)
whereas the multi-price datatype makes it possible to specify several price values in different
currencies for each object (multi-price product). A content class can only contain one price
attribute or one multi-price attribute. There is no way to have a simple price product and a
multi-price one in the shopping basket at the same time and it is not recommended to use
both price and multi-price datatype on your site.

The price can be affected by a value added tax and/or a discount rule. A discount rule can be
configured to reduce the price of certain products by a percentage. The products can be put
into a user’s wishlist and/or shopping basket. A user’s wishlist and basket can be modified at
any time. The contents of the shopping basket can be purchased by initiating the checkout
process. Once the checkout process is completed, an order will be created. The system will
automatically notify the site administrator and the user who placed the order by sending out
E-mails. A list of placed orders and sales statistics can be viewed using the administration
interface. An order is assigned a status which may be changed by a user with sufficient
permissions. A status log is kept for each order.

Value added taxes

The system allows the site administrator to set up different kinds of value added taxes (VAT
types). A VAT type consists of a name and a percentage. The administration interface makes
it possible to add, remove and modify VAT types. The VAT types are used by the price and
multi-price datatype. There is an additional possibility to create VAT charging rules which
instruct the system to charge VATs according to the product category and the buyer’s country.
(Please refer to the ”VAT charging system (page 318)” section of the ”Features” chapter for
more information.)

The price datatype

As pointed out above, a product is nothing more than a content object with a price. The price
can be represented by an attribute that makes use of the built-in price datatype. Instances of
any class containing the price datatype will automatically be treated as simple price products.
A class attribute represented by the price datatype makes use of one of the predefined VATs.
There are two ways in which the selected VAT can be used. This configuration depends on
how the product prices are entered when the objects are created. The first alternative (Price
inc. VAT) is to be used if the prices that are entered already include the value added tax.
The second alternative (Price ex. VAT) should be used if the prices that are entered do not
contain the value added tax. When the first alternative is used and the product is viewed, the
price that was entered will be shown. When the second alternative is used and the product
is viewed, the price will be the price that was entered plus the VAT. When the object is in
the basket and the basket is viewed, it is possible to see the price of the products with and
without the VATs (regardless of which approach that was used).

Please note that the price datatype allows to set only one price value for each product (the
system will use your locale currency for when displaying this price). This datatype does not
work with multiple currencies.

2.9 Webshop 169

2

The multi-price datatype

The price can be represented by an attribute that makes use of the built-in multi-price
datatype. This datatype allows you to set several prices in different currencies for each prod-
uct independently of your locale currency. Instances of any class containing the multi-price
price datatype are automatically treated as multi-price products. (Please refer to the ”Multi-
currency (page 348)” section of the ”Features” chapter for more information.) This datatype
interacts with VATs in the same way as the price datatype.

Discount rules

The final price of a product can be affected by a discount rule. A discount rule can be con-
figured to reduce the price of certain products by a percentage. The discount rules can be
placed in different discount rule groups and are always active (there is no way to turn them
on/off). The discount rule groups make it possible to choose which group(s) of customers will
be affected. This can be done by assigning a discount rule group to the target user group(s).

By default, a newly created discount rule affects all the products that are in the system.
However, a discount rule can be easily limited to a group of products. A discount rule can be
limited in two ways, which are mutually exclusive. The first alternative is to use a combination
of the ”Product type” and the ”Section” limitations, which are described in the table below.

Limitation Description
Product type The ”Product type” limitation makes it pos-

sible to limit a policy to products/objects of
certain types (only classes that make use of
the price datatype will be shown). The de-
fault setting is ”Any”, which means that it
will affect all kinds of product objects.

Section The ”Section” limitation makes it possible to
limit a policy to products/objects that are as-
signed to certain sections. The default set-
ting is ”Any”, which means that the discount
rule will affect product objects in all sec-
tions.

The second alternative is to add individual products to the discount rule’s product list. When
the individual product list is used, the ”Product type” and ”Section” limitations will be omitted
and thus only the products that are in the list will be affected.

Shop related datatypes

The following table shows the datatypes that plug in to the e-commerce subsystem of eZ
publish.

Datatype Description
Price (page 480) When used as an attribute in a content class,

the ”Price” datatype connects the instances
(objects) of that class to the webshop sys-
tem. As soon as an object has a price at-

2.9 Webshop 170

2

tribute, users can put the object in their bas-
kets and/or wishlists. This datatype allows
to set only one price value for each product
(the system will use your locale currency for
this price).

Multi-price (page 472) When used as an attribute in a content class,
the ”Multi-price” datatype also connects the
instances (objects) of that class to the web-
shop system. As soon as an object has a
multi-price attribute, users can view its price
in different currencies, put the object in their
baskets and/or wishlists. Objects without a
price or multi-price attribute can not be put
into a user’s basket and/or wishlist and thus
they are not connected to the e-commerce
subsystem. The multi-price datatype allows
you to set several prices in different curren-
cies for each product.

Option (page 478) The ”Option” datatype makes it possible to
create a single group of options for each con-
tent object. Each option can be assigned a
short text and an additional price. For exam-
ple, it can be used to sell T-shirts in different
colors where the price is different for some
(or all) colors.

Multi-option (page 470) The ”Multi-option” datatype makes it possi-
ble to create multiple groups of options for
each content object. Each option can be as-
signed a short text and an additional price.
This datatype works in the same way as the
”Option” datatype. The only difference is
that instead of supporting only one group
of options, it allows the creation of multiple
groups of options for each content object.

Range-option (page 483) The ”Range-option” datatype makes it pos-
sible to create a single group of enumerated
options for each content object. For exam-
ple, it can be used in a scenario where the
goal is to sell shoes of different sizes and the
size does not affect the price. For each con-
tent object, the administrator needs to set up
the available range (if any).

2.10 Workflows 171

2

2.10 Workflows

This section explains the workflow capabilities of eZ publish. The system comes with an inte-
grated workflow mechanism that makes it possible to perform different tasks with or without
user interaction. The workflow implementation is based on the following components:

• Events

• Workflows

• Workflow groups

• Triggers

The following illustration shows the relations between the elements in the list above.

(see figure 2.29)

Figure 2.29: The workflow system.

An event is the smallest entity of the workflow system, it carries out a specific task. eZ publish
comes with a collection of events that cover the needs of typical everyday tasks. For example,
the built-in approve event makes it possible to have the contents of an object approved by an
editor (a user) before it is published. The built-in events are documented in the ”Workflow
events” (page 974) section of the ”Reference” chapter. It is possible to extend the system by
creating custom events for special needs. Custom workflow events have to be programmed
in PHP.

A workflow is a collection of events. In other words, it defines an ordered sequence of actions
that will be executed when the workflow is running. The workflows can be placed in differ-
ent groups. A workflow group is nothing more than a collection of workflows. A workflow is
initiated by a trigger. Although a trigger is only capable of initiating a single workflow, sev-
eral other workflows can be started through the built-in multiplexer event (from within the
workflow that was originally initiated by the trigger). A trigger is associated with a function
of a module. It will start the specified workflow either before or after that the function has
completed. The following table gives an overview of the standard/built-in triggers.

2.10 Workflows 172

2

ID Module Function Connection type
1 content publish before
2 content publish after
3 shop confirmorder before
4 shop checkout before
5 shop checkout after

Chapter 3

Templates

The purpose of this chapter is to reveal and teach everything there is to know about the
template system. It describes both the template language and the way the system handles
the template files. People previously unfamiliar with eZ publish templates should be able to
collect enough information in order to understand the following issues:

• What a template is and what it is not

• Template types (pagelayout, node and system templates)

• Template structure

• The template language

• The main template (the pagelayout)

• Template variables available in the pagelayout

• How basic template tasks can be done

• How information can be retrieved from the CMS

• The template override system

173

3.1 Template basics 174

3

3.1 Template basics

This section explains the concepts behind templates and the template system. eZ publish
uses templates as the fundamental unit of site design. A template is basically a custom HTML
file that describes how some particular type of content should be visualized. A template
file always ends with a ”.tpl” extension. Actual HTML code in the built-in/default templates
follow the XHTML 1.0 Transitional specification. In addition to standard HTML syntax, a
template consists of eZ publish specific code. The eZ publish specific code makes it possible
to extract information from the system and to solve common programmatic issues like for
example conditional branching, looping, etc. All eZ publish specific code must be placed
inside a set of curly brackets, ”{” and ”}”. The following example shows a part of a template
that prints out the current time:

...

<h1>Time machine</h1>

<p>

The current time is: {currentdate()|l10n(time)}

</p>

...

The example above demonstrates how standard HTML is mixed with eZ publish specific code.
It shows the usage of the ”currentdate” (page 1006) and the ”l10n” (page 1021) template
operators. Since ”currentdate” returns a UNIX timestamp, it must be formatted using the
”l10n” localization operator (or else the output would not make any sense to humans). This
is done by piping the output from the ”currentdate” operator into the ”l10n” operator, which
will output the requested information according to the current locale settings. The ”time”
parameter tells the operator to output only the time (it could have been ”date”, ”shortdate”,
”datetime” and so on).

Template generation

The template system is component based. In other words, an actual HTML page is usually
made up of several templates. At the minimum, eZ publish always renders the main template,
which is called pagelayout. The pagelayout contains the HTML, HEAD and BODY tags; it
dictates the overall look of a site. Among other things, it describes the visual structure (main
layout, logo, main menu, footer, etc.) that will be presented for each HTML page that the
system generates.

Every incoming request tells eZ publish to run a specific module and to execute one of the
module’s views. When finished, the requested module/view combination will generate a
result. The result can be accessed through the $module result array which is available in the
pagelayout template. The following illustration shows a simplified 3-step explanation of how
eZ publish responds to an HTTP request.

(see figure 3.1)

Every view generates a chunk of HTML code by making use of a template. Templates that
are used by views are often referred to as view templates. Whenever a view has finished
running, it will issue an internal template request. The requested template will be interpreted,
processed and thus converted to HTML. After processing, the system will put the resulting
HTML in the module’s result array. The module/view’s result can be accessed through the

http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_XHTML-1.0-Transitional

3.1 Template basics 175

3

Figure 3.1: Client - server cycle.

”.content” extension: {$module result.content}. By printing out the contents of this variable,
it is possible to include the HTML code that was generated by the view in the pagelayout. The
following illustration shows how the module/view result (generated by different modules/
views - depending on the request) is included in the pagelayout:

(see figure 3.2)

Figure 3.2: The module result as a part of the pagelayout.

View templates

A template used by a view can either be a node template or a system template. A node template
will only be used when a node is being viewed, for example when a system URL containing ”/
content/view” or the virtual URL of a node is requested. A system template typically provides
an HTML interface to a specific eZ publish feature. For example, the template used by the
”search” view of the ”content” module provides an interface to the built-in search engine.

The difference between the template types mentioned above is the available variables and
the combination of override rules that can be used. A node template (page 177) gives access
to a variable ($node) which contains information about the actual node that is being viewed.
Depending on the view that was called, a system template (page 179) typically gives access
to several variables. A template override rule makes it possible to display custom templates in
specific cases. The override rules for node templates are much more flexible than the override
rules for system templates. For example, it is possible to set up complex rule combinations that

3.1 Template basics 176

3

depend on the type of the node being viewed, the depth of the node in the tree, the section
which the node’s object is assigned to and so on. Please refer to the ”The template override
system” (page 229) section for a detailed description of the template override mechanism.

3.1.1 Template basics / Node templates 177

3

3.1.1 Node templates

Whenever eZ publish is requested to output information about a node (either by a system URL
or a virtual URL), it executes the ”view” (page 692) view of the ”content” (page 575) module.
If a system URL is used, both the desired view mode and the target node must be specified in
the URL. If a virtual URL is used, eZ publish will automatically know which node that should
be accessed by looking up the corresponding system URL in the internal URL table. When a
virtual URL is used, the system will always use the full view mode.

The templates for the different view modes must be placed inside the ”/templates/node/
view/” directory of a design. If the requested file is not found within the main design of the
siteaccess, the system will search for it in the additional designs and the standard design.
Please refer to the documentation of the automatic fallback system for more information
about this feature. The ”/templates/node/view” directory of the standard design contains
templates for different view modes. A basic custom design typically contains a pagelayout
and a full view template. The following illustration shows the locations of these templates in
a custom design called ”example”.

(see figure 3.3)

Figure 3.3: Location of pagelayout and full view template in example design.

When a node is requested (and there are no template override rules for node templates), eZ
publish will generate a page that is built up of the following templates:

(see figure 3.4)

Figure 3.4: Pagelayout + node view full template.

3.1.1 Template basics / Node templates 178

3

Custom node templates

A typical eZ publish site always makes use of custom node templates. The main reason for this
is because there is almost always a need for displaying the various types of nodes in different
ways. For example, information pages need to look different than news articles; the welcome
page has to be formatted in a special way, and so on. Unlike custom system templates (which
are mostly just modified copies of the standard templates placed in a custom design), custom
node templates are created as override templates. The override templates are triggered by the
template override system. This system offers a flexible mechanism that can be programmed
to use different templates based on various conditions. For example, it can be programmed to
use a template called ”article.tpl” when the system is requested to show the contents of nodes
referencing article objects and at the same time show ”special article.tpl” when a specific
article is accessed. Please refer to the documentation of the template override system (page
229) for more information about how this mechanism actually works and how it can be used
to trigger override templates.

The $node variable

Whenever the system makes use of a node template (regardless of the view mode, the target
node and if the template is an override or not), a variable called $node will be available in
the template that is used. This variable is automatically set by the system and it contains an
ezcontentobjecttreenode (page 907) object that represents the requested node. This variable
allows the extraction and display of various information about the node and the object that it
encapsulates. Please refer to ”Outputting node and object data” (page 226) for information
about how to display node/object data.

3.1.2 Template basics / System templates 179

3

3.1.2 System templates

Whenever eZ publish is requested to do something else than displaying a node (in other
words the URL does not contain ”/content/view” or isn’t the virtual URL of a node), it will
use a system template. There are two main differences between system templates and node
templates:

• System templates provide access to various variables (depending on the view that was
requested). A node template only provides access to a $node variable representing the
node that was requested.

• The override rules for node templates are much more flexible than the override rules
for system templates.

An eZ publish distribution provides default templates for all views. These templates are
located in the ”templates” directory of the standard design. A view typically uses a template
that is located in a subdirectory that has the same name as the module which the view belongs
to. The name of the template is usually the same as the name of the view (with a ”.tpl”
extension). For example, the ”login” view of the ”user” module is looks for a template called
”login.tpl” inside a directory called ”user”. Another example would be the ”basket” view of the
”shop” module. This view looks for a template called ”basket.tpl” within the ”shop” directory.

Custom system templates

Although eZ publish provides all the necessary system templates (by the way of the standard
design), a typical eZ publish site always makes use of customized system templates. The
main reason for this is because the default templates usually need to be tailored in order to
fit perfectly in with the style of a custom design. Unlike custom node templates which are
mostly provided using the template override system, custom system templates are usually
just modified copies of the standard templates located in the custom design. For example, a
custom template for the ”login” view of the ”user” module in a design called ”example” would
be ”/design/example/templates/user/login.tpl”. A custom template for the ”search” view of
the ”content” module would be ”/design/example/templates/content/search.tpl”.

Design combinations

As mentioned in the text above, a custom design typically contains a set of customized system
templates. However, creating a custom design that provides templates for all possible scenar-
ios would be too much / unnecessary work. This is why the standard design always should be
used as the last fallback resort. The automatic fallback system makes it possible to combine
several designs so that the main design (which is usually a custom design) does not have to
provide all the necessary templates. Whenever eZ publish is unable to find a template within
the main design of the siteaccess, the system will look for it in the additional designs and the
standard design.

Commonly used system templates

The following table shows some of the most commonly used system templates.

3.1.2 Template basics / System templates 180

3

Request URL Module View Template
Search /content/ content search /templates/
interface search content/

search.tpl
Shopping bas- /shop/basket shop basket /templates/
ket shop/

basket.tpl
Login page /user/login user login /templates/

user/login.tpl
User registra- /user/register user register /templates/
tion user/

register.tpl

3.2 The pagelayout 181

3

3.2 The pagelayout

The pagelayout is the main template. Among other things, it dictates the overall look of a site.
The filename of the pagelayout template must be ”pagelayout.tpl”. It has to be placed inside
the ”templates” directory of a design. If eZ Publish is unable to find a pagelayout within the
current design (specified by the siteaccess), it will attempt to use the pagelayout template
that is provided by one of the fallback designs. The following illustration shows the location
of the pagelayout template located in a design called ”example”.

(see figure 3.5)

Figure 3.5: The location of the pagelayout (main) template.

The pagelayout contains the HTML, HEAD and BODY tags (the other HTML framework). In
addition, it dictates the overall look of a site. Among other things, it is used to describe
the visual structure (main layout, logo, main menu, footer, etc.) that will be presented for
every page request. The following example shows what is considered to be the most basic
pagelayout:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://

www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<style type="text/css">

@import url({’stylesheets/core.css’|ezdesign});

@import url({’stylesheets/debug.css’|ezdesign});

</style>

{include uri=’design:page_head.tpl’}

</head>

<body>

{$module_result.content}

</body>

</html>

3.2 The pagelayout 182

3

The document type

The very first line in the pagelayout is used to declare the document type of the pages that are
generated by eZ Publish. Per HTML and XHTML standards, a DOCTYPE (short for ”document
type declaration”) informs browsers and syntax validation engines about which version of
(X)HTML that is used. This information should be included at the very top of in every web
page, this is why it is the first part of the pagelayout.

The DOCTYPE declaration is one of the key components when it comes to proper rendering
and compliant web pages. A DOCTYPE that includes a full URL tells the browser to render
the page in standards-compliant mode, treating the (X)HTML, CSS, and DOM structures as
they should be treated according to the standards. A missing, incomplete or outdated DOC-
TYPE throws most browsers into something called ”Quirks” mode. In this mode, the browser
assumes that the document was written using old-fashioned, invalid markup and code per
the chaotic industry norms of the late 1990s. In other words, the page will most likely not be
rendered according to the standards and it will certainly not validate.

The HTML tag

The HTML tags encapsulate the marked up contents of an actual web page. In addition to
the tag itself, the HTML tag in the example above includes a URL to the XHTML specification.
XHTML is a family of current and future document types and modules that reproduce, subset,
and extend HTML 4. The XHTML family document types are XML based, which means that
they are designed to work in conjunction with XML-based user agents.

In document processing, it is often useful to identify the natural or formal language in which
the content is written. The ”lang” and ”xml:lang” attributes specify the language of the entire
HTML element. The value of the xml:lang attribute takes precedence. The language values
should be set to the language that is used throughout the site. The values of the attributes are
language identifiers as defined by ISO 3166-1 (and the corresponding ISO 3166-1-alpha-2)
standards.

The head tag

The head tag contains information about the document itself. The information contained here
doesn’t show up on the page displayed in a web browser. Only the contents of the title tag
will be made visible (as the title of the browser window). The head tag typically contains
information about which CSS files that should be used, a description of the document itself,
keywords and so on.

Cascading Style Sheets

The pagelayout in the example above makes use of two CSS files: ”core.css” and ”debug.css”.
The code encapsulated by curly brackets is eZ publish specific code. What happens here is that
the text within the quotes is piped into a template operator called ”ezdesign” (page 1162).
The operator prepends the text with the path to the current design directory (the one which
is specified using the ”SiteDesign” configuration directive). This technique assures that the
path to the CSS files are always correct, regardless of the access method (page 151) that is

3.2 The pagelayout 183

3

being used. For example, if the name of the current design is ”my design” and it includes a
CSS file called ”example.css”, the following output will be produced:

@import url("/design/my_design/stylesheets/example.css");

The ”core.css” and ”debug.css” files are a part of the standard design that comes with eZ
Publish. It is not necessary to have these CSS files in the ”stylesheets” directory of a custom
design. If eZ Publish is unable to find the files within the current/custom design, it will
automatically use the ones that are in the standard design. Please refer to the description of
the automatic fallback system for a detailed description of the fallback mechanism. Because
of the fallback system, the style-part of the pagelayout presented above will most likely result
in the following output:

...

<style type="text/css">

@import url("/design/standard/stylesheets/core.css");

@import url("/design/standard/stylesheets/debug.css");

</style>

...

The core stylesheet

The ”core.css” file defines a standard set of basic styles (font styles, sizes, margins, etc.) for
both general HTML elements and some eZ Publish specific classes. The eZ publish specific
classes are used by the standard templates. A site that makes an extensive use of the default
templates should always have the ”core.css” file included in the pagelayout. Otherwise, the
missing styles may cause the unexpected rendering of various elements.

The standard ”core.css” file should never be changed. If there are basic styles in core.css that
doesn’t fit the visual environment of a site, a modified version of ”core.css” may be placed
in the custom design that the site uses. However, the recommended solution is to create a
completely new CSS file that contains both custom classes and overrides for elements defined
in ”core.css”.

The debug stylesheet

The ”debug.css” file contains styles that are used to format the debug output which appears
at the bottom of the page when debug output is enabled. The usage of the ”debug.css” file
is only necessary during the development of the site (typically when debug information is
needed) and thus it can be removed or commented out before the site is launched.

Document information

The system is capable of automatically generating information about the page itself (title,
meta tags, keywords, etc.). This can be done by the inclusion of the page head (page 185)
template (”page head.tpl”), which is located in the templates directory of the standard design.
If eZ Publish is unable to find the requested file in current/custom design, it will automatically
fallback and use the file located in the standard design.

3.2 The pagelayout 184

3

The body tag

The body tag defines the document’s body, which contains the actual contents of the web
page (text, images, etc.) marked up in an orderly fashion. At the minimum, an eZ Publish
pagelayout should contain the result from the requested modules.

Module result

Upon every request, eZ publish automatically generates an array called ”module result”. This
array is available only in the pagelayout template. It contains all the necessary information
about which module that was run, which view that was called, the output that was produced
and so on. The actual output (for example the contents of a news article) can be included in
the pagelayout by accessing the ”content” element of the $module result array, the syntax is:

{$module_result.content}

When the pagelayout is rendered, the {$module result.content} part will be replaced with
the actual output that the requested module produced. Please refer to the ”Variables in
pagelayout” (page 189) page for an overview of the template variables that can be accessed
from within the pagelayout.

Debug information

The last part of a typical eZ Publish pagelayout is an HTML comment that looks like this:

<!--DEBUG_REPORT-->

If the debug information is turned on, eZ Publish will replace this comment with the actual
debug report when the pagelayout is processed. In other words, the debug report will be
included as a part of the generated page and thus it will not cause invalid output by breaking
the HTML structure. The debug reports that eZ Publish generates follow the XHTML 1.0
Transitional specification and thus the debug information validates.

3.2.1 The pagelayout / The page head 185

3

3.2.1 The page head

The standard design contains a page head template that can be used to automatically gen-
erate important tags that should be included in the head section of every HTML response.
The output of the standard head template (/design/standard/template/page head.tpl) can
be broken down into the following group of tags:

• Title tag

• Meta tags

• Link tags

The following HTML dump shows an example of the output from the standard page head
template.

<title>Current / Parent / Top - Site name</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<meta http-equiv="Content-language" content="eng-GB" />

<meta name="author" content="eZ Systems" />

<meta name="copyright" content="eZ Systems" />

<meta name="description" content="Content Management System" />

<meta name="keywords" content="cms, publish, e-commerce, content management,

development framework" /

>

<meta name="MSSmartTagsPreventParsing" content="TRUE" />

<meta name="generator" content="eZ publish" />

<link rel="Home" href="/" title="Front page" />

<link rel="Index" href="/" />

<link rel="Top" href="/" title="Current / Parent / Top - Site name" />

<link rel="Search" href="/content/advancedsearch" title="Search Site name" />

<link rel="Shortcut icon" href="/design/standard/images/

favicon.ico" type="image/x-icon" />

<link rel="Copyright" href="/ezinfo/copyright" />

<link rel="Author" href="/ezinfo/about" />

<link rel="Alternate" href="/layout/set/print/content/view/full/

64" media="print" title="Printable version" />

Title

The contents of the title tag is based on the location being viewed (the location within either
the content node tree or the system itself) and the actual name of the site. The path to the
element being viewed is reversed and thus the current element becomes the first component
of the title. The components of the path are separated by slashes. When a node is viewed, the
path elements will be the actual names of the objects which are encapsulated by the nodes
that make up the path up to and including the target node. When a system function is being
accessed (for example the login view of the user module: ”/user/login”), the path will most

3.2.1 The pagelayout / The page head 186

3

likely be a reversed version of the module/view combination that was used. The name of the
site is appended at the end of the path, separated by a dash. The site name can be configured
using the ”SiteName” directive in a configuration override for ”site.ini”.

The example above demonstrates the output of the page head template when a node is being
viewed. The name of the object encapsulating the node is ”Current”. The name of the other
objects (encapsulated by the parent node and so on) are ”Parent” and ”Top”. The name of the
site is ”Site name”.

Meta tags

In addition to the actual information contained on a web page, the HTML of the page may also
include information about the document itself. This is achieved by making use of so called
meta tags. The information given by meta tags is usually not visible when the web page
is viewed. However, the meta tags are used by the web browser and miscellaneous search
engines that index and rank the contents of web pages. The standard page head template
outputs the most commonly used meta tags. It can be broken down into three types of tags:

• HTTP-EQUIV meta tags

• Generic meta tags

• Additional meta tags

HTTP-EQUIV meta tags

Meta tags with an HTTP-EQUIV attribute are equivalent to HTTP headers. These tags usually
control the way a browser interprets the document. Tags using this form should have an
equivalent effect when specified as an HTTP header. Some web servers automatically trans-
late the contents of these tags to actual HTTP headers. The HTTP-EQUIV meta tags in the
page head make sure that the browser (and also search engines) know which character set
and language the document uses. The languageand character set values are automatically set
by eZ publish based on the language and character set that the site uses.

Generic meta tags

The generic meta tags make it possible to reveal meta information about the document itself.
Although the specification of meta tags does not define a set of legal meta data properties, it is
a common practice to include generic information such as the name of the author, description
of the site, copyright notices, keywords, etc. By making use of the ”MetaDataArray[...]”
directive in a configuration override for ”site.ini”, the site administrator can set up a custom
set of generic meta tags. eZ publish will loop through and display the name and value of the
specified tags. The example above shows the default meta tags that will be used if no custom
meta tag configuration is present.

Additional meta tags

The last meta tags set by the standard page head template prevent the usage of smart tags
and reveal the name of the software that was used to generate the output.

3.2.1 The pagelayout / The page head 187

3

Link tags

Link tags in the HTML head make it possible to relate the document to other documents.
This is done by the way of REL and REV attributes. While REL links are used to establish
relationships, REV links are used to establish reverse relationships. Some browsers make use
of the link tags in order to produce a navigation bar that can be used to quickly navigate
the site. The links tags generated by eZ publish are specified in the ”link.tpl” file within
the templates directory of the standard design. The standard page head makes use of the
”links.tpl” file. The default output of the standard page head template produces a basic set of
links that can be used to navigate to different parts of the site. The following list shows the
link tags that the page head generates:

Link Description
Home The ”Home” link points to the root/start

of the site. It will always bring the user
back to the front page (for example http:/
/www.example.com).

Index The ”Index” link points to the root/start
of the site. It will always bring the user
back to the front page (for example http:/
/www.example.com).

Top The ”Top” link points to the root/start of
the site. It will always bring the user
back to the front page (for example http:/
/www.example.com).

Search The ”Search” link points to the ”advanced
search” view of the ”content” module. It will
bring the user to the advanced search in-
terface (http://www.example.com/content/
advancedsearch).

Shortcut icon The ”Shortcut icon” defines the location of
the favorite/shortcut icon. Most browsers
will display this icon in front of URLs in the
address field and in the bookmark list. The
default shortcut icon is the double square
white-orange eZ Systems logo. It can be eas-
ily replaced by putting a 16x16 pixel icon
file (16 color BMP/Windows Icon Format)
called ”favicon.ico” in the images folder of
a site design.

Copyright The ”Copyright” link points to the ”copy-
right” view of the ”ezinfo” module. The
default copyright page of eZ publish will
be displayed (http://www.example.com/
ezinfo/copyright.).

Author The ”Author” link points to the ”about” view
of the ”ezinfo” module. The default about
page of eZ publish will be displayed (http:/
/www.example.com/ezinfo/about).

Alternate The ”Alternate” link points to a alternate/

3.2.1 The pagelayout / The page head 188

3

printerfriendly version of the page. The
printerfriendly version of a page is achieved
by making use of the ”set” view of the ”lay-
out” module. This technique makes it possi-
ble to use an alternative pagelayout which is
usually stripped for everything (menus, lo-
gos, etc.) except the actual content that is
being presented.

Link parameters

The links can be completely turned off by passing ”enable link=false()” when including the
page head template:

{include uri=’design:page_head.tpl’ enable_link=false()}

The link to the alternate/print layout can be turned off by passing ”enable print=false()”
when including the page head template:

{include uri=’design:page_head.tpl’ enable_print=false()}

3.2.2 The pagelayout / Variables in pagelayout 189

3

3.2.2 Variables in pagelayout

The pagelayout template contains miscellaneous variables that can be used to display infor-
mation about the state of the system and/or to control the output. The following table shows
the available variables along with a brief description.

Variable Type Description
$access type array The name of the siteac-

cess (as ”name”) and the ID
number (as ”type”) of the
access method (page 151)
that was used (1=URL,
2=Host, 3=Port).

$anonymous user id integer The ID number of the con-
tent object that represents
the anonymous user ac-
count (the default/standard
value is 10).

$current user object The ezuser (page 965) ob-
ject of the user who is cur-
rently logged in. If no user
is logged in, the anonymous
user account will be used.

$ezinfo array An array of three
strings: ”version”, ”version
alias” and ”revision”. These
strings reveal basic informa-
tion about the eZ publish re-
lease that is being used.

$module result array Contains information about
the result (and the result it-
self) generated by the mod-
ule/view that was executed.

$navigation part array A hash containing the name
and the identifier (the keys
are ”name” and ”identifier”)
of the current navigation
part; for example: ”Content
structure” and ”ezcontent-
navigationpart”. The navi-
gation part is used by the
administration interface to
determine which part the
user interacts with.

$requested uri string string Contains the site specific
part of the requested URL,
for example: ”content/
view/full/44” (system URL)
or ”company/about” (vir-

3.2.2 The pagelayout / Variables in pagelayout 190

3

tual URL).
$site array Contains miscellaneous in-

formation about the siteac-
cess that is being used
(site name, design resource,
meta tags, etc.)

$ui component string The user interface compo-
nent which eZ publish uses
while the current page is be-
ing shown. This variable is
used by the administration
interface.

$ui context string The user interface context
in which eZ publish is in
while the current page is
being shown. This vari-
able is used by the admin-
istration interface to dis-
tinguish between different
modes (for example ”nav-
igation”, ”edit”, ”browse”,
etc.).

$uri string string The system version of the
requested URL (for example
”/content/view/full/13”).

$warning list array An array of warnings re-
lated to problems that were
discovered when the page
was rendered.

$module result

The $module result array contains the result that was generated by the module/view which
was executed. If eZ publish was instructed to display the contents of a node, the variable
will contain additional information about the node that was requested. If eZ publish was
instructed to do something else (practically anything that is not an actual node view), the
result will not contain additional information. The following tables show the contents of the
$module result variable in the different scenarios.

The default $module result

Element Type Description
content string The actual content (result

of templates) that was gen-
erated by the requested
view.

path array An array of hashes contain-
ing information about the

3.2.2 The pagelayout / Variables in pagelayout 191

3

path which leads to the
page that is currently being
viewed. Each hash contains
the following keys: ”text”,
”url”. The ”text” element
usually contains the name
of the module/view (for ex-
ample ”Collected informa-
tion”). The ”url” element
contains the address. The
”url” key of the last element
in the array is usually set to
false.
The standard page head
(page 185) template uses
the path array to build the
TITLE component of the
HEAD section. In addition,
the path array can for exam-
ple be used to build bread-
crumbs (a path with names
(as hyperlinks) of pages/
views that lead to the cur-
rent page/view).

is default navigation part boolean Returns TRUE if the de-
fault navigation part is be-
ing used (the one which is
set in PHP code). Returns
FALSE if the navigation part
of the current module/view
has been reconfigured by
the site administrator. This
can be done by making
use of the ”NavigationPart”
directive of the ”[Module-
Settings]” section within a
configuration override for
”module.ini”.

navigation part string The identifier of the cur-
rent navigation part (for
example ”ezcontentnaviga-
tionpart”). This variable
is used by the administra-
tion interface to determine
which part the user inter-
acts with.

ui context string The user interface context
in which eZ publish is in
while the current page is be-
ing shown. This variable

3.2.2 The pagelayout / Variables in pagelayout 192

3

is used by the administra-
tion interface to distinguish
between different modes
(navigation, edit, browse,
etc.)

ui component string The user interface compo-
nent which eZ publish uses
while the current page is be-
ing shown. This variable is
used by the administration
interface.

uri string Contains the site specific
part of the requested URL,
for example: ”content/
view/full/44” (system URL)
or ”company/about” (vir-
tual URL).

The $module result when a node is being viewed

Element Type Description
content string The actual content (result

of templates) that was gen-
erated by the requested
view.

view parameters array An array of the parameters
that were sent to the view
(for example ”limit”, ”off-
set”, etc.).

path array An array of hashes contain-
ing information about the
path of nodes which lead to
the node that is currently
being viewed. Each hash
contains the following com-
ponents:
Key: text
Description: The name of
the object referenced by the
node.

Key: url
Description: The system
URL of the node (for ex-
ample ”/content/view/full/
44”).

Key: url alias
Description: The virtual

3.2.2 The pagelayout / Variables in pagelayout 193

3

URL of the node (for exam-
ple ”company/about us”).

Key: node id
Description: The ID num-
ber of the node.

The node being viewed will
have its ”url” and ”url alias”
components set to false. In
addition, the ”node id” will
not be available. The path
array can for example be
used to build breadcrumbs
(a path with names (as hy-
perlinks) of the objects ref-
erenced by the nodes that
lead to the target/current
node).

title path array Almost the same as the
”path” array (see above).
When a node is being
viewed, the standard page
head (page 185) template
uses the ”title path” array to
build the TITLE component
of the HEAD section.

section id string The ID number of the sec-
tion which the object ref-
erenced by the node being
viewed belongs to.

node id string The ID number of the node
that is being viewed.

navigation part string Contains the name identi-
fier of the current naviga-
tion part (for example ”ez-
content-
navigationpart”). This vari-
able is used by the admin-
istration interface to deter-
mine which part the user in-
teracts with.

content info array Contains miscellaneous in-
formation about the node
that is being viewed:
Variable: node id
Type: string
Description: The ID num-
ber of the node.

3.2.2 The pagelayout / Variables in pagelayout 194

3

Variable: parent node id
Type: string
Description: The ID num-
ber of the parent node.

Variable: object id
Type: string
Description: The ID num-
ber of the object referenced
by the node.

Variable: class id
Type: string
Description: The ID num-
ber of the class which the
object is an instance of.

Variable: class identifier
Type: string
Description: The identifier
of the class which the object
is an instance of (for exam-
ple ”forum message”).

Variable: offset
Type: integer
Description: The offset
view parameter.

Variable: viewmode
Type: string
Description: The view
mode that was used to dis-
play the node (for example
”full”, ”line”, etc.).

Variable: node depth
Type: string
Description: The depth of
the node in the content tree.

Variable: url alias
Type: string
Description: The virtual
URL of the node (for exam-
ple ”company/about us”).

Variable: persistent
variable
Type: n/a

3.2.2 The pagelayout / Variables in pagelayout 195

3

Description: A variable set
in one of the templates used
by the view that was ex-
ecuted. Regardless of the
caching mechanisms used,
this variable will be avail-
able in the pagelayout. The
type of the persistent vari-
able depends on the value it
contains. If the variable is
not set, it will simply return
a boolean FALSE.

Variable: class group
Type: array
Description: The ID num-
bers of the class groups that
the class (which the object
being viewed is an instance
of) belongs to. This vari-
able is connected with a fea-
ture that makes it possible
to create template overrides
based on class groups.
By default the ”class group”
always returns a boolean
FALSE value because the
class group override feature
is
turned off. It can be turned
on by setting the ”Enable-
ClassGroupOverride” direc-
tive in the [ContentOver-
rideSettings] block of a con-
figuration override for ”con-
tent.ini” to ”true”.

cache ttl integer The TTL (Time To Live)
value of the result that was
generated by the module’s
view (as seconds). A TTL
of minus one means that the
view cache should never ex-
pire. A TTL of zero means
that the result should never
be cached.

is default navigation part boolean Returns TRUE if the de-
fault navigation part is be-
ing used (the one which is
set in PHP code). Returns

3.2.2 The pagelayout / Variables in pagelayout 196

3

FALSE if the navigation part
of the current module/view
has been reconfigured by
the site administrator. This
can be done by making
use of the ”NavigationPart”
directive of the ”[Module-
Settings]” section within a
configuration override for
”module.ini”.

ui context string The user interface context
in which eZ publish is in
while the current page is be-
ing shown. This variable
is used by the administra-
tion interface to distinguish
between different modes
(navigation, edit, browse,
etc.)

ui component string The user interface compo-
nent used by eZ publish
while the current page is be-
ing shown. This variable is
used by the administration
interface.

uri string The site specific part of the
requested URL, for exam-
ple: ”content/view/full/44”
(system URL) or ”company/
about” (virtual URL).

3.3 The template language 197

3

3.3 The template language

The eZ publish template language makes it possible to extract information from the system
and to solve common programmatic issues like for example conditional branching, looping,
etc. All eZ publish specific code must be placed inside a set of curly brackets, ”{” and ”}”.
A template file is a combination of HTML and eZ publish template code. Everything that is
encapsulated by curly brackets will be interpreted by the template parser when the template
is processed. Everything outside the curly brackets will be ignored and thus it will be sent to
the browser without any changes.

Curly bracket issues

Since curly brackets are reserved for defining blocks of eZ publish template code, these char-
acters can not be used directly in a template. For example, Javascript code can not be inserted
directly into a template file because it makes an extensive use of curly brackets. All non tem-
plate specific code/text that uses curly brackets must be put inside a ”literal” section. The
contents of a literal section will be ignored by the template parser. The following example
demonstrates the usage of the literal tags:

...

{literal}

<script language="JavaScript" type="text/javascript">

<!--

window.onload=function()

{

document.getElementById(’sectionName’).select();

document.getElementById(’sectionName’).focus();

}

-->

</script>

{/literal}

...

Outputting curly brackets

It is possible to output curly brackets using two template functions called ”ldelim” (page
1214) and ”rdelim” (page 1216) (short for left delimiter and right delimiter). The following
example demonstrates the usage of these functions:

...

This is the left curly bracket: {ldelim}

This is the right curly bracket: {rdelim}

...

The following output will be produced:

3.3 The template language 198

3

This is the left curly bracket: {
This is the right curly bracket: }

3.3.1 The template language / Comments 199

3

3.3.1 Comments

Just like in almost any programming language, comments can be used to add explanations,
descriptions, etc. Template comments are ignored by the parser and will not be displayed in
the resulting HTML output.

There is only one way to add template comments, and that is by encapsulating a block of code
by a matching pair of the ”{*” and ”*}” sequence of characters (left curly bracket + asterisk
and asterisk + right curly bracket). In other words, a template comment is just like any other
template code except that the curly brackets are accompanied by adjacent asterisks. It is
possible to comment both single and multiple lines of code. However, nesting of comments
is not supported (it is not possible to comment a chunk of code that already is a comment).
The following examples demonstrate the use of comments.

Single line comment

{* This is a single line comment. *}

The example above will not produce any output.

Multi-line comment

{* This is a long comment that

spans across several lines

within the template file. *}

The example above will not produce any output.

Nested comments (illegal)

{* {* Nested comments are not supported! *}

This text will be displayed. *}

The example above will produce the following output:

This text will be displayed.

3.3.2 The template language / Variable types 200

3

3.3.2 Variable types

The eZ Publish template language supports the following variable types:

• Numbers

• Strings

• Booleans

• Arrays

• Objects

While some variable types can be created on the fly, others need to be created using an
operator. Types that may be created directly are numbers and strings. Booleans and arrays
must be created using operators, objects may be created using miscellaneous functions and
operators. In addition to the types listed above, it is also possible to create and use custom
variables. Custom variable types must be represented as objects.

Numbers

Numbers are numerical values. A number can be a positive or a negative integer or a floating
point value. The following example demonstrates how different numbers can be used directly
within template code:

{13}

{1986}

{3.1415}

{102.5}

{-1024}

{-273.16}

Strings

A string is an arbitrary sequence of characters (text) that is encapsulated by a matching pair
of either single or double quotes, ’ or ”. If the quotes are omitted, the string will most likely
be interpreted as a function name. Strings are usually defined in the following way:

{’This is a string.’}

{"This is another string."}

The output of the example above would be:

This is a string.
This is another a string.

3.3.2 The template language / Variable types 201

3

Using quotes

It is possible to use quotes inside strings. This can be done by either using a different kind
of quote or by making use of the escape character (backslash). The following examples
demonstrate the use of quotes inside strings:

{’The following text is double quoted: "Rock and roll!" ’}

{"The following text is single quoted: ’Rock and roll!’ "}

{’Using both single and double quotes: "Rock\’n roll!" ’}

{’Using both single and double quotes: \’Rock\’n roll!\’ ’}

{"Using both single and double quotes: ’Rock’n roll!’ "}

{"Using both single and double quotes: \"Rock’n roll\" "}

The output of the example above will be:

The following text is double quoted: ”Rock and roll!”
The following text is single quoted: ’Rock and roll!’
Using both single and double quotes: ”Rock’n roll!”
Using both single and double quotes: ’Rock’n roll!’
Using both single and double quotes: ’Rock’n roll!’
Using both single and double quotes: ”Rock’n roll!”

Because of the way template code is defined (encapsulated in a matching pair of curly brack-
ets), the right curly bracket, ”}”, must also be prepended by the backslash escape character.
The following example demonstrates this.

{’{ This text is inside curly brackets.\}’}

The output of the template code above will be:

{This text is inside curly brackets.}

Template strings do not support inline expansion of variables (as in Perl and PHP). In other
words, it is not possible to mix variables into strings. However, the concat (page 1125)
operator can be used to append the contents of some variable to a string; which means that
this operator can be used to build strings consisting of other strings and/or miscellaneous
variables.

Booleans

Booleans are binary, they are either TRUE (1) or FALSE (0). A boolean must be created using
either the ”true” (page 1063) or the ”false” (page 1046) template operator. Example:

{true()}

{false()}

For some operators and functions, it is possible to use integers as booleans. However, these
are not ”real” booleans. Zero means FALSE; all non-zero values mean TRUE. Some operators
are able to treat an array as if it were a boolean value. While an empty array means FALSE, a
non-empty array means TRUE.

3.3.2 The template language / Variable types 202

3

Arrays

Arrays are containers that are capable of holding a collection of any other variable type in-
cluding other arrays. An array can be a simple vector or a hash map (associative array). An
element of a vector can be accessed using an index number. The number denotes the position
of the element inside the array (the first element is zero, the second element is one, and so
on). An element of an associative array can be accessed using an identifier. Regular arrays
can be created with the ”array” (page 986) operator. Associative arrays can be created with
the hash (page 996) operator. The following examples demonstrate the creation of arrays
and hashes.

Example 1: Array of numbers

{array(2, 4, 8, 16)}

This example creates an array containing four numbers. The array will consist of the following
elements:

Index Value of element
0 2
1 4
2 8
3 16

Example 2: Array of strings

{array(’This’, ’is’, ’a’, ’test’)}

This example creates an array containing four strings. The array will consist of the following
elements:

Index Value
0 ’This’
1 ’is’
2 ’a’
3 ’test’

Example 3: Associative array

{hash(’Red’, 16, ’Green’, 24, ’Blue’, 32)}

This example creates an associative array containing three key-value pairs. The array will
consist of the following elements:

Key Value
Red 16
Green 24
Blue 32

3.3.2 The template language / Variable types 203

3

Objects

Template objects are created by PHP code or by special template operators. The system uses
objects to represent data structures of different kinds and sizes. For example, objects are used
to represent information about content nodes, translations, webshop orders, user accounts,
roles, policies and so on. Refer to the ”Objects” (page 874) section of the ”Reference” chapter
for a complete overview of the objects and their contents.

Object attributes

Objects consist of named attributes where each attribute can be a different type. The at-
tributes may represent any type of data (numbers, strings, arrays, etc.) and even other
objects. Since the attributes are named (each one has an identifier associated to it), their
contents can be easily accessed using the different identifiers. This is done in the same way
as when accessing the values of associative arrays using identifiers.

The following illustration shows the structure (with example values) of an object (”ezdate”
(page 918)) that contains information about a date.

(see figure 3.6)

Figure 3.6: The structure of the ”ezdate” object.

The illustration above reveals that the ”ezdate” object consists of five attributes (”timestamp”,
”is valid”, ”year”, ”month” and ”day”). All attributes are represented as strings except the ”is
valid” attribute, which is a boolean. The values are the actual data that the object contains.

Attribute availability

It is worth noting that while some attributes are pre-fetched/calculated when an object itself
is fetched, others are not. This means that accessing the contents of attributes may require
additional processing (usually in the form of database queries). The ”static” column in the
reference documentation for objects indicates whether the different attributes provide pre-
fetched values or if they need to be computed upon request. This information should be
helpful when it comes to optimizing your templates.

3.3.3 The template language / Variable usage 204

3

3.3.3 Variable usage

Template variables must be referenced using dollar ($) notation, for example: $my variable,
$object array, etc. An eZ publish template variable is case sensitive. In other words, $lollipop
is not the same variable as $LolliPop. Template variables can be created by the system (from
PHP code) or by the author of the template (from within template code). Regardless of
where a variable was created, it can be changed using the ”set” (page 1226) function. Some
templates have preset variables, for example, the main template (pagelayout) provides access
to a collection of variables (page 189).

Creating and destroying variables

All variables used in a template must be declared and defined by the ”def” (page 1221)
function (short for define) before they can be used. A variable exists until the ”undef” (page
1230) function (short for undefine) is used in order to destroy it. A previously declared
variable will be automatically destroyed at the end of the template file in which it was created.
The following example demonstrates the most basic use of the ”def” and ”undef” functions.

{def $temperature=32}

{$temperature}

{undef}

The output of the example will be ”32”. After the {undef} function is called, the $tempera-
ture variable will not be available. Both the ”def” and the ”undef” function can be used with
multiple variables at the same time. In addition, the ”undef” function can be used without
any parameters. When called without parameters the ”undef” function automatically de-
stroys all variables that were previously created within the template. The following example
demonstrates how the ”def” and ”undef” functions can be used to create and destroy multiple
variables at the same time.

{def $weather=’warm’ $celsius=32 $fahrenheit=90}

The weather is {$weather}: {$celsius} C / {$fahrenheit} F

{undef $celsius $fahrenheit}

The weather is still {$weather}.

{undef}

The output of this example will be:

The weather is warm: 32 C / 90 F
The weather is still warm.

In the example above, the ”def” function is used to create three new variables: $temperature,
$celsius and $fahrenheit. The ”undef” function is used twice. The first time, it is used to

3.3.3 The template language / Variable usage 205

3

destroy the $celsius and $fahrenheit variables. The second is time it is called without param-
eters and thus the remaining variables (in this case only $temperature) will be destroyed.
For more information, please refer to the documentation page of the ”def” (page 1221) and
”undef” (page 1230) functions.

Changing the contents of variables

The contents/value of a variable can be changed at any time using the ”set” (page 1226)
function. Please note that this function can be used to change the value of any variable,
regardless of if it was created by the system or inside a template. No warning will be given
if a system variable is changed. The ”set” function can be used to change the value of any
variable regardless of the variable’s current type and the type of the new value. In other
words, this function is capable of changing the type of a variable. The ”set” function can not
be used to change the value of an element/attribute of an array, hash or an object. In fact, the
elements/attributes of arrays, hashes and objects can not be changed from within template
code. The following example demonstrates the usage of the ”set” function.

{def $weather=’warm’}

The weather is {$weather}.

{set $weather=’cold’}

The weather is {$weather}.

{undef}

The output of the example will be:

The weather is warm.
The weather is cold.

Just like the ”def” and ”undef” functions, the ”set” function can work with multiple variables
at the same time. For more information, please refer to the documentation page of the ”set”
(page 1226) function.

Accessing array elements

The elements of a simple/vector array can only be accessed using numerical indexes. This
method is called ”index lookup”. The elements of an associative array can be accessed by
using the key identifiers. This method is called ”identifier lookup”. The following example
demonstrates the different lookup methods.

Index lookup

Index lookup is carried out by appending a period/dot and an index number to the name of
a simple/vector or associative array. Index lookup may also be carried out by appending a

3.3.3 The template language / Variable usage 206

3

matching pair of brackets that encapsulate the desired index value. The following example
demonstrates how to access the elements of a simple array using index lookup. Please note
the different syntaxes (dot and brackets).

{def $sentence=array(’Life’, ’is’, ’very’, ’good!’)}

The 1st element is: {$sentence.0}

The 2nd element is: {$sentence.1}

The 3rd element is: {$sentence[2]}

The 4th element is: {$sentence[3]}

{undef}

The code above will output the following:

The 1st element is: Life
The 2nd element is: is
The 3rd element is: very
The 4th element is: good!

Identifier lookup

Identifier lookup can be carried out by appending a period/dot and an identifier name to
the name of an associative array. Identifier lookup may also be carried out by appending a
matching pair of brackets that encapsulate the desired index value. The following example
demonstrates how to access the elements of an associative array using the identifier lookup
method. Notice the different syntax (use of dot and brackets).

{def $sentence=hash(’first’, ’Life’,

’second’, ’is’,

’third’, ’very’,

’fourth’, ’good!’)}

The 1st element is: {$sentence.first}

The 2nd element is: {$sentence.second}

The 3rd element is: {$sentence[third]}

The 4th element is: {$sentence[fourth]}

{undef}

The following output will be produced:

The 1st element is: Life
The 2nd element is: is
The 3rd element is: very
The 4th element is: good!

3.3.3 The template language / Variable usage 207

3

Accessing object attributes

The attributes of an object can only be accessed using the attributes’ identifiers. An identifier
is just the name of an attribute (similar to the keys of an associative array). The following
example demonstrates how the different attributes of a node object can be accessed from
within a template.

The ID of the node: {$node.node_id}

The ID of the object encapsulated by the node: {$node.object.id}

The name of the object: {$node.object.name}

First time the object was published: {$node.object.published|l10n(shortdate

)} <br /

>

If the $node variable contains a node that has ID number 44 and encapsulates object number
13 named ”Birthday” published on the first of April in 2003, the following output will be
produced:

The ID of the node: 44
The ID of the object encapsulated by the node: 13
The name of the object: Birthday
First time the object was published: 01/04/2003

3.3.4 The template language / Array and object inspection 208

3

3.3.4 Array and object inspection

By using the ”attribute” (page 1093) template operator, it is possible to quickly inspect the
contents of arrays and template objects. The operator creates an overview of available keys,
attribute names and/or methods in an object or an array. By default, only the array keys
and object attribute names (also called identifiers) are shown. By passing ”show” as the first
parameter, the operator will also display the values. The second parameter can be used to
control the number of levels/children that will be explored (the default setting is 2). The
following example demonstrates how the operator can be used to inspect the contents of an
”ezcontentobjecttreenode” (page 907) object.

{$node|attribute(show, 1)}

The following output will be produced:

Attribute Type Value
node id string 2
parent node id string 1
main node id string 2
contentobject id string 1
contentobject version string 10
contentobject is published string 1
depth string 1
sort field string 8
sort order string 1
priority string 0
modified subnode string 1108118324
path string string ’/1/2/’
path identification string string ”
is hidden string 0
is invisible string 0
name string ’eZ publish’
data map array Array(6)
object object[ezcontentobject] Object
subtree array Array(114)
children array Array(44)
children count string 44
contentobject version object[ezcontentobjectversion]Object

3.3.4 The template language / Array and object inspection 209

3

object
sort array array Array(1)
can read boolean true
can create boolean false
can edit boolean false
can hide boolean false
can remove boolean false
can move boolean false
creator object[ezcontentobject] Object
path array Array(0)
path array array Array(2)
parent object[ezcontentobjecttreenode]Object
url string ”
url alias string ”
class identifier string ’folder’
class name string ’Folder’
hidden invisible string string ’-/-’
hidden status string string ’Visible’

As the output shows, there is a lot of information that can be extracted from a node object.
In addition to strings and numbers the object also consists of other objects. For example, the
creator of the node is a ”ezcontentobject” (page 894) object. The creator object can be further
inspected by doing the following:

{$node.creator|attribute(show, 1)}

The following output will be produced:

3.3.4 The template language / Array and object inspection 210

3

Attribute Type Value
id string 14
section id string 2
owner id string 14
contentclass id string 4
name string ’Administrator User’
is published string 0
published string 1033920830
modified string 1033920830
current version string 1
status string 1
current object[ezcontentobjectversion]Object
versions array Array(1)
author array array Array(1)
class name string ’User’
content class object[ezcontentclass] Object
contentobject attributes array Array(5)
owner object[ezcontentobject] Object
related contentobject array array Array(0)
related contentobject count string 0
reverse related array Array(0)
contentobject array
reverse related string 0
contentobject count
can read boolean false
can create boolean false
can create class list array Array(0)
can edit boolean false
can translate boolean false
can remove boolean false
can move boolean false
data map array Array(5)
main parent node id string 13
assigned nodes array Array(1)
parent nodes array Array(1)
main node id string 15
main node object[ezcontentobjecttreenode]Object
default language string ’eng-GB’
content action list boolean false
class identifier string ’user’
class group id list array Array(1)
name string ’Administrator User’
match ingroup id list boolean false

Again, this object consists of a lot of information. As mentioned above, the ”attribute” (page
1093) operator can be used on both objects and arrays. The following example demonstrates
how to inspect the ”data map” array (which reveals the object’s attributes) of the node’s
creator object.

3.3.4 The template language / Array and object inspection 211

3

{$node.creator.data_map|attribute(show, 1)}

The following output will be produced:

Attribute Type Value
first name object[ezcontentobjectattribute]Object
last name object[ezcontentobjectattribute]Object
user account object[ezcontentobjectattribute]Object
signature object[ezcontentobjectattribute]Object
image object[ezcontentobjectattribute]Object

3.3.5 The template language / Control structures 212

3

3.3.5 Control structures

The eZ publish template language offers a selection of mechanisms that can be used to solve
common programmatic issues like for example condition control, looping, etc. The following
list shows an overview of the available mechanisms:

• IF-THEN-ELSE

• SWITCH

• WHILE

• DO...WHILE

• FOR

• FOREACH

IF-THEN-ELSE

The IF (page 1252) construct allows for conditional execution of code fragments. It is one
of the most important features of many programming languages. The eZ publish implemen-
tation makes it possible to do conditional branching by the way of the following elements:
IF, ELSE and ELSEIF. The ELSE and ELSEIF elements are optional. The following examples
demonstrate the use of this construct.

Example 1

{if eq($var, 128)}

Hello world

{else}

No world here, move along.

{/if}

Example 2

{if eq($fruit, ’apples’)}

Apples

{elseif eq($fruit, ’oranges’)}

Oranges

{else}

Bananas

{/if}

SWITCH

The SWITCH (page 1254) mechanism is similar to a series of IF statements used on the same
expression. This construct is typically useful when the same variable needs to be compared to

3.3.5 The template language / Control structures 213

3

different values. It executes a piece of code depending on which value that matched a given
criteria. The following example demonstrates basic use of this construct.

{switch match=$fruits}

{case match=’apples’}

Apples

{/case}

{case match=’oranges’}

Oranges

{/case}

{case}

Unidentified fruit!

{/case}

{/switch}

If the value of the $fruits variable is ”oranges”, the following output will be produced:

Oranges

WHILE

The WHILE (page 1262) construct is the simplest loop mechanism that the template language
offers. It tells eZ publish to execute the nested statement(s) repeatedly, as long as a given
expression evaluates to TRUE. The value of the expression is checked for every loop iteration
(at the beginning of the iteration). If the given expression evaluates to FALSE from the very
beginning, the nested statement(s) will not be executed. The following example demonstrates
basic use of this construct.

{while ne($counter, 8)}

Print this line eight times ({$counter})

{set $counter=inc($counter)}

{/while}

If the initial value of $counter is zero, the following output will be produced:

Print this line eight times (0)
Print this line eight times (1)
Print this line eight times (2)
Print this line eight times (3)
Print this line eight times (4)
Print this line eight times (5)

3.3.5 The template language / Control structures 214

3

Print this line eight times (6)
Print this line eight times (7)

DO...WHILE

A DO...WHILE (page 1258) loop is very similar to WHILE loops, except that the expression is
checked at the end of each iteration instead of in the beginning. The main difference is that
this construct will always execute the first iteration (regardless of how the test expression
evaluates). The following example demonstrates basic use of this construct.

{do}

Keep printing this line ({$counter})

{set $counter=inc($counter)}

{/do while ne($counter, 8)}

If the initial value of $counter is 0, the following output will be produced:

Keep printing this line (0)
Keep printing this line (1)
Keep printing this line (2)
Keep printing this line (3)
Keep printing this line (4)
Keep printing this line (5)
Keep printing this line (6)
Keep printing this line (7)
Keep printing this line (8)

FOR

Generic looping may be achieved using FOR (page 1259) loops. This construct supports loop-
ing over numerical ranges in both directions. In addition it also supports breaking, continual
and skipping. The following example demonstrates basic use of this construct.

{for 0 to 7 as $counter}

Value of counter: {$counter}

{/for}

The following output will be produced:

Value of counter: 0
Value of counter: 1

3.3.5 The template language / Control structures 215

3

Value of counter: 2
Value of counter: 3
Value of counter: 4
Value of counter: 5
Value of counter: 6
Value of counter: 7

FOREACH

The FOREACH (page 1260) construct can be used to iterate over arrays in different ways. The
loop can be tweaked using miscellaneous techniques. The following example demonstrates
basic use of this construct.

{foreach $objects as $object}

{$object.name}

{/foreach}

The example above will print out the names of the objects that are stored in the $objects array.
If this array stores 4 objects with the following names: ”Emmett Brown”, ”Marty McFly”,
”Lorraine Baines” and ”Biff Tannen”, the following output will be produced:

Emmett Brown
Marty McFly
Lorraine Baines
Biff Tannen

3.3.6 The template language / Functions and operators 216

3

3.3.6 Functions and operators

The eZ publish template language offers a collection of various functions (page 1198) and
operators (page 982) that can be used to carry out different tasks. In addition, it is possible
to extend the system by creating custom operators for special needs. Custom operators have
to be programmed in PHP.

Template functions

A function takes a set of named parameters, carries out a specific task and returns a result. It
can be called anywhere in a template using the following syntax:

{function_name parameter1=value1 parameter2=value2 ...}

A function may take none, one or several parameters. The parameters must be specified
after the function name, separated by spaces. Since each parameter is specified using the
parameter’s name, the parameters can be provided in any order. Each parameter must be
assigned a value using the equal sign. The following illustration shows the typical usage of a
commonly used function.

(see figure 3.7)

Figure 3.7: Typical components of a function call.

The example above calls the ”node view gui” (page 1246) function. This function displays a
node by including the template that is associated with the view mode. The node is specified
using the ”content node” parameter. The desired view mode is specified using the ”view”
parameter.

Template operators

An operator takes unnamed parameters, carries out a specific task and returns a result. In
addition, an operator is capable of handling a parameter which is passed to it using a pipe. It
can be called anywhere in a template using the following syntax:

{$input_parameter|operator_name(parameter1, parameter2 ...)}

Because the operator only takes unnamed parameters, the parameters must be specified in
the order dictated by the operator’s documentation page. In addition, the parameters must
be separated by commas. The following illustration shows the typical usage of a commonly
used operator.

(see figure 3.8)

3.3.6 The template language / Functions and operators 217

3

Figure 3.8: Typical components of a template operator call.

The example above demonstrates the usage of the ”datetime” (page 1016) operator. This op-
erator can be used to convert a UNIX timestamp to a human readable format. The timestamp
is provided by the $yesterday evening variable as the input parameter. The first parameter
tells the operator that the output should be formatted using a custom schema. The schema is
defined by the second parameter (hours : minutes).

Piping

An operator takes input on the left hand side and produces output on the right hand side. A
collection of operators can be glued together using pipes. A pipe makes sure that the output
from one operator is presented as the input parameter to another operator. The following
example demonstrates how pipes and operators can be used to create a string.

{concat(’To ’, ’The ’)|prepend(’Back ’)|append(’Future’)}

The following output will be produced:

Back To The Future

3.4 Basic template tasks 218

3

3.4 Basic template tasks

This section sheds light on some common issues related to template development.

Template inclusion

A template file can be included using the ”include” (page 1213) function. Since this function
makes it possible to include any file from any location within the eZ publish directory, it
must be told that it should look for the file within the design directory. This can be done
by prefixing the path/filename with ”design:”. The following example demonstrates how the
include function can be used to include a template file called ”footer.tpl”, which is located in
the templates directory of a design.

{include uri=’design:footer.tpl’}

If the requested file is not found within the main design of the siteaccess, the system will
search for it in the additional designs and the standard design. Please refer to the documen-
tation of the automatic fallback system for more information about this feature.

Output washing

Variables that may contain bogus strings should always be washed using the ”wash” (page
1156) operator. This operator makes sure that the output does not contain any elements that
may mess up the HTML generated by eZ publish. The following example demonstrates how
the wash operator works.

{def $bogus_string=’hello < world’}

{$bogus_string|wash()}

The following output will be produced:

hello < world

E-mail address obfuscation

In addition to securing proper output, the wash operator can also be used to obfuscate E-mail
addresses on a web page. An obfuscated E-mail address has a less chance of getting picked up
by a robot searching for E-mail addresses to put on a spammer’s list. The following example
demonstrates how the wash operator can be used with an E-mail address.

{def $email_address=’allman@example.com’}

{$email_address|wash(’email’)}

The following output will be produced:

3.4 Basic template tasks 219

3

allman[at]example[dot]com

String concatenation

The ”concat” (page 1125) operator makes it possible to glue several strings together in order
to produce a single string. The following example demonstrates how this operator works.

{def $my_string=’sausage’}

{concat(’Liver ’, $my_string, ’ sandwitch’)}

The following output will be produced:

Liver sausage sandwitch

Custom view parameters

The URL of a node view request may contain custom parameters. The custom view parame-
ters must be specified at the very end of the URL using a special notation. For each parameter,
a name and a value must be specified. The name must be encapsulated by paranthesis. Each
element must be separated by slashes. The following example demonstrates how custom pa-
rameters can be used (in addition to the view parameters) in a system URL that requests a
node.

http://www.example.com/content/view/full/13/(color)/green/(amount)/34

The same parameters can be appende to the virtual URL of the node:

http://www.example.com/company/about_us/(color)/green/(amount)/34

When custom view parameters are used, the system will create an associative array using
the name of the provided parameters as the keys. All parameter values will be treated as
strings. The array will be represented by the $view parameters variable in the template. The
parameters given in the examples above will produce an associative array with the following
contents:

Key Type Value
color string green
amount string 34

The following example demonstrates how the custom view parameters can be accessed in the
template that is used to display the node.

The color is: {$view_parameters.color}

The amount is: {$view_parameters.amount}

The following output will be produced:

3.4 Basic template tasks 220

3

The color is: green
The amount is: 34

3.4.1 Basic template tasks / URL handling 221

3

3.4.1 URL handling

Whenever a link, a non-content specific image, a stylesheet, etc. is to be included, a suitable
template operator must be used in order to ensure that the path to the included file is correct.
At any time, one of the following operators should be used:

• ezurl

• ezimage

• ezdesign

ezurl

The ”ezurl” (page 1166) operator makes sure that a URL works regardless of the location of
the eZ publish folder, the access method (page 151) and the environment that eZ publish is
running in (non virtual host, virtual host (page 73), etc.). It is only the eZ publish specific part
of the URL that needs to be provided. The rest (http://, host, domain, directory, siteaccess,
port, etc.) will be generated by the operator. The final output will be a valid address. This
approach makes it possible to use generic URLs in template without the risk of having to
modify every address when the site is moved and/or when the access method is changed. By
default, the ”ezurl” operator outputs an address that is already encapsulated by two double
quotes. In other words, the output can be fed directly to an hyperlink reference in the HTML
code. The following examples demonstrate the usage of this operator.

Link to a module/view (using a system URL)

Login

The example above demonstrates how to create a link to the login view of the user module.
The ”/user/login” is just an example, another example would be a link to a node: ”/content/
view/full/34”. If eZ publish is running in a directory called ”ezpublish” on www.example.com
using the URL access method and the name of the siteaccess is ”my company”, the operator
will produce the following output:

”http://www.example.com/ezpublish/index.php/my company/user/login”

If eZ publish is running in a virtual host mode (page 73) and uses the host access method,
the following URL will be produced:

”http://www.example.com/user/login”

Link to a node (using the node’s virtual URL)

When a link to a node (using the node’s virtual URL, also known as URL alias) is created, the
address must be piped through the ”ezurl” operator. The reason for this is that the internal
URL table only contains the eZ publish specific part of the URLs. The following example
demonstrates how to use the ”ezurl” operator to create a valid virtual URL for a node.

3.4.1 Basic template tasks / URL handling 222

3

Link to a node

If the URL alias of the node is ”company/about us” and eZ publish is running in a virtual host
environment using the host access method, the following URL will be produced:

”http://www.example.com/company/about us”

For information about how eZ publish treats URLs, please refer to the ”URL translation” (page
157) section of the ”Concepts and basics” chapter.

ezimage

The ”ezimage” (page 1163) operator works in the same way as the ”ezurl” operator (described
above), except that it does not include the ”index.php” part. This operator must be used every
time a non content specific image is included in a template. The image must be placed in
the ”images” directory of one of the designs that are used by the siteaccess. The operator
produces a valid link to the image regardless of the directory, access method and/or the
environment that eZ publish is running in. The following example demonstrates how the
”ezimage” operator should be used.

If eZ publish is using the host access method and the siteaccess is using a design called ”my
design”, the operator will produce the following output:

”http://www.example.com/design/my design/images/women.jpg”

If the image is placed inside a subdirectory within the ”images” directory, the name of the
subdirectory must be specified in the template. If the requested file is not found within the
main design of the siteaccess, the system will search for it in the additional designs and the
standard design. Please refer to the documentation of the automatic fallback system for more
information about this feature.

ezdesign

The ”ezdesign” (page 1162) operator works in the same way as the ”ezurl” operator (de-
scribed above), except that it does not include the ”index.php” part. This operator must be
used every time a design element (style sheets, Javascript, etc.) is included in a template.
The operator takes care of producing a valid link for the given design component by provid-
ing the root to the design directory which contains the target file. The following example
demonstrates the proper way of including a CSS file using this operator.

...

<style type="text/css">

@import url({’stylesheets/my_stuff.css’|ezdesign()});

3.4.1 Basic template tasks / URL handling 223

3

</style>

...

If eZ publish is using the host access method and the siteaccess is using a design called ”my
design”, the operator will produce the following output:

”http://www.example.com/design/my design/stylesheets/my stuff.css”

If the requested file is not found within the main design of the siteaccess, the system will
search for it in the additional designs and the standard design. Please refer to the documen-
tation of the automatic fallback system for more information about this feature.

3.5 Information extraction 224

3

3.5 Information extraction

Information that is stored by eZ publish can be extracted using the ”fetch” (page 1013) tem-
plate operator. This operator gives access to the fetch functions that a module provides. It is
typically used to extract nodes, objects, etc. using the content module. The fetch operator can
only be used with modules that provide support for data fetching. Please refer to the ”Fetch
functions” (page 1289) section of the reference chapter for a complete overview of the fetch
functions. The following model and table shows the usage and the parameters of the fetch
operator.

fetch(<module>, <function>, <parameters>)

Parameter Description
module The name of the target module.
function The name of the fetch function within the

target module.
parameters An associative array containing the function

parameters.

A module’s fetch functions and parameters are defined in the ”function definition.php” file
within the directory of the module.

Fetching a single node

The following example demonstrates how the fetch operator can be used to extract a single
node from the database.

{def $my_node=fetch(content, node, hash(node_id, 13))}

...

{undef}

The example above instructs eZ publish to fetch a single node from the content module. Only
one parameter is given, which is the ID number of the node that should be fetched. The
operator will return an ”ezcontentobjecttreenode” (page 907) object which will be stored in
the $my node variable. This variable can then be used to extract information about the node
and the object that it encapsulates. For example, it is possible to extract the name, attributes
and the time when the object was published. If the node is unavailable / non-existing or
the currently logged in user doesn’t have read access to it, the operator will return a FALSE
boolean value.

Fetching multiple nodes

It is possible to fetch all the nodes that are directly below a specific node. This can be done
by using list instead of node as the second parameter to the ”fetch” operator. The following
example demonstrates how the fetch operator can be used to extract all the nodes that are
directly below node number 13.

3.5 Information extraction 225

3

{def $my_node=fetch(content, list, hash(parent_node_id, 13))}

...

{undef}

The operator will return an array of ”ezcontentobjecttreenode” (page 907) objects. The list
fetch function of the content module can take several parameters. These parameters are
optional and can be used to finetune the fetch for example by filtering out specific nodes. The
following table gives an overview of the most commonly used parameters.

Parameter Description
sort by The method and direction that should be

used when the nodes are sorted (must be
specified as an array).

limit The number of nodes that should be fetched.
offset The offset at which the fetch should start.
class filter type The type of filter that should be used, either

”include” or ”exclude”.
class filter array The type of nodes that should be included or

excluded by the filter (must be specified as
an array).

The following example demonstrates how to fetch an alphabetically sorted array of the ten
latest articles that are directly below node number 13.

{def $my_node=fetch(content,

list,

hash(parent_node_id, 13,

limit, 10,

class_filter_type, include,

class_filter_array, array(’article’)))}

...

{undef}

Please refer to the documentation page of the ”list” (page 602) fetch function for a complete
overview of the available parameters and examples of usage.

3.5.1 Information extraction / Outputting node and object data 226

3

3.5.1 Outputting node and object data

Once an ”ezcontentobjecttreenode” (page 907) object representing a node is available in a
template variable, it can be used to output information about the node and the contents of
the object that the node encapsulates. The following text demonstrates the extraction of the
most common elements.

General information

The name of the object

{$node.name|wash}

The name of the object is directly available through the node (in other words it is possible to
reach it by $node.name instead of $node.object.name). The ”wash” (page 1156) operator is
used for making sure that the output doesn’t contain any bogus characters and/or sequences
that may mess up the HTML.

The date/time when the object was first published

{$node.object.published|l10n(’shortdatetime’)}

Since the publishing value is stored as a UNIX timestamp, it must be properly formatted for
output. This can be done by using the ”l10n” (page 1021) operator, which makes it possible
to format different types of values according to the current locale settings.

The date/time when the object was last modified

{$node.object.modified|l10n(’shortdatetime’)}

Since the modification value is stored as a UNIX timestamp, it must be properly formatted for
output. This can be done by using the ”l10n” (page 1021) operator, which makes it possible
to format different types of values according to the current locale settings.

The name of the user who initially created the object

{$node.object.owner.name|wash}

The name of the user who last modified the object

{$node.object.current.creator.name|wash()}

3.5.1 Information extraction / Outputting node and object data 227

3

The name of the class which the object is an instance of

{$node.object.class_name|wash()}

Object attributes

The attributes of the object can be reached by the way of the ”data map” method. This
method returns an associative array of ”ezcontentobjectattribute” (page 902) objects where
each object represents one of the attributes. The keys of the array are the class attribute
identifiers. The following example demonstrates how an attribute called ”first name” can be
reached using the object’s data map.

{$node.object.data_map.first_name}

The example above will not produce any valuable output because the requested data needs
to be formatted. There are two ways of outputting the contents of attributes:

• Raw output (the ”.output” extension)

• Formatted output (the ”attribute view gui” function)

The main difference between raw and formatted output is that formatted output makes use
of a template which in turn outputs the requested data. Raw output simply outputs the data
within the same template where the request for output was issued. Output should always
be presented through the ”attribute view gui” (page 1235) function. The raw output method
should only be used when/if necessary (for example when checking the value of an attribute
using an IF statement).

Raw output

Raw output is exactly what the definition indicates: a raw dump of the contents that are
stored by the attribute. The actual syntax depends on the datatype that represents the at-
tribute. In most cases, it is possible to generate the output by appending ”.output” to the
identifier.

Generic solution

The following example demonstrates how to output the contents of an attribute called ”my
attribute”.

{$node.object.data_map.my_attribute.content}

3.5.1 Information extraction / Outputting node and object data 228

3

XML block

The following example demonstrates how to output the contents of an XML block called ”my
xml”.

{$node.object.data_map.my_xml.content.output.output_text}

Image

The following example demonstrates how to output an image stored by an attribute called
”my image”.

<img src="{$node.object.data_map.my_image.content[image_size].full_path}"

... /

>

Formatted output

Each datatype has a set of templates which are used to display the contents in different
contexts. There are at least two templates for each datatype: a view template and an edit
template. While the view template is used to display information, the edit template is used
when the data is being edited. The default templates for the datatypes are located within the
standard design: ”/design/standard/templates/content/datatype”.

The ”attribute view gui” (page 1235) function makes it possible to display the contents of an
attribute by inserting the view template of the datatype that the attribute uses. The following
example demonstrates how this function can be used.

{attribute_view_gui attribute=$node.object.data_map.name_of_any_attribute}

The example above will generate proper output for any attribute (regardless of the datatype).

3.6 The template override system 229

3

3.6 The template override system

The template override system makes it possible to use other templates than the default ones
(specified in the code for the different views and templates). This mechanism allows the
creation of template overrides for virtually any template that is used by eZ publish (includ-
ing templates that are requested by the ”include” (page 1213) template function using the
”design:” prefix). In particular, template overrides are typically useful for displaying different
types of nodes in different ways.

An override for a view template is usually activated by a set of conditions. If the conditions
match, the alternate template will be used. Different views provide different conditions, some
views do not provide any conditions at all. Please refer to the ”Template override conditions”
(page 1265) section of the ”Reference” chapter for a complete overview of the available match
rules. The most flexible set of conditions are provided by the ”view” view of the ”content”
module (used when a node is displayed). The following illustration shows how the override
mechanism plugs into the rest of the system.

(see figure 3.9)

Figure 3.9: The override system.

The template overrides must be defined in the ”override.ini.append.php” file of a siteaccess.
This file consists of override blocks. A block is a named set of rules that tells eZ publish to use
an alternate template in a specific situation. For each block, the following information must
be specified:

• A unique name for the override.

• The template that should be overridden.

• The template that should be used instead of the one being overridden.

• The name of the directory in which the override template resides (usually ”templates”).

• A set of conditions/rules that control when the override should be activated.

Please note that the rules/conditions are optional. If no rules are specified, the override will
always be active. The following illustration shows a typical example of a template override
with additional explanations.

(see figure 3.10)

The example above defines an override called ”special folders”. This override will be used
when the system is requested to display a node using full view. The override will only be
activated if the object referenced by the node is an instance of the folder class and if it belongs
to section number 34. When the override is activated, the system will attempt to use the

3.6 The template override system 230

3

Figure 3.10: Template override example.

alternate template (”/override/templates/special folder.tpl”, located in the main design). If
eZ publish is unable to find the alternate template, it will look for it in the additional designs
and the standard design. Please refer to the documentation page of the ”Automatic fallback
system” for more information about this feature.

Multiple / conflicting overrides

The priorities of the overrides are determined by their positions in the file. If there are several
overrides with similar/equal rules, eZ publish will use the first override that matches and
thus the rest of the overrides will be omitted. Because of this, overrides that are for example
activated on a node ID or an object ID basis should always be placed first; otherwise they
might never be triggered because of the presence of a more generic override with a higher
priority.

3.6.1 The template override system / Template override example 231

3

3.6.1 Template override example

The following example demonstrates how the template override system can be used to display
alternate templates in different situations.

Let’s say that we have a simple content tree made up of two folders: ”News” and ”Products”.
The ”News” folder contains news articles and the ”Products” folder contains products. The
following illustration shows an example of such a tree.

(see figure 3.11)

Figure 3.11: Example content node tree.

Without any overrides, eZ publish will most likely display all the nodes using the same tem-
plate. This would probably be the default full view template located in the standard design.
However, what if we wish to display custom/alternate templates for the different nodes? We
would perhaps like the system to behave in the following way:

• Display a special ”welcome” template when the ”My site” node is accessed.

• Display a custom folder template when a folder is accessed.

• Display a custom article template when a news article is accessed.

• Display a custom product template when a product is accessed.

The requests in the list above can be easily achieved by creating a couple of overrides. The
welcome page should be solved using an override that is triggered by the identification num-
ber of the ”My site” node. The rest of the requests can be solved using the class identifier key,
which allows an override to be triggered when an object of a certain class is accessed. The
following example shows the contents of an ”override.ini.append.php” file that makes this
possible:

Override for welcome page

[welcome_page]

Source=node/view/full.tpl

MatchFile=my_welcome.tpl

Subdir=templates

Match[node]=2

3.6.1 The template override system / Template override example 232

3

Override for folders

[my_folder]

Source=node/view/full.tpl

MatchFile=my_folder.tpl

Subdir=templates

Match[class_identifier]=folder

Override for articles

[news_articles]

Source=node/view/full.tpl

MatchFile=my_article.tpl

Subdir=templates

Match[class_identifier]=article

Override for products

[products]

Source=node/view/full.tpl

MatchFile=my_product.tpl

Subdir=templates

Match[class_identifier]=product

The alternate templates should be placed in the ”override/templates” subdirectory of the main
design used by the siteaccess. The following illustration shows where the templates would be
located in a design called ”example”.

(see figure 3.12)

Figure 3.12: Pagelayout + override templates in example design.

When the system is in use, the different overrides would be activated based on the given
conditions. The following illustration shows where/when the different alternate templates
would be used.

(see figure 3.13)

Every time a node referencing a folder object is viewed, the system will use the ”my folder.tpl”
template. When an article is viewed, the ”my article.tpl” template will be used. When a
product is viewed, the ”my product.tpl” template will be used. When node number 2 (the
”My site” node) is viewed, the ”my welcome.tpl” will be used.

3.6.1 The template override system / Template override example 233

3

Figure 3.13: Template override example.

Chapter 4

Features

This chapter contains information about miscellaneous eZ Publish features along with instruc-
tions revealing how to configure and use them.

234

4.1 Policy functions 235

4

4.1 Policy functions

The built-in access control mechanism (page 164) of eZ Publish is based on roles and policies.
A policy is a rule that grants access to a specific function or all functions of a module (page
154). The functions are assigned to the module’s views and thus the access requirements for
a view are controlled by the functions that are assigned to it.

The following code (taken from the eZ Publish source) shows how the function-view as-
signments of the ”notification (page 712)” module are specified in ”kernel/notification/
module.php”.

<?php

$Module = array("name" => "eZNotification",

"variable_params" => true);

$ViewList = array();

$ViewList["settings"] = array(

"functions" => array(’use’),

"script" => "settings.php",

’ui_context’ => ’administration’,

"default_navigation_part" => ’ezmynavigationpart’,

"params" => array(),

’unordered_params’ => array(’offset’ => ’Offset’));

$ViewList["runfilter"] = array(

"functions" => array(’administrate’),

"script" => "runfilter.php",

’ui_context’ => ’administration’,

"default_navigation_part" => ’ezsetupnavigationpart’,

"params" => array());

$ViewList["addtonotification"] = array(

"functions" => array(’use’),

"script" => "addtonotification.php",

’ui_context’ => ’administration’,

"default_navigation_part" => ’ezcontentnavigationpart’,

"params" => array(’ContentNodeID’));

$FunctionList[’use’] = array();

$FunctionList[’administrate’] = array();

?>

As the code shows, there are three views and two functions assigned to them. While the
”administrate” function is assigned to the ”runfilter” view, the ”use” function is assigned to
the ”addtonotification” and ”settings” views.

4.1 Policy functions 236

4

Multiple function assignments

A view can have several functions assigned to it. From version 3.8.9, the system makes use of
logical operators (”and”, ”or”) within the function-view assignments. The following examples
show how this works.

Example 1

The ”tipafriend (page 684)” view of the ”content” module has two functions assigned. The
following code is taken from ”kernel/content/module.php”.

$ViewList[’tipafriend’] = array(

’functions’ => array(’tipafriend’, ’read’),

’default_navigation_part’ => ’ezcontentnavigationpart’,

’script’ => ’tipafriend.php’,

’params’ => array(’NodeID’));

The code in this example specifies that a user must be granted access to both the ”tipafriend”
and ”read” functions in order to use the ”tipafriend” view (which is a part of the ”content”
module). Note that there is an alternate way of specifying this, refer to the example below.

...

’functions’ => array(’tipafriend and read’),

...

Also, note that the ”and” operator can be either ”and” or ”&&”.

Example 2

The ”list (page 779)” view of the ”section” module has three functions assigned. The following
code is taken from ”kernel/section/module.php”.

$ViewList[’list’] = array(

’functions’ => array(’view or edit or assign’),

’script’ => ’list.php’,

’default_navigation_part’ => ’ezsetupnavigationpart’,

"unordered_params" => array("offset" => "Offset"),

’params’ => array());

The code above specifies that a user must be granted access to either the ”view” or the ”edit” or
the ”assign” function in order to use the ”list” view (which is a part of the ”section” module).
Note that that the ”or” operator can be either ”or” or ”||”.

Missing functions

Some modules do not have functions (for example, this is true for the ”search” and ”collab-
oration” modules). In this case, granting access to a module means that the user(s) will get
access to all of its views.

4.1 Policy functions 237

4

If a module has both functions and views that have no functions assigned, only users that
have access to the entire module will get access to the functionless views.

Additional notes for earlier versions

In eZ Publish versions prior to 3.8.9, granting access to a function of a module means that
the user(s) will get access to the following:

• Views that have the function assigned.

• Views that do not have any functions assigned.

For example, in eZ Publish version 3.8.8, there are no functions assigned to the ”discount-
groupview (page 808)” view of the ”shop” module. Anonymous users that have access to the
”buy” function of the ”shop” module can access the ”discountgroupview” view (along with
other views of the ”shop” module that do not have any functions assigned to them). This was
changed in version 3.8.9 because of security reasons. Refer to the release announcement for
more information.

Custom modules that contain functions should not have views that do not have any functions
assigned to them.

Function limitations

A policy (which grants access to a module’s function) can be further restricted by function
limitations. This can only be done if the function itself supports limitations. A function may
support none, one or several limitations. The following code shows how the available limita-
tions for the ”diff”, ”hide” and ”tipafriend” functions of the ”content” module are specified in
”kernel/content/module.php”.

...

$FunctionList[’diff’] = array(’Class’ => $ClassID,

’Section’ => $SectionID,

’Owner’ => $Assigned,

’Node’ => $Node,

’Subtree’ => $Subtree);

...

$FunctionList[’hide’] = array(’Subtree’ => $Subtree);

...

$FunctionList[’tipafriend’] = array();

...

As the code shows, the ”diff” function supports five limitations, the ”hide” function supports
one limitation and the ”tipafriend” function supports no limitations. Refer to the ”Access
control” section of the ”Concept and basics” chapter for an overview of the available function
limitations.

http://ez.no/community/news/ez_publish_security_fixes_3_9_3_and_3_8_9

4.2 Single Sign On (SSO) handlers 238

4

4.2 Single Sign On (SSO) handlers

eZ Publish supports Single Sign on Handlers.

Written in PHP, those handlers will be executed every time a new session is instantiated.
They will let you check if the user is already logged in with another third party system, and
automatically log the user in to eZ Publish, without the need for any user interaction.

To add a new SSO handler, you need to create a custom PHP class and the handler itself. It
must begin with ’eZ’, and implement an handleSSOLogin method. This method doesn’t take
any argument, and returns either an eZUser (the user that gets logged in), or false if no user
must be logged in.

This class name without the eZ prefix and without the SSOHandler suffix must then be
added to site.ini, in the SingleSignOnHandlerArray variable in the UserSettings block.
Example: For the class name eZ<custom name>SSOHandler the value of your SingleSignOn-
HandlerArray setting should be the name used as <custom name> in the class name.

Also, the name of your php class should start with ez and end with ssohandler.

Ideally, this would be done in an extension (that needs to be enabled):

extension/mysso/settings/site.ini.append.php:

[UserSettings]

SingleSignOnHandlerArray[]=My

extension/mysso/sso/ezmyssohandler.php:

<?php

/**

* An SSO handler that automatically logs the admin user if his IP address

matches a known one

*/

class eZMySSOHandler

{

/**

* My custom SSO handler

* @return eZUser|false The user we want to log in, or false

*/

function handleSSOLogin()

{

if ($_SERVER[’REMOTE_ADDR’] === ’192.168.1.10’)

return eZUser::fetch(14);

else

return false;

}

}

Note that the handler will be executed for every request. Only enable it for siteaccesses it
makes sense for, and make sure it doesn’t use too much resources.

4.3 Multi-language 239

4

4.3 Multi-language

In eZ publish 3.7 and earlier versions, you have to specify one primary / main language that
affects every content object (i.e. each object must exist at least in this language). In addition,
you are allowed to specify additional languages which the content objects can be translated
to. The multi-language functionality is implemented at the version level and allows an object’s
version to exist in several languages (a language in this case is referred to as a translation).
One disadvantage of the old solution is that when several translations are needed, only one
translator can work on the object. In other words, the translators must work sequentially
and thus wait for eachother because only one user is allowed to edit an object’s version. This
functionality has been changed.

From 3.8, there is no need for primary / main language anymore. You can have for example
one article which is only available in English and another article which is only available
in French. After choosing the languages for your content objects, it is possible to translate
them to any of these languages. The translations of the same object can be created and edited
separately and simultaneously by multiple users (a user only edits one version and translation
at a time). The next subsections will briefly explain some main principles and terms that will
be used when describing the multi-language functionality.

Locales

A locale is a set of country specific settings i.e. language, character sets, number formats, cur-
rency format, date and time format, abbreviations of months and weekdays etc. eZ publish
provides many default locale settings where each locale is described in an INI file located in
the ”share/locale” directory. These configuration files are named according to locale identi-
fiers.

A locale identifier consists of a three-letter language code and a two-letter uppercase country
code e.g. ”eng-US” (English, USA) or ”nor-NO” (Norwegian, Norway). Language and country
codes are specified by ISO 639 and ISO 3166-1 alpha-2 standards accordingly.

eZ publish uses the ”eng-GB” locale by default. Please refer to the ”Configuring your site
locale (page 242)” section for information about setting locale for your site, translating the
administration interface, creating custom locales etc.

Default language

From 3.8, the ”ContentObjectLocale (page 1508)” INI setting does not specify the primary /
main language but the default language. This language will be used as the default value in
PHP functions that support an optional parameter for language. The default value of this INI
setting is ”eng-GB”.

Example

Let’s say that you have specified ”nor-NO” in the ”ContentObjectLocale” setting. In this case,
if you try to instantiate an object of some class using the ”eZContentClass::instantiate()”
function and do not explicitly specify the language to use then the Norwegian language will
be used.

http://en.wikipedia.org/wiki/ISO_639
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

4.3 Multi-language 240

4

Translation languages

It is possible to choose the languages that you wish your content to be created in and/or
translated to. This set of languages is referred to as translation languages. These can be
managed via the administration interface (page 249). The maximum number of languages
that can be used simultaneously is 30.

Initial/main language

An object can be created in any of the languages that have been added either using the setup
wizard or the ”Languages” part of the ”Setup” tab in the administration interface. When an
object is created, it’s initial/main language will be set to the language that was used during
creation. For example, if an article is created in Hungarian, it’s initial/main language will of
course be set to Hungarian.

Content that is in the initial/main language can not be removed from the object. However,
if the contents of the object exists in several languages, the initial/main language can be
changed and thus content that is not in the initial/main language can be removed. Changing
the initial/main language and removing languages/translations from an object can be done
from within the ”Languages” window (in the first three tabs) in the administration interface.

Important note

Please note that the terms ”initial language” and ”main language” refer to the same thing.
While the code and database tables use ”initial language”, the administration interface uses
”main language”. This inconsistency will hopefully be fixed in a future release.

Site languages

From 3.8, you can specify which languages the contents of a site should be displayed in.
This set of languages is referred to as site languages. These languages can be controlled
per siteaccess using the ”SiteLanguageList[]” configuration setting located under the ”[Re-
gionalSettings]” section of the siteaccess ”site.ini.append.php” file. You can specify the site
languages and their priorities by adding the corresponding locale identifiers to this array. The
languages that appear at the top will get higher priority than the others. The first element in
this array determines the most prioritized language. The system will try to display content in
this language first. If an object is not translated to this language then the second prioritized
language (specified as the second element of the array) will be displayed. If an object does
not exist in this language, the third prioritized language will be used and so on. If an object
does not exist in any of the site languages, it will not be shown unless it is always available
or if you configure the siteaccess to display untranslated content.

Please note that if the ”SiteLanguageList” setting is not specified, the system will use the old
”ContentObjectLocale” setting and thus only the default language will be shown.

4.3 Multi-language 241

4

Example

Let’s say that your translation languages are English, French and Norwegian. If you specify
two of them as site languages for your public siteaccess (for example English as the most
prioritized language and French as the second prioritized one), the system will display content
in these two languages to your visitors while Norwegian content will not be shown. If you
create one article in English, another one in French and the third one in Norwegian, then only
first and second article will be displayed. If you translate the third article from Norwegian
into one of the site languages, the translated version of the article will be displayed on your
site while the original Norwegian version will still not be shown. If an article is available in
both English and French, it will be displayed in English (since English is the most prioritized
language for the siteaccess).

Please refer to the ”Configuring the site languages (page 244)” section for more information
about site languages.

Objects which are always available

Some objects always need to be available even if they do not exist in any of the languages
that are configured for a sitaccess. For example, the system must be able to fetch user objects
no matter which siteaccess is used. Because of this, a new flag called ”always available” has
been introduced at the object level. It makes it possible to individually control the availability
of the different objects. When an object doesn’t exist in any of the site/prioritized languages
and it is always available, the system will use the object’s initial/main language to display its
contents.

The default object availability can be controlled on the class level. By default this setting is
enabled for the ”Folder”, ”User”, ”User group”, ”Image”, ”File” etc. classes, so that objects of
these classes will be marked as ”always available” when created. Changing the default setting
at the class level will not affect the existing objects because it simply dictates the initial value
for the ”always available” flag which is stored for each object.

Example

Let’s say that one of your folders only exists in Norwegian, is marked as always available and
contains several articles (the articles are in English, French and Norwegian and none of them
are marked as always available). If you specify English and French as site languages for your
public siteaccess, this folder will still be displayed since it’s always available. Your visitors will
thus be able to view the articles that are in it. If the folder is not marked as always available
then it will not be displayed and thus your visitors will not be able to read the articles located
under it until you translate the folder itself into English or French.

4.3.1 Multi-language / Configuring your site locale 242

4

4.3.1 Configuring your site locale

eZ Publish uses the ”eng-GB” locale by default. This behavior is determined by the ”Locale”
INI setting located in the ”[RegionalSettings]” block of the ”settings/site.ini” configuration
file. If you wish to use another locale for your site then you have to override this setting.
Please note that the specified locale will be used as the default value for the ”l10n (page
1021)” operator unless you explicitly specify the desired locale when using this operator in
your templates. The following examples demonstrate how you can set the site locale.

Example 1

Let’s say that you need to use ”nor-NO” as system locale for all your siteaccesses. The follow-
ing instructions reveal how this can be done.

1. Open the ”site.ini.append.php” configuration file located in the ”settings/override” di-
rectory and edit it (if the file does not exist, create it).

2. Add the following lines under the ”[RegionalSettings]” block:

Locale=nor-NO

3. Clear the caches.

The system will start to use the locale settings specified in the ”share/locale/nor-NO.ini” file
for all your siteaccesses.

Example 2

Let’s say that you need to use the ”nor-NO” locale for one of your siteaccesses. To do this, edit
the ”site.ini.append.php” file located in the ”settings/siteaccess/example/” directory (where
”example” is the name of your siteaccess) as described in the previous example and make sure
that no locale is specified in the ”settings/override/site.ini.append.php” file. After clearing the
caches, the ”example” siteaccess will start to use the ”nor-NO” locale. However, this may not
result in the translation of all parts of the interface for this siteaccess (like ”Login” and ”Sign
up” links/buttons etc.) into Norwegian. To do this, you should add the following line under
the ”[RegionalSettings]” block of the siteaccess ”site.ini.append.php” file:

TextTranslation=enabled

This will instruct the system that the strings marked with ”i18n (page 1019)” in the tem-
plates should be translated according to the current locale. This means that if you set the
”nor-NO” locale for your admin siteaccess and enable the ”TextTranslation (page 1506)” set-
ting then everything in the administration interface will be translated into Norwegian. (The
”TextTranslation” configuration setting is disabled by default.)

You can also specify different locales for the remaining siteaccesses in the same way, otherwise
the default ”eng-GB” locale will be used for them.

4.3.1 Multi-language / Configuring your site locale 243

4

Adding missing locales

eZ Publish provides many default locale settings where each locale is described in an INI
file named by the locale identifier and placed in the ”share/locale” directory. ”To con-
tribute new locales and/or translations to eZ Publish, visit the Community Translation project
page here: http://projects.ez.no/ezpublish translation, log-in, navigate to the team page (
http://projects.ez.no/ezpublish translation/team/members) and request membership. You
will be promptly able to contribute new translations and locale to eZ Publish ! ”. The follow-
ing example demonstrates how to add a missing locale.

Example

Let’s say that you need to use the ”ell-GR” locale on your site. To do this,
download Greek translation for eZ Publish from the eZ Publish translation pages
http://projects.ez.no/ezpublish translation (you have to be a member as described in ”Adding
missing locales above”) and unpack it into a temporary location. You should see there a sub-
directory called ”share” which contains the locale configuration file (share/locale/ell-GR.ini)
and the translation file for eZ Publish (share/translations/ell-GR/translation.ts). In addition,
the downloaded package may contain a flag icon (share/icons/flags/ell-GR.gif) and/or trans-
lation file(s) for some extensions located in the ”extension” sub-directory.

Please note that the ”translation.ts” file contains eZ Publish specific strings translated into
Greek language (the strings that are used in the templates and PHP code). If the ”TextTrans-
lation” setting is enabled, the strings from this file will be used for translating different parts
of the interface, system messages, warnings etc.

If you copy the ”share” sub-directory to the root directory of your eZ Publish installation,
set the ”ell-GR” locale (as described in the previous two examples) and clear the caches, the
system will start to use Greek locale.

Custom locales

In addition to the default locale settings that come with eZ Publish, it is possible to create
custom locales. The following example demonstrates how this can be done.

Example

Let’s say that you wish to use Icelandic locale on your site. You can create a custom locale
configuration file for this based on the ”eng-GB” locale settings. To do this, do the following:

1. Go to the ”share/locale” directory and copy the ”eng-GB.ini” configuration file to a new
file called ”ice-IS.ini”.

2. Open this file and edit the locale settings.

3. Set your site locale to ”ice-IS”.

http://projects.ez.no/ezpublish_translation
http://projects.ez.no/ezpublish_translation/team/members
http://projects.ez.no/ezpublish_translation

4.3.2 Multi-language / Configuring the site languages 244

4

4.3.2 Configuring the site languages

No site languages are specified by default (i.e. after downloading and unpacking the eZ
publish distribution). During the installation process, the setup wizard (page 60) allows the
user to choose the languages that should be used on the site which is being created. The list
of available languages displayed at this step is built using the INI files located in the ”share/
locale” directory. Use the radio buttons to choose the default language (required), and the
checkboxes to choose the additional languages (optional).

Please note that choosing the default language at this step will affect both default language
and system locale. Please note that one of the radio buttons will be pre-selected i.e. the
default language will be specified according to the language settings of your browser . How-
ever, you can choose another language instead. If you select for example ”German”, then both
locale and default language will be set to ”ger-DE” and your administration interface will be
translated into German (in addition, the ”TextTranslation” setting will be enabled).

All the selected languages will be added to the system as translation languages and recorded
as site languages for both public and admin siteaccesses. The default language will be
recorded as the most prioritized language. You will be able to use any of these languages
for creating and translating your content after the setup wizard is finished. It is also possi-
ble to add new translation languages (page 249) using the administration interface and to
change the site languages configuration by editing your configuration settings.

Displaying untranslated content

Since it may be useful to display all translation languages, an additional configuration setting
called ”ShowUntranslatedObjects” has been added. It can be set to either ”enabled” or ”dis-
abled”. If this setting is enabled, the system will still use the language priorities determined
by the ”SiteLanguageList[]” array, but it will not filter away languages that are not on the
list. In other words, all objects will be displayed regardless of which language they exist in
- and objects that exist in a language specified in the priority list will be displayed using the
prioritized language.

The ”ShowUntranslatedObjects” setting is disabled by default. However, the setup wizard
usually enables it for the admin siteaccess. This allows the site administrator to create and
edit objects in any of the translation languages even if some of these languages are not listed
as site languages.

Example

Let’s say that you have selected British English as default language, French and Norwegian as
additional languages (look at the following screenshot).

(see figure 4.1)

In this case, you will have the following settings for locale, default language and site lan-
guages after the setup wizard is finished:

[RegionalSettings]

Locale=eng-GB

ContentObjectLocale=eng-GB

4.3.2 Multi-language / Configuring the site languages 245

4

Figure 4.1: The language selection step in the setup wizard.

SiteLanguageList[]=eng-GB

SiteLanguageList[]=fre-FR

SiteLanguageList[]=nor-NO

This means that the site locale is set to ”eng-GB”, the default language is English, the
most prioritized language is English, the second prioritized language is French and the
third prioritized language is Norwegian. The setup wizard will put these settings into the
”site.ini.append.php” files for both public and admin siteaccesses. The ”TextTranslation (page
1506)” setting will be disabled for both siteaccesses because the ”eng-GB” locale is used.

Any of these three languages can be used for creating and translating your content. You can
change the site language configuration later by editing the ”site.ini.append.php” file for the
desired siteaccess.

The setup wizard will add one more line in the ”site.ini.append.php” file for the admin siteac-
cess:

4.3.2 Multi-language / Configuring the site languages 246

4

ShowUntranslatedObjects=enabled

This will tell the system to make all the translation languages available when working with
content objects in the administration interface.

You can add new translation languages using the admin interface. Let’s go to ”Setup - Lan-
guages” and add German. This language will not be displayed on your site (public siteaccess)
because it is not included in the list of site languages (i.e. not specified in the ”SiteLanguage-
List[]” array). However, after clearing the caches German will be displayed as the last item in
the drop-down list of available languages for object creation in the administration interface
(look at the next screenshot) because the ”ShowUntranslatedObjects” setting is enabled for
the admin siteaccess.

(see figure 4.2)

Figure 4.2: The ”Create here” interface.

Changing the language priorities

The ”SiteLanguageList[]” setting specified in the siteaccess ”site.ini.append.php” file contains
the prioritized list of site languages where items appearing at the top get higher priority
than the others. The system will try to display content in the most prioritized language first.
If an object is not translated to this language then the second prioritized language will be
displayed. If an object does not exist in this language then the third prioritized language will
be used and so on. If an object does not exist in any of the site languages, it will not be shown
unless it is always available or if you configure the siteaccess to display untranslated content.

To change the site language priorities, open the configuration file, edit it and re-arrange the
elements of this array in the desired way.

Example

Let’s say that the following settings are specified in the ”site.ini.append.php” file for your
public siteaccess:

[RegionalSettings]

SiteLanguageList[]

SiteLanguageList[]=eng-GB

SiteLanguageList[]=fre-FR

SiteLanguageList[]=ger-DE

SiteLanguageList[]=nor-NO

If an article exists in French and Norwegian languages, the system will follow the prioritized
list of site languages and display the article in French which is the second prioritized language.

4.3.2 Multi-language / Configuring the site languages 247

4

This behavior will not change if you translate this article into German (the third prioritized
language). However, if you translate the article into English (which is the most prioritized
language), then it will be displayed in English.

If you move the line ”SiteLanguageList[]=nor-NO” to the top of the list, then Norwegian will
become the most prioritized language. This will instruct the system to display content in
Norwegian and use other site languages only when a Norwegian translation is not available.

Using several public siteaccesses

In the previous example only one public siteaccess was used. A multi-language site typi-
cally uses several public siteaccesses. If your site content exists in for example English and
French then it is recommended to have two public siteaccesses with the following language
configuration:

Siteaccess ”gb” Siteaccess ”fr”

[RegionalSettings]

SiteLanguageList[]

SiteLanguageList[]=eng-GB

[RegionalSettings]

SiteLanguageList[]

SiteLanguageList[]=fre-FR

SiteLanguageList[]=eng-GB

If an article exists only in English, it will be displayed to the visitors of both siteaccesses
(because English is the only site language for the ”gb” siteaccess and the second prioritized
language for the ”fr” siteaccess). If you translate this article into French, it will be shown in
French when viewing the ”fr” siteaccess (since French is the most prioritized language for this
siteaccess). If an article exists only in French, it will be available for the visitors of the ”fr”
siteaccess but it will not show up in the ”gb” siteaccess.

Now, let’s say that you wish to start using for example Norwegian language on your site.
In this case, you will probably add Norwegian as a new translation language, create a new
siteaccess called ”no” and specify the following settings in the ”site.ini.append.php” file of the
newly created siteaccess:

[RegionalSettings]

SiteLanguageList[]

SiteLanguageList[]=nor-NO

This will tell the system to use Norwegian as the only site language for this siteaccess. In
other words, if an article does not exist in Norwegian, it will not be displayed.

Of course, it is possible to add the following line to these settings:

SiteLanguageList[]=eng-GB

In this case Norwegian will be the most prioritized language for the ”no” siteaccess and En-
glish will be the second prioritized one (look at the next table).

Siteaccess ”gb” Siteaccess ”fr” Siteaccess ”no”
The most priori- eng-GB fre-FR nor-NO
tized language
The second priori- - eng-GB eng-GB

4.3.2 Multi-language / Configuring the site languages 248

4

tized language
The third priori- - - -
tized language

Articles that exist only in English will be displayed in English to the visitors of all three
siteaccesses. If an article exists only in Norwegian, it will be shown only on the ”no” siteaccess.

Let’s create a new article called ”Lundi” (Monday) in French. This article will be displayed
to the visitors of the ”fr” siteaccess but not to the visitors of the ”gb” and ”no” siteaccesses
(because French is not listed as site language for these siteaccesses). If you translate this
article into Norwegian then it will become available as ”Mandag” (Monday) when viewing
the ”no” siteaccess but still invisible for the users of the ”gb” siteaccess. If you add English
translation for this article, it will become available as ”Monday” for the visitors of the ”gb”
siteaccess. However, nothing will change for the ”fr” and ”no” siteaccesses because English is
their second prioritized language.

4.3.3 Multi-language / Managing the translation languages 249

4

4.3.3 Managing the translation languages

The administration interface allows you to manage the translation languages for your site.
This can be done by manipulating the global translation list. To access the list of translation
languages, click the ”Setup” tab in the administration interface and select the ”Languages”
link on the left. (This interface can also be accessed by requesting ”/content/translations” in
the URL.) The following screenshot shows how this list looks like.

(see figure 4.3)

Figure 4.3: The list of translation languages.

The last column of the list contains information about the number of translations i.e. how
many content objects are translated into each language. The screenshot shows a situation
when all the objects exist in English but they are not translated to French and Norwegian. If
you click on a language name, the system will display information about this language and
its locale settings.

The next subsections explain how the translation languages can be added and/or removed
using this interface.

Adding a new language

You can add a new translation language by clicking the ”Add language” button and selecting
the desired language from the drop-down list called ”Translation” (look at the next screen-
shot). Please note that the contents of this list depends on the available locales represented
by the INI files in the ”share/locale” directory. If you wish to use a language which is not
available here then you need to add the missing locale first.

(see figure 4.4)

Click ”OK” to save your changes. After clearing the caches, you will be able to use this
language for your content objects.

Removing a language

You can only remove a language if there are no content objects using it (when the ”Transla-
tions” column contains ”0” for a language).

To remove one or more languages from the system, select the languages that you wish to
remove (use the checkboxes located in the first column) and click the ”Remove selected”
button.

4.3.3 Multi-language / Managing the translation languages 250

4
Figure 4.4: Adding a new translation language.

4.3.4 Multi-language / Multilingual objects 251

4

4.3.4 Multilingual objects

The following text describes how you can create new multilingual objects, make an object
always available, set the initial/main language for an object and so on.

Creating new objects

The administration interface allows you to create content objects in any of the translation
languages. Use the drop-down list of languages located in the ”Create here” interface to
choose the desired initial/main language for the object that you wish to create and click the
”Create here” button (look at the next screenshot).

(see figure 4.5)

Figure 4.5: The ”Create here” interface.

If the desired language is not listed in the drop-down box, do the following:

1. Go to the list of translation languages and add the desired language if it is not listed
there as described in the ”Managing the translation languages (page 249)” section.

2. Make sure that the ”site.ini.append.php” file of your admin siteaccess contains the fol-
lowing line under the ”[RegionalSettings]” block:

ShowUntranslatedObjects=enabled

The language will become available after clearing the caches.

Changing the initial/main language

If an object exists in several languages then you can choose which of them will be the initial/
main language. Select the desired translation in the translations window using the radio
buttons and click the ”Set main” button.

Changing the object availability

To make an object always available, select the ”Use the main language if there is no prioritized
translation” checkbox located in the translations window of the object view interface and click
the ”Update” button.

4.3.4 Multi-language / Multilingual objects 252

4

Default object availability for a class

It is possible to set the default object availability on the class level. By default this setting is
enabled for the ”Folder”, ”User”, ”User group”, ”Image”, ”File” etc. classes, so that the new
objects of these classes will be marked as ”always available” when created. Note that this
can be reconfigured for each individual object regardless of the class setting. The following
example demonstrates how this can be done.

Example

Let’s say that you are going to create a set of articles in English that should be displayed
on any siteaccess no matter which site languages are specified for these siteaccesses. You can
enable the default object availability setting for your ”Article” class so that each newly created
article will become ”always available” by default. The following instructions reveal how to do
this.

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and
select the ”Content” class group. You should see the list of classes assigned to this group
as shown in the following screenshot.

(see figure 4.6)

Figure 4.6: The list of classes.

Find the ”Article” class there and click on the edit icon located in the same line of the
list. You will be taken to the class edit interface.

2. Select the ”Default object availability” checkbox as shown in the screenshot below and
click the ”OK” button to save your changes.
(see figure 4.7)

Please note that the changes will not affect any of the existing articles. Only new articles will
be affected.

4.3.4 Multi-language / Multilingual objects 253

4

Figure 4.7: The class edit interface.

4.3.5 Multi-language / Working with translations 254

4

4.3.5 Working with translations

You can use the translations window to view the languages that the object exists in. The
following text reveals how you can create, edit and remove the object translations.

Editing a translation

All content editing is done through the object edit interface. This interface will automatically
be displayed whenever you’re editing existing or creating new objects. If an object exists in
several languages then you can choose which translation to edit. The following text reveals
how you can edit a translation using different approaches.

Using the translations window

1. Use the administration interface to navigate to the object that you wish to edit. In other
words, make sure that the object is being displayed.

2. Enable the translations window and locate the language that you wish to edit. Click on
the language’s corresponding edit icon (on the right hand side). The system will bring
up the edit interface.

Using the ”Sub items” window

1. Use the administration interface to navigate to the node/object which contains the one
that you wish to edit. In other words, make sure that the parent node is being displayed.

2. Look at the ”Sub items” window and locate the node/object that you wish to edit. Click
on the node’s corresponding edit icon (on the right hand side). You will be taken to the
language selection interface which is described below.

3. Use the radio buttons located in the ”Existing languages” frame to select the language
that you wish to edit and click the ”Edit” button. The system will bring up the edit
interface.

The language selection interface

The language selection interface (full or reduced) appears when you have to choose which
translation you wish to edit or create. The following screenshot shows the language selection
interface for a folder that exists in English and French languages.

(see figure 4.8)

As you can see from the screenshot above, the language selection radio buttons are divided
into two groups. The ”Existing languages” group contains the languages that are already
used by the object. This list makes it possible to select an existing translation for editing. The
”New languages” group contains a list of the translation languages that are not used by the
object. The latter makes it possible to translate the contents of the object into a language that
it does not exist in yet. When adding a new translation, it is possible to choose which existing
translation it should be based on. You can select one of the existing languages or ”None”.

4.3.5 Multi-language / Working with translations 255

4

Figure 4.8: The language selection interface.

When a language is chosen instead of ”None”, the main part of the edit page will contain
translation interface instead of the standard edit interface.

Using the tree menu and the context menu

1. Use the tree menu on the left to locate the object that you wish to edit.

2. Click on the object’s icon in order to bring up the context menu.

3. Access the ”Edit in” submenu and select the language that you wish to edit as shown in
the following screenshot.

(see figure 4.9)

Figure 4.9: The context menu.

The screenshot above shows the content structure pop-up menu for a folder that exists
in English and French. After selecting a language, the system will display the edit
interface.

4.3.5 Multi-language / Working with translations 256

4

Using the ”Edit” button

1. Use the administration interface to navigate to the node (page) that you wish to edit.
In other words, make sure that the node is being displayed.

2. Use the drop-down list of languages located in the preview window to select the lan-
guage that you wish to edit and click the ”Edit” button (look at the next screenshot).

(see figure 4.10)

Figure 4.10: Selecting the language for editing.

The system will bring up the edit interface.

Using the bookmarks

1. Make sure that your bookmarks are being displayed (use the ”+” sign to open the
window).

2. Locate the object that you wish to edit and click on its icon to bring up the context
menu.

3. Access the ”Edit in” submenu and select the language that you wish to edit. The system
will bring up the edit interface.

Editing multiple languages

It is possible to edit two or more translations/languages of the same object. Internally the
system actually edits two or more versions of the same object. A draft only contains object
attribute data for one language. When the draft is published, the system will copy all other
languages from the previously published version. The following screenshot shows how the
draft list interface looks like when the user is editing three translations of the same article
(this interface can be accessed by clicking the ”My account” tab and selecting the ”My drafts”
link on the left).

(see figure 4.11)

4.3.5 Multi-language / Working with translations 257

4

Figure 4.11: The ”My drafts” interface.

The translations of the same object can be created and edited separately and simultaneously
by multiple users (a user only edits one version and language at a time).

Adding a new translation

You can translate the objects into any of the translation languages using the administration
interface. The following text reveals how you can translate an object using different ap-
proaches.

Using the ”Sub items” window

1. Use the administration interface to navigate to the node/object which contains the one
that you wish to edit. In other words, make sure that the parent node is being displayed.

2. Look at the ”Sub items” window and locate the node/object that you wish to edit. Click
on the node’s corresponding edit icon (on the right hand side). You will be taken to
the language selection interface. Select the desired parameters in the ”New languages”
frame and click the ”Edit” button. The system will bring up the edit interface.

Using the tree menu and the context menu

1. Use the tree menu on the left to locate the object that you wish to edit.

2. Click on the object’s icon in order to bring up the context menu.

3. Access the ”Edit in” submenu and select the ”Another language” item. You will be taken
to the reduced language selection interface. It contains a list of languages in which the
object does not exist (look at the following screenshot) and a list of languages that the
new translation can be based on.

(see figure 4.12)
Select the language that you wish to add and optionally one of the existing languages to
be used as original text during translation. After the ”Edit” button is clicked, the system
will bring up the edit interface.

4.3.5 Multi-language / Working with translations 258

4

Figure 4.12: The reduced language selection interface.

Using the ”Edit” button

1. Use the administration interface to navigate to the object that you wish to edit. In other
words, make sure that the object is being displayed.

2. Select the ”Another language” item from the drop-down list of languages which is lo-
cated in the preview window and click the ”Edit” button. The system will display the
reduced language selection interface (described above). Select the desired parameters
and click the ”Edit” button. The system will bring up the edit interface.

Using the bookmarks

1. Make sure that your bookmarks are being displayed (use the ”+” sign to open the
window).

2. Locate the object that you wish to edit and click on its icon to bring up the context
menu.

3. Access the ”Edit in” submenu and select the ”Another language” item. The system will
display the reduced language selection interface (described above). Select the desired
parameters and click the ”Edit” button. The system will bring up the edit interface.

4.3.6 Multi-language / The bit-field algorithm 259

4

4.3.6 The bit-field algorithm

The following text reveals some technical details related to the bit-field algorithm that is used
for language filtering and prioritizing.

The system stores information about all the translation languages in the ”ezcontent language”
database table. These languages are identified by powers of 2 i.e. their ID numbers are 2, 4, 8,
16, 32 etc. The value 1 (2ˆ0) is used for marking the objects always available. When an object
is marked always available, it will be shown even though it does not exist in a language that
is specified using the prioritized language list (the ”SiteLanguageList” configuration array).

The ”always available” field

The ”ezcontentclass” table in the database includes the ”always available” field (0 by default)
which controls whether new instances (objects) of a class should be set to ”always available”
or not. If this value is set to 1 for a class, then all newly created instances of that class will be
always available. Note that this can be changed on the object level later on. The class setting
only controls the initial value of the ”always available” flag of the objects.

The ”language mask” field

When storing information about a content object in the ”ezcontentobject” database table, the
system uses a special bit-field called ”language mask” to identify languages in which the last
published version of an object exist. This field contains the sum of the ID numbers of these
languages plus 1 if an object is always available. When a new object is created, the sum of
the initial language ID and the default ”always available” value (specified in the class) will be
recorded to the object’s ”language mask” field.

The ”language mask” bit-field is updated every time an object’s language configuration
changes. This typically happens when a translation is added or removed to/from an object.

Example

Let’s say that you have two translation languages with the following ID numbers:

Language name ID
English (United Kingdom) 2
French (France) 4

This allows the following possible values of ”language mask” for your content objects:

Language mask Bitmap Languages
2 00010 The object exists in English.
3 00011 The object exists in English

and is always available.
4 00100 The object exists in French.
5 00101 The object exists in French

and is always available.
6 00110 The object exists in English

4.3.6 Multi-language / The bit-field algorithm 260

4

and French.
7 00111 The object exists in English

and French and is always
available.

When storing information about an object’s version in the ”ezcontentobject version” database
table, the ”language mask” bit-field contains the sum of the ID numbers of the languages in
which a version exists plus 1.

The ”initial language id” field

The ”ezcontentobject” table in the database includes the ”initial language id” field which is
used for storing the ID number of the object’s initial language.

When storing information about an object’s version in the ”ezcontentobject version” database
table, the system records the ID number of the language which the version was edited in to a
special bit-field called ”initial language id”.

The ”language id” field

When storing information about an object attribute in the ”ezcontentobject attribute”
database table, the system uses the ”language code” field to store the language code of the
translation that the attribute belongs to (for example ”eng-GB”). The ”language id” bit-field
represents the same information in terms of language ID numbers i.e. this field contains the
ID number of the translation language.

4.3.7 Multi-language / Language based permissions 261

4

4.3.7 Language based permissions

The ”create” and ”edit” functions of the ”content” module support limitation on the language
level. For example, it is possible to configure the system so that a group of users are allowed
to create and translate objects using English and Norwegian while another group of users are
only allowed to translate existing content into French. The ”read” function does not support
limitation on the language level and thus all translations of an object can be viewed by users
who have read access to it.

Content/create

The ”language” limitation of the ”create” function controls which languages that are allowed
to be used when objects are created. The following screenshot shows the edit interface for a
policy that only allows the creation of French articles within the standard section.

(see figure 4.13)

Figure 4.13: The policy edit interface.

Content/edit

The ”language” limitation of the ”edit” function controls which translations of objects that
can be edited. It also controls which translations that can be added to objects. The follow-
ing screenshot shows the edit interface of a policy that only allows editing French content
(articles) or adding a French translation to existing articles.

(see figure 4.14)

4.3.7 Multi-language / Language based permissions 262

4

Figure 4.14: The policy edit interface.

Combined with the ”content/read” function (which does not support any language limita-
tions), the policy used in the example above will provide a configuration that allows any
article to be translated from any language to French. The combination is shown in the fol-
lowing screenshot. Note that users who only do translation work do not need to have access
to the ”create” function of the ”content” module.

(see figure 4.15)

Figure 4.15: The role edit interface.

4.4 Clustering 263

4

4.4 Clustering

The clustering feature makes it possible to run an eZ publish site on several web servers. A
site that is running on a cluster of servers will have better performance and will be able to
handle more traffic. Please note that this feature was significantly improved in 3.8.

Versions prior to eZ publish 3.8 could be run in a clustered environment, but these config-
urations were subject to occasional race conditions when files were updated or removed.
Since all cache files and images were stored locally on separate filesystems (one for each web
server), the files had to be synchronized using ”rsync” or similar tools.

From 3.8, it is possible to store all content related caches, images and binary files in the
database. A technique called database transaction is used to ensure that all the cluster nodes
use the same cache files and have access to the same image and binary files. In other words,
when content is updated, changes will automatically become available for all the web servers
in the cluster. This solves the caching and synchronization issues related to earlier versions
running in a clustered environment. In addition, it makes it easier to do backups and migrate
the solution to other platforms.

Please note that when clustering is used, it is recommended to run the site in a Virtual Host
environment on the different servers.

How it works

Data that must be synchronized between the different servers is stored using the database:

• Binary files

• Image and image alias files

• Caches related to content:

– Content view cache

– Template block cache

– Expiry cache

– URL alias cache

– RSS cache

– User info cache

– Class identifier cache

– Sort key cache

Other files are stored using the filesystem, including (but not limited to):

• INI files

• Template files

• Compiled templates

• PHP files

http://ez.no/community/articles/clustering_ez_publish
http://en.wikipedia.org/wiki/Race_conditions
http://en.wikipedia.org/wiki/Database_transaction

4.4 Clustering 264

4

• Log files

• Caches that are not related to content:

– Global INI cache

– INI cache

– Codepage cache

– Character transformation cache

– Template cache

– Template override cache

Content view cache

When eZ publish is displaying a page (a content node), it will execute the ”view” view of the
”content” module and include the output in the pagelayout. If the output is cached (page
378), the cache file(s) will be read and served. If not, the system will fetch the content stored
in the eZ publish object database (page 120), render the necessary templates, generate a
web page and store the resulting XHTML on the filesystem before serving it. As previously
mentioned, these files can now (from 3.8) be stored in the database and thus the files (along
with changes) are easily and immediately available to all servers in the cluster.

Images and image aliases

The approach described above is also used when it comes to images and image aliases (image
variations). However, the solution is a bit more complicated because until now (3.8), images
have been served directly by Apache. Since the web server isn’t able to communicate with
the database, the images need to be served using a PHP script called ”index image.php”. This
is true for all content images, but not for images that are related to design. Please note that
you’ll need to add new rewrite rules in order to instruct Apache to use ”index image.php”
when serving images.

Cluster file handlers

A new cluster file handler mechanism was added in 3.8. It makes it possible to store, retrieve,
rename, delete, etc. files using the database. The cluster file handlers are located in the
”kernel/classes/clusterfilehandlers” directory of the eZ publish installation. The following
cluster file handlers are known to the system by default:

• ezfs (eZFSFileHandler)

• ezdb (eZDBFileHandler)

eZFSFileHandler

This handler makes it possible to use the filesystem when dealing with files.

4.4 Clustering 265

4

eZDBFileHandler

This handler makes it possible to use the database when dealing with files (in a cluster en-
vironment, this would typically be images, uploaded binary files and content-related caches,
etc.). It is split into different back-ends that are compatible with the supported database
engines (MySQL, PostgreSQL, Oracle, etc).

Custom handlers

It is possible to extend the system by implementing your own handlers and/or back-ends.
This should be done using the extension system (and not by modifying the original eZ publish
kernel files).

The ”ExtensionDirectories[]” array located under the ”[ClusteringSettings]” block of the
”file.ini” configuration file specifies the extension directories where eZ publish should search
for additional cluster file handlers. By default, eZ publish will search in the ”clusterfilehan-
dlers” subdirectory inside your extension.

Example

If you have an extension ”myExtension” that includes a cluster file handler ”cfh”, you should
add the following lines under the ”[ClusteringSettings]” block in your ”file.ini.append.php”
file:

FileHandler=cfh

ExtensionDirectories[]=myExtension

These settings will instruct eZ publish to use your custom cluster file handler located in ”ex-
tension/myExtension/clusterfilehandlers/cfhfilehandler.php”.

4.4.1 Clustering / Setting it up 266

4

4.4.1 Setting it up

The following instructions reveal how you can configure eZ publish to store images, binary
files and content-related caches in the database.

1. Modifying the ”file.ini” settings

Add the following lines to an override for the ”file.ini” configuration file (”settings/override/
file.ini.append.php” or ”settings/siteaccess/shop site/file.ini.append.php” where ”shop site”
is the name of your siteaccess):

[ClusteringSettings]

FileHandler=ezdb

DBBackend=mysql

#DBBackend=pgsql

DBHost=localhost

DBPort=3306

DBSocket=

DBName=name

DBUser=user

DBPassword=pass

DBChunkSize=65535

Replace ”localhost”, ”name”, ”user” and ”pass” by actual host name, database name, user
name and password (in most cases these values will be the same as ”Server”, ”Database”,
”User”, ”Password” settings specified under the ”[DatabaseSettings] (page 1426)” block of
your ”site.ini.append.php” configuration file). Make sure that the ”DBSocket” setting value is
correct (leave it empty if you have ”Socket=disabled” under the ”[DatabaseSettings]” block
in ”site.ini.append.php”).

Specifying ”ezdb” in the ”FileHandler” configuration setting will instruct eZ publish to use
the specified database for storing images, binary files and content-related caches. The ”DB-
Backend” setting specifies which back-end that should be used by the ”ezdb” file handler. The
”DBChunkSize” setting determines the size of the blocks (in bytes) into which files are split
when they are fetched from the database.

2. Creating a new script for serving images

All images (except design images) will be served by PHP. Apache will be instructed to use
a specific PHP script called ”index cluster.php” for handling images. The script must include
”index image.php” along with a collection of configuration settings. This trick makes the
serving of images faster because the system does not have to read the configuration from the
database. Create the ”index cluster.php” inside the eZ publish root directory and make sure
that it contains the following lines:

<?php

define(’STORAGE_BACKEND’, ’mysql’);

define(’STORAGE_HOST’, ’localhost’);

define(’STORAGE_PORT’, 3306);

4.4.1 Clustering / Setting it up 267

4

define(’STORAGE_SOCKET’, ’’);

define(’STORAGE_USER’, ’user’);

define(’STORAGE_PASS’, ’pass’);

define(’STORAGE_DB’, ’name’);

define(’STORAGE_CHUNK_SIZE’, 65535);

include_once(’index_image.php’);

?>

Make sure you specify the same database settings as indicated under the ”[ClusteringSet-
tings]” block in your ”file.ini.append.php” configuration file.

3. Downloading missing files

If your eZ publish distribution does not contain ”index image mysql.php” and ”index image
pgsql.php” files (this typically occurs in eZ publish 3.8.1 to 3.8.3 versions because of a bug in
the build scripts), download them using the following links:

• index image mysql.php

• index image pgsql

Put the downloaded files into the root directory of your eZ publish installation.

4. Creating new database tables

You have to create some tables in the database manually. You’ll find the table definitions
in the ”mysql.php” or ”pgsql.php” file (dependent on which database you use) located in
the ”kernel/classes/clusterfilehandlers/dbbackends” subdirectory. The definitions are placed
inside comment blocks in the beginning of the files.

5. Importing files to the database

You need to copy the files stored in the ”var” directory to the database. To do this, go to the
root directory of eZ publish and launch the following script (replace ”shop site” by the actual
name of your siteaccess):

$ bin/php/clusterize.php -s shop_site

The script will import your files, images and image aliases (image variations) that are stored
under the ”var” directory to the database.

6. Clearing the caches

To clear the cache that is stored on disk, go to the root directory of eZ publish and use one of
the following commands:

http://ez.no/content/download/139228/891922/file/index_image_mysql.php
http://ez.no/content/download/139229/891925/file/index_image_pgsql.php

4.4.1 Clustering / Setting it up 268

4

$ bin/shell/clearcache.sh --clear-all

$ bin/shell/clearcache.sh --clear-all --var-subdir=shop_site

This is the last time you’re using the ”clearcache.sh” script since it is only capable of operating
on the filesystem but not the database. To clear the caches from now on, use the administra-
tion interface or the ”bin/php/ezcache.php” script.

7. Compiling the templates (optional)

Since all caches now are empty, you should re-compile the templates. Note that this step can
be skipped and thus the templates will be compiled on-demand when the site is browsed. Go
to the root directory of eZ publish and launch the script:

$ /usr/local/php/bin/php bin/php/eztc.php -s shop_site

Repeat this step for all siteaccesses that are in use.

8. Updating Apache virtual host configuration

Apache needs to know which PHP script to use when serving images. The script simply
fetches the images from the database and serves them. Add the following rewrite rules to
your Apache configuration file before the other/existing rules:

Rewriterule ^/var/([^/]+/)?storage/images-versioned/.* /

index_cluster.php [L]

Rewriterule ^/var/([^/]+/)?storage/images/.* /

index_cluster.php [L]

9. Restarting Apache

You need to restart the Apache web server and then the system should be up and running in
cluster mode.

4.5 Packages 269

4

4.5 Packages

From 3.8, the standard packages are not included in the eZ publish distribution itself. They
are distributed separately as ”.ezpkg” files. The files can be downloaded automatically by the
setup wizard from the remote repository or manually from packages download page.

A package is a collection of items grouped together and stored in the specific format for the
purpose of easy installation and removal. The system makes it possible to create packages and
export them to ”.ezpkg” files. This is the common way of how the packages are distributed.
When an ”.ezpkg” file is imported, it will become available under the system repository part
of the eZ publish installation. Most of the packages can be installed and uninstalled. The
following table reveals the complete list of package operations that can are supported in the
administration interface.

Operation Description
Create new package It is possible to export your class definitions,

content objects, settings, design styles etc.
by creating new packages of different types.
The newly created packages will be stored
under the ”Local” system repository.

Import new package To import a new package, you need to select
the desired ”.ezpkg” file locally. The system
will then upload the file, unpack it and place
the resulting package under an appropriate
internal repository within the installation.

Remove selected You can remove packages from the system
repository. Please note that the package it-
self will not be removed. Only the pack-
age files will be removed from the internal
repository.

Install It is possible to install packages that are lo-
cated under internal repositories. When you
install a package, the system will create con-
tent classes and content objects, apply the
settings specified in it and so on. (Please
note that installing site packages and design
packages is not supported.)

Export to file A package located under the system repos-
itory can be exported to ”.ezpkg” file. The
system will ask you where to store the newly
created file.

Uninstall When you uninstall a package, all the
changes made during its installation will be
reverted.

Remote repository

Packages from remote repository can be downloaded by the setup wizard during the system
installation process. However, the administration interface is unable to download packages
from this repository.

http://ez.no/download/ez_publish/ez_publish_3_stable_releases/3_8/packages

4.5 Packages 270

4

The system will use the eZ Systems packages repository as the default remote repository. If
you wish to use another remote repository, you need to specify its corresponding address using
the ”RemotePackagesIndexURL” configuration setting located in the ”[RepositorySettings]”
section of the ”settings/override/package.ini.append.php” file.

System / internal repository

The default behavior is that all packages are stored in the ”var/storage/packages” directory.
This directory is the main system repository and its subdirectories are called ”system reposito-
ries” or ”internal repositories”. The name of a subdirectory also functions as the actual name
of a repository. The packages are sorted by their vendor. For example, the packages down-
loaded from ez.no will be stored under the ”ez systems” internal repository (var/storage/
packages/ez systems). Packages that have no vendor and packages created locally will reside
under the ”Local” repository (var/storage/packages/local).

It is possible to choose another location of the main system repository inside the ”var/
storage” directory. The following example shows how to change ”settings/override/
package.ini.append.php” in order to force the system to use ”var/storage/importedpackages”
as the main system repository:

RepositoryDirectory=importedpackages

http://packages.ez.no/ezpublish/3.8
http://ez.no

4.5.1 Packages / Package types 271

4

4.5.1 Package types

The following package types are supported:

• content class packages

• content object packages

• extension packages

• site style packages (design packages)

• site packages

Content class and content object packages

A content class package allows the storage of class definitions. If you create several classes and
need to use them on other installations, you can export these class definitions into a content
class package. The package itself can be then exported into ”.ezpkg” file. This file can be then
imported and installed on other eZ publish installations.

Content object packages are used for storing actual content objects. If you create some objects
and need to use them on other installations, you can export these objects into a content object
package.

The package creation wizard will ask you to select nodes and/or subtrees that will be included
to the content object package that is being created. It is possible to include class definitions
for the objects being exported and related templates from one or several siteaccesses to the
package. The selected objects can be exported together with all their versions and languages
or you can specify custom parameters. You may choose to keep all node assignments or only
main nodes for the objects being imported and specify what to do with related objects.

Datatypes serialization support

In eZ publish 3.8 all the built-in datatypes are compatible with the package system. Both
object and class serialization are supported. If you use an additional datatype that does
not support serialization then you will see a warning when trying to export/import class
definitions and/or content objects containing attributes of this datatype.

Extension packages

These packages store extension files. If you create an extension and need to use it on other
installations, you can export it into an extension package. The administration interface makes
it possible to create extension packages.

Design / site style packages

Site style packages store site design themes. Such packages make it possible to change the
look and feel of the site easily. A site style package includes non-content specific images

4.5.1 Packages / Package types 272

4

(logos, banners, graphical layout elements etc.) and two CSS files (”site-colors.css” contain-
ing styles like color codes and background image details for the pagelayout (page 181) and
”classes-colors.css” that determines styles for class templates).

Please note that site style packages can not be installed or uninstalled. If you import several
design packages, you will be able to switch between them using the administration interface.
The next subsection explains how this can be done.

Changing the site style theme

Let’s say that you have imported a new site style package. To change the look and feel of your
site according to the imported design theme, do the following:

1. Click the ”Design” tab in the administration interface and select ”Look and Feel” from
the menu on the left.

2. Select the desired site style from the ”Sitestyle” list.

3. Click the ”Send for publishing” button to save your changes.

4. Go to the actual site and refresh the page. If you can’t see any changes then you should
clear eZ publish caches.

Site packages

The special packages provide basic site examples like ”News”, ”Shop”, ”Gallery” etc. mostly
for the purpose of demonstration and learning. Site packages do not contain any objects.
However, they contain dependencies to other packages plus specific settings and scripts.
These packages can not be installed or uninstalled. Site packages can be thought of as ”meta
packages” that are used only in the setup wizard (page 60) when you are installing eZ pub-
lish. (If you remove a site package from internal repository, this will not affect the behavior
of the installed system.) It is not possible to create site packages using the administration
interface.

The setup wizard automatically fetches the list of available site packages from remote and
internal repositories and asks the user to choose one. It will automatically download the
selected site package and all its dependent packages, import them to the system and display
a list of successfully imported packages. (This step will be omitted if all these packages are
already stored under internal repositories.) All dependent packages except for the site style
package will be automatically installed.

Example

The ”Shop site” package v.2.0.6 contains dependencies to the following packages:

• Three content object packages called ”Products”, ”Multi-price products”, ”Dynamic VAT
products”.

• A site style package called ”Theme 04”.

• An extension package called ”ezpaypal extension”.

4.5.1 Packages / Package types 273

4

Choosing the ”Shop site” package in the setup wizard will result in downloading this package
and five dependent packages from http://packages.ez.no/ezpublish/3.8. The downloaded
”.ezpkg” files will be unpacked into the ”var/storage/packages/ez systems” directory (i.e.
these packages will be imported to the system). The wizard will then automatically install the
”Products”, ”Multi-price products”, ”Dynamic VAT products” and ”ezpaypal extension” pack-
ages. The ”Shop site” and ”Theme 04” packages will not be installed (as site package and
site style package). When the setup wizard is finished, you can safely remove the ”shop site”
package manually or using the administration interface. The removal of a site package will
not affect any of its dependent packages.

http://packages.ez.no/ezpublish/3.8

4.5.2 Packages / Creating new packages 274

4

4.5.2 Creating new packages

The administration interface allows you to export your class definitions, content objects, set-
tings, design styles etc. into packages of different types. This functionality is implemented
using the built-in package creation handlers for the following types of packages:

• Content class packages

• Content object packages

• Extension packages

• Site style packages (design packages)

The built-in package creation handlers are stored in the ”kernel/classes/packagecreators”
directory. Please note that there is no package creation handler for site packages and thus
it is not possible to create such packages using the administration interface. The packages
created locally are stored under the ”Local” system repository.

The next subsections explain how to create packages of different types.

Content class packages

The following example demonstrates how to create a content class package.

1. Click the ”Setup” tab in the administration interface and access the ”Packages” link on
the left. You will be taken to the list of packages located under the ”Local” system
repository. (This interface can also be accessed by requesting ”/package/list” in the
URL.) (see figure 4.16)

Figure 4.16: The ”Local” system repository is empty.

2. Click the ”Create new package” button located under the list of packages. The system
will bring up the package creation dialog where you can choose between four available
package creation wizards. (This interface can also be accessed by requesting ”/package/
create” in the URL.) (see figure 4.17)

Choose the ”Content class export” wizard as shown in the screenshot and click the
”Create package” button.

3. The package wizard starts from asking what classes to include to the package being
created (look at the next screenshot). (see figure 4.18)

Select the desired class(es) from the list and click the ”Next” button.

4.5.2 Packages / Creating new packages 275

4

Figure 4.17: The package creation dialog.

Figure 4.18: The content class export dialog.

4. Now, it’s time to enter some information about the content class package. Give it a
name and enter some text to describe the package as shown below. Click the ”Next”
button. (see figure 4.19)

5. The system also needs some information about the package maintainer. Enter this in-
formation and click the ”Next” button. (see figure 4.20)

6. In the last step, you can optionally enter some information about the changes you ap-
plied to this version of the package (look at the next screenshot). (see figure 4.21)

After clicking the ”Continue” button the wizard will create the package and display its
summary.

Content object packages

The following example demonstrates how to create a content object package.

1. Click the ”Setup” tab in the administration interface, select the ”Packages” link on the
left and access the ”Create new package” button located under the list of packages. In
the package creation dialog choose the ”Content object export” wizard as shown in the
screenshot below and click the ”Create package” button. (see figure 4.22)

2. The package wizard starts from asking which objects to include to the package being
created (look at the next screenshot). (see figure 4.23)

4.5.2 Packages / Creating new packages 276

4

Figure 4.19: The package creation wizard: package information step.

Figure 4.20: The package creation wizard: information about the package maintainer.

The following text describes how you can use the ”Add node”, ”Add subtree” and ”Re-
move selected” buttons for choosing the desired objects.

• The ”Add node” button makes it possible to add individual objects to the package
which is being created. When you click this button, you will see a dialog called
”Choose node for export”. This dialog will display the nodes that are located inside
the ”Content structure” tree. Use the list to select the nodes (which encapsulate
the objects) that you want to include in the package. The following screenshot
shows this dialog where the node which encapsulates an article node called ”New

4.5.2 Packages / Creating new packages 277

4

Figure 4.21: The package creation wizard: changelog.

Figure 4.22: The package creation dialog.

Figure 4.23: The content object export dialog (no objects selected).

article” is selected. (see figure 4.24)
Please note that it is possible to select multiple nodes/objects at the same time.
You can navigate the list by clicking on the names of the nodes. If the desired node

4.5.2 Packages / Creating new packages 278

4

Figure 4.24: Browse the content tree and select which nodes that will be exported.

is located outside the ”Content structure” tree, click the up arrow icon/button until
it brings you to the root of the tree. (This operation will allow you to for example
switch to the ”Media library” tree and select image objects that are located there.)
It is possible to reconfigure how the list is displayed. For example, you can set the
quantity of objects per page by clicking the ”10” / ”25” and ”50” links. If you wish
to browse image objects as thumbnails, simply click the ”Thumbnail” button. After
selecting the desired node(s) click the ”OK” button to save your choice.

• The ”Add subtree” button makes it possible to add whole subtrees to the package
which is being created. When you click this button, you will see a dialog called
”Choose subtree for export”. This dialog is very similar to the node choosing dialog
described above. The only difference is that selecting a node here means that the
whole subtree located under it will be included in the package. Let’s select for
example a subtree located under one of the folders (look at the next screenshot).
(see figure 4.25)

Figure 4.25: Browse the content tree and select which subtrees that will be exported.

After selecting the desired subtree(s), click ”OK”.

• The wizard will display the selected objects/nodes and subtrees as shown in the
following screenshot. (see figure 4.26)
If you have mistakenly chosen item(s) that you don’t want to be included to the
package, use the checkboxes to select these items and click the ”Remove selected”
button. If everything is correct, click the ”Next” button.

4.5.2 Packages / Creating new packages 279

4

Figure 4.26: The content object export dialog (one node and one subtree selected).

3. In the next dialog you should specify the desired export properties for the objects being
added to the package. It is possible to include not only the actual objects but also their
class definitions and related templates (the templates can be taken from one or several
siteaccesses). The selected objects can be included together with all their versions and
languages or you can specify custom parameters. You may choose to keep all node
assignments or only main nodes for the objects being imported and specify what to do
with related objects. The following screenshot shows how this dialog looks like. (see
figure 4.27)

Figure 4.27: The content object package creation wizard: export properties for content objects.

4.5.2 Packages / Creating new packages 280

4

Choose the desired properties and click the ”Next” button.

4. The rest three steps of the ”Content object export” wizard allow you to enter information
about the package itself, its maintainer and changes made in the current version. These
are already described above for ”Content class export” wizard.

Extension packages

The following example demonstrates how to create an extension package.

1. Go to ”Setup - Packages” in the administration interface and click the ”Create new
package” button located under the list of packages. In the package creation dialog
choose the ”Extension export” wizard and click the ”Create package” button.

2. The wizard will display the list of existing extensions. Select the extension that you wish
to export to the package (as shown in the following screenshot) and click the ”Next”
button. (see figure 4.28)

Figure 4.28: The extension package creation wizard.

3. The rest three steps of the ”Extension export” wizard allow you to enter information
about the package itself, its maintainer and changes made in the current version. These
are already described above for ”Content class export” wizard.

Design / site style packages

The following example demonstrates how to create a site style package.

1. Go to ”Setup - Packages” in the administration interface and click the ”Create new
package” button located under the list of packages. In the package creation dialog
choose the ”Site style” wizard and click the ”Create package” button.

2. The wizard will ask you for a thumbnail image, which should be a screenshot or an
icon that depicts the look and feel of your theme. The image should be 120px wide and
103px high. The following screenshot shows this dialog. (see figure 4.29)

Choose the image file and click the ”Next” button.

3. The next dialog requests that you provide two CSS files: the ”site-colors.css” file con-
taining styles like color codes and background image details for the pagelayout (page

4.5.2 Packages / Creating new packages 281

4

Figure 4.29: The site style package creation wizard: choose thumbnail.

181) and ”classes-colors.css” that determines styles for class templates. Choose these
files as shown in the screenshot below (the actual file names do not matter) and click
the ”Next” button. (see figure 4.30)

Figure 4.30: The site style package creation wizard: select CSS files.

4. If you use images in your theme, you can upload them in the next screen (look at the
screenshot). (see figure 4.31)

Figure 4.31: The site style package creation wizard: add images.

Click ”Next” when you finish adding images.

5. The rest three steps of the ”Site style” wizard allow you to enter information about

4.5.2 Packages / Creating new packages 282

4

the package itself, its maintainer and changes made in the current version. These are
already described above for ”Content class export” wizard.

Site packages

It is impossible to create site packages using the administration interface (i.e. there is no
package creation handler for these package types). They can only be created manually, which
means that a package creator will have to edit the ”package.xml” file.

4.5.3 Packages / Exporting packages to files 283

4

4.5.3 Exporting packages to files

A package located under an internal repository can be exported to an ”.ezpkg” file. The
following list reveals how this can be done.

1. Select the ”Setup” tab in the administration interface and click the ”Packages” link on
the left. You will be taken to the list of packages located under the ”Local” system
repository (look at the next screenshot). (see figure 4.32)

Figure 4.32: The list of packages.

This interface can also be accessed by requesting ”/package/list” in the URL. If you wish
to view packages from another internal repository, select the name of repository from
the drop-down list and click the ”Change repository” button.

2. Find the package you wish to export and click on its name. The system will display the
package summary as shown in the following screenshot. (see figure 4.33)

Click the ”Export to file” button in order to download the ”.ezpkg” file.

4.5.3 Packages / Exporting packages to files 284

4

Figure 4.33: The package summary view interface.

4.5.4 Packages / Importing packages to the system 285

4

4.5.4 Importing packages to the system

A package that is stored as an ”.ezpkg” file can be imported to the system - i.e. uploaded,
unpacked and placed under an appropriate internal repository within the installation. The
following example demonstrates how to import a site style package.

1. Go to ”Setup - Packages” in the administration interface and click the ”Import new
package” button located under the list of packages (look at the next screenshot). (see
figure 4.34)

Figure 4.34: The list of packages.

2. Choose the desired ”.ezpkg” file on your local computer (as shown in the following
screenshot) and click the ”Import package” button. (see figure 4.35)

Figure 4.35: The import package interface.

The system will import the package from the ”.ezpkg” file and show you the package
summary.

Please refer to the ”Changing the site style theme” subsection to learn how the design theme
from the imported site style package can be applied to your site.

4.5.5 Packages / Removing packages from repository 286

4

4.5.5 Removing packages from repository

The following instructions reveal how you can remove packages from the system repository.

1. Go to ”Setup - Packages” in your administration interface, select an internal repository
and click the ”Change repository” button.

2. Select the package(s) you that wish to remove (as shown in the screenshot below) and
click the ”Remove selected” button. (see figure 4.36)

Figure 4.36: Removing a package.

The selected package(s) will be removed from the repository.

Please note that if you remove an installed package, it will not be uninstalled. Only the
package files will be removed from the internal repository.

4.5.6 Packages / Installing packages 287

4

4.5.6 Installing packages

It is possible to install packages that are located under internal repositories. Note that this is
not true for site packages and design packages. When you install a package, the system will
create content classes and content objects, apply configuration settings and so on. Please note
that from eZ publish 3.8, information about installed packages is stored in the ”ezpackage”
table within the database.

The following subsections explain how to install packages of different types.

Content class packages

The following example demonstrates how to install a content class package.

1. Go to ”Setup - Packages” in your administration interface, select the internal repository
containing the package you wish to install and click the ”Change repository” button.
Find the desired package and click on its name. The system will display the package
summary as shown in the following screenshot. (see figure 4.37)

Figure 4.37: The content class package summary.

Click the ”Install” button.

2. The system starts by showing a list of items that will be created during the package
installation (look at the next screenshot). (see figure 4.38)

Read this information carefully and click the ”Install package” button to continue. Use
the ”Skip installation” button to abort the operation.

3. If some of the classes being installed already exist, the system will ask the user how this
installation conflict should be handled (as shown in the screenshot below). (see figure
4.39)

4.5.6 Packages / Installing packages 288

4

Figure 4.38: The content class package installation wizard, step 1.

Figure 4.39: The content class package installation wizard, step 2.

If you wish to replace the existing class with the new one, note that all the content
objects of the existing class will be removed as well. Use this option only if you know
what you’re doing. The remaining options make it possible to skip installing the class or
create a new one (in both cases, the existing class and its objects will stay untouched).
After clicking the ”Continue” button, the system will install the package and display a
summary.

Content object packages

The following example demonstrates how to install a content object package. (Since handling
the class installation conflicts is already described in the previous subsection, let’s suppose
that no class definitions are included in the package that is being installed.)

1. Go to ”Setup - Packages” in your administration interface, select the internal repository
containing the package you wish to install and click the ”Change repository” button.
Find the package you wish to install, click on its name and then click the ”Install”
button.

2. The system will display a list of items that will be created during the package installation
(look at the next screenshot). (see figure 4.40)

Read this information carefully click the ”Install package” button. Use the ”Skip instal-
lation” to abort the operation.

4.5.6 Packages / Installing packages 289

4

Figure 4.40: The content object package installation wizard, step 1.

3. If the package contains not only actual content objects but also templates related to
these objects, the system will ask which siteaccess these templates should be added to
(look at the next screenshot). (see figure 4.41)

Figure 4.41: The content object package installation wizard, step 2.

Make your choice and click the ”Next” button.

4. The next dialog reveals where the installed objects will be located and allow to choose
another location if needed. (see figure 4.42)

Figure 4.42: The content object package installation wizard, step 3.

Choose the desired location and click the ”Continue” button.

5. If some of the objects being installed already exist (i.e. there is another object with the

4.5.6 Packages / Installing packages 290

4

same remote id (page 894)), the system will ask how this installation conflict should be
handled (see the screenshot below). (see figure 4.43)

Figure 4.43: The content object package installation wizard, step 4.

After clicking the ”Continue” button, the system will install the package and display a
summary.

Extension packages

The following example demonstrates how to install an extension package.

1. Go to ”Setup - Packages” in your administration interface, select the internal repository
containing the package you wish to install and click the ”Change repository” button.
Find the package you wish to install, click on its name and then click the ”Install”
button.

2. The system will show a list of items that will be created during the package installation
(look at the next screenshot). (see figure 4.44)

Figure 4.44: The extension package installation wizard, step 1.

Click the ”Install package” button to continue. Use the ”Skip installation” button to
abort the operation.

3. If some of the items being installed already exist, the system will ask how this instal-
lation conflict should be handled as shown in the screenshot below. (see figure 4.45)

4.5.6 Packages / Installing packages 291

4

Figure 4.45: The extension package installation wizard, step 2.

After clicking the ”Continue” button, the system will install the package and display a
summary.

4.5.7 Packages / Uninstalling packages 292

4

4.5.7 Uninstalling packages

Installed packages can be uninstalled. For example, let’s say that you have chosen the ”Shop”
standard site package in the setup wizard while installing eZ publish and then you decided to
use only multi-price products (page 368), not simple price ones. In this case, you can safely
uninstall one of the dependent packages which is called ”Products” (this content object pack-
age contains simple price products needed for the ”Shop” site). The following instructions
reveal how this can be done.

1. Go to ”Setup - Packages” in your administration interface, select the ”ez systems” reposi-
tory from the drop-down list and click the ”Change repository” button. Find the installed
package that you wish to uninstall and click on its name. The system will display the
package summary as shown in the following screenshot. (see figure 4.46)

Figure 4.46: The package uninstallation wizard, step 1.

Click the ”Uninstall” button.

2. The system will display a list of items that will be removed (look at the next screenshot).
(see figure 4.47)

Click the ”Uninstall package” button to continue or use ”Skip installation” to abort the
operation. If one of the listed content classes can not be removed, it will be skipped
automatically. For example, the ”Folder” content class will not be removed if it is used
by one of the top level nodes (page 136).

3. If some of the items being removed have been modified after the package installation,
the system will ask for confirmation before removing them (as shown in the following
screenshot). (see figure 4.48)

You can choose to keep or remove these items. Make your choice and click the ”Con-
tinue” button.

4.5.7 Packages / Uninstalling packages 293

4

Figure 4.47: The package uninstallation wizard, step 2.

Figure 4.48: The package uninstallation wizard, step 3.

4. The system will display a summary. Please note that uninstalled packages will still be
available under the system repository (they will be marked as ”Imported”) and can be
installed later if needed.

4.5.8 Packages / package.xml format 294

4

4.5.8 package.xml format

This section describes important XML tags that are used by the packages system. These tags
are used in a ”package.xml” file that is located in a package directory.

Items to be installed

The package installation process is determined by the list of items to install. This list is
always specified between the <install> and </install> XML tags. (Please note that using
two <install> tags inside one ”package.xml” file is not allowed.)

An item to install is specified using the <item> XML tag. The following table reveals the list
of the tag’s attributes.

Attribute Value
type The type of the item

(”ezcontentclass”, ”ezcontentobject”, ”ezex-
tension”, ”ezinstallscript”, etc.)

filename The name of the ”.xml” file that contains in-
formation about the item (without the file
extension).

sub-directory The name of the subdirectory which con-
tains the item’s ”.xml” file.

Example

Let’s say that a content class package contains three content classes called ”myarticle”, ”my-
folder” and ”myproduct”. These classes are described in the files called ”class-myarticle.xml”,
”class-myfolder.xml” and ”class-myproduct.xml” that are located in the ”myclassdir” subdirec-
tory under the package directory. In this case, the ”package.xml” file located in the package
directory may contain the following lines:

<install>

<item type="ezcontentclass"

filename="class-myarticle"

sub-directory="myclassdir" />

<item type="ezcontentclass"

filename="class-myfolder"

sub-directory="myclassdir" />

<item type="ezcontentclass"

filename="class-myproduct"

sub-directory="myclassdir" />

</install>

This will instruct the system to install three items of the ”ezcontentclass” type in the following
order:

• myarticle

• myfolder

4.5.8 Packages / package.xml format 295

4

• myproduct

Items to be uninstalled

The package uninstallation process is determined by the list of items to uninstall. This list
is always specified between the <uninstall> and </uninstall> XML tags. (Please note that
using two <uninstall> tags inside one ”package.xml” file is not allowed.)

An item to uninstall is specified using the <item> XML tag (as described above).

Dependent packages that are required

A site package usually contains dependencies to other packages. Choosing a site package
in the setup wizard will result in downloading, importing and installing its dependent pack-
ages. The list of dependent packages that the site package requires is always specified be-
tween the <requires> and </requires> XML tags located within the <dependencies> and
</dependencies> pair.

Dependent packages are specified using the <require> XML tag. The following table reveals
the list of the tag’s attributes.

Attribute Value
type The type of the package (usually ”ezpack-

age”).
name The internal name of the package.
min-version The minimal version of the package that can

be used.

Example

The ”package.xml” file of the ”News” site package may contain the following lines:

<dependencies>

<provides />

<requires>

<require type="ezpackage"

name="news"

min-version="1.0" />

<require type="ezpackage"

name="media"

min-version="1.0-3" />

<require type="ezpackage"

name="t01"

min-version="1.0" />

</requires>

<obsoletes />

<conflicts />

</dependencies>

This means that the ”News” site package requires the following three dependent packages:

4.5.8 Packages / package.xml format 296

4

• news (version 1.0 or higher)

• media (version 1.0-3 or higher)

• t01 (version 1.0 or higher)

Choosing the ”News” site package in the setup wizard will result in downloading the site
package itself and all its dependent packages. All dependent packages except from the site
style package will be automatically installed.

4.5.9 Packages / Custom install scripts 297

4

4.5.9 Custom install scripts

Packages that can be installed via the administration interface may include specific custom
install and uninstall scripts. A custom script can be called at any stage during the pack-
age installation/uninstallation process. These scripts can be interactive and are capable of
displaying extra wizard steps. Interactive scripts are based on a ”wizard step” mechanism
provided by the class ”eZPackageInstallationHandler”.

The following example demonstrates how to implement a custom install script for a package.

Example

Let’s say that you need to add some additional post-install step(s) to a content object package
called ”Products” which is located under the ”ez systems” internal repository (in the ”var/
storage/packages/ez systems/products” directory). To implement a post-install interactive
script for this package, do the following:

1. Create the following new subdirectories in the package directory:

• post-install

• post-install/templates

2. Open the ”package.xml” file located in the package directory and edit it. Find the list of
items to install which is specified between the <install> and </install> XML tags and
add the following item in the end of this list:

<item type="ezinstallscript"

filename="myinstallscript"

sub-directory="post-install" />

3. Create a file called ”myinstallscript.xml” in the ”post-install” directory (this file must
contain a description of your install script) and add the following lines to it:

<?xml version="1.0" encoding="UTF-8"?>

<install-script filename="myinstallscript.php"

classname="myInstallScript"

description="This is my custom install step" />

This will tell the system that additional install step(s) is implemented in a PHP class
called ”myInstallScript” located in the ”post-install/myinstallscript.php” file. The text
description of the install script will be displayed in the beginning of the package instal-
lation process (as shown in the following screenshot). (see figure 4.49)

4. Create a file called ”myownstep.tpl” in the ”post-install/templates” directory (this file
will contain a template for the additional install step implemented by your install script)
and add the following lines to it:

<form method="post" action={’package/install’|ezurl}>

{include uri="design:package/install/error.tpl"}

4.5.9 Packages / Custom install scripts 298

4

Figure 4.49: Displaying a custom install script in the list of items during the package installation
process

{include uri="design:package/install_header.tpl"}

<p>This is my custom step</p>

<label>You may even click the checkbox if you want</label>

<div class="block">

<input class="button" type="checkbox" name="MyCheckBox" />

</div>

{include uri="design:package/navigator.tpl"}

</form>

The last step of the package installation will be displayed according to this template
(look at the next screenshot). (see figure 4.50)

Figure 4.50: Displaying a custom wizard step during the package installation process

5. Create a new file called ”myinstallscript.php” in the ”post-install” directory. This file
must contain a PHP class called ”myInstallScript” where all the steps are implemented

4.5.9 Packages / Custom install scripts 299

4

(according to the description given in the ”post-install/myinstallscript.xml” file). Add
the following lines to the ”myinstallscript.php” file:

<?php

class myInstallScript extends eZInstallScriptPackageInstaller

{

function myInstallScript(&$package, $type, $installItem)

{

eZDebug::writeDebug($installItem, "Hello from myInstallScript");

$steps = array();

$steps[] = array(

’id’ => ’my_own_step’,

’name’ => ’My own step’,

’methods’ => array(’initialize’ => ’initializeMyOwnStep’,

’validate’ => ’validateMyOwnStep’,

’commit’ => ’commitMyOwnStep’),

’template’ => ’myownstep.tpl’);

$this->eZPackageInstallationHandler($package,

$type,

$installItem,

’My own custom step’,

$steps);

}

// Function that is called before the step is displayed.

// You can use it to set variables for your template.

function initializeMyOwnStep(&$package, &$http, $step, &$persistentData,

&$tpl, &$module)

{

eZDebug::writeDebug("Hello from initializeMyOwnStep()");

return true;

}

// This function is called after user has submitted the form.

// If this function returns "false", the step will be

// displayed again.

function validateMyOwnStep(&$package, &$http, $currentStepID, &$stepMap,

&$persistentData, &$errorList)

{

eZDebug::writeDebug("Hello from validateMyOwnStep()");

return true;

}

// This function is called after the form is submitted

// and validated.

function commitMyOwnStep(&$package, &$http, $step, &$persistentData,

4.5.9 Packages / Custom install scripts 300

4

&$tpl)

{

eZDebug::writeDebug("Hello from commitMyOwnStep()");

return true;

}

}

?>

4.6 Cronjobs 301

4

4.6 Cronjobs

Some features of eZ Publish depend on a maintenance script that takes care of various tasks
behind the scenes. This script is located in the root of the eZ Publish directory and should
be executed at regular intervals. The script is called ”runcronjobs.php”. Among other things,
it processes workflows (page 171), checks / validates URLs, sends out notification e-mails,
etc. Although eZ Publish works without a periodical execution of ”runcronjobs.php”, it is
still recommended to have it running in the background. Some features, for example the
notification system (page 393), will not work if the script is not running.

The most common practice is to instruct the operating system to automatically run the script
every 30-60 minutes. However, some tasks should be executed more frequently than others
and thus it is a good idea to divide the cronjobs into groups/sets and run them separately.
Please refer to the ”Configuring cronjobs (page 308)” and ”Running cronjobs (page 311)”
sections for further details.

4.6.1 Cronjobs / The cronjob scripts 302

4

4.6.1 The cronjob scripts

The ”cronjobs” directory contains miscellaneous cronjob scripts used for automated periodic
and scheduled maintenance. These are described below.

Name Description Frequency Default status
basket cleanup.php Cleans up shopping Once a week. Enabled

baskets for
removed user ses-
sions.

hide.php Hides nodes when Not less than once a Enabled
a specified date and day.
time is reached.

indexcontent.php Performs de- Not less than once a Enabled
layed search index- day.
ing of newly added
content objects.

internal drafts Removes unused Once a week. Enabled
cleanup.php drafts.
ldapusermanage.php Synchronizes Not less than once a Disabled

user account infor- day.
mation with an
LDAP server.

linkcheck.php Validates published Once a week. Enabled
URLs.

notification.php Sends notifications Every 15-30 min- Enabled
to subscribed users. utes.

rssimport.php Imports RSS feeds. Not less than once a Enabled
day.

subtreeexpirycleanup.phpRemoves ex- Not less than once a Enabled
pired cache blocks day.
with the ”subtree
expiry” parameter.

unpublish.php Removes con- Not less than once a Enabled
tent objects when a day.
specified date and
time is reached.

updateviewcount.php Updates the page Not less than once a Disabled
view statistics by day.
parsing the Apache
log files.

workflow.php Processes the work- Every 15-30 min- Enabled
flows. utes.

Cleaning up expired data for webshop

The eZ Publish webshop (page 167) functionality allows your customers to put products
into their shopping baskets. The items in the basket can then be purchased by initiating the
checkout process. The system stores information about a user’s shopping basket in a database

4.6.1 Cronjobs / The cronjob scripts 303

4

table called ”ezbasket”. Information about sessions is stored in the ”ezsession” table.

If a user adds products to his basket and then stops shopping (for example closes the browser
window) without initiating the checkout process, the session of that user will expire after
a while. Expired sessions can be removed either automatically by eZ Publish or manually
by the site administrator. When a user’s session is removed from the database, the system
will not take care of the shopping basket that was created during this session. In other
words, the system will remove an entry from the ”ezsession” table, but the corresponding
entry in the ”ezbasket” table (if any) will remain untouched. This behavior is controlled by
the ”BasketCleanup (page 1537)” setting located in the ”[Session]” section of the ”site.ini”
configuration file (or its override). If it is set to ”cronjob” (default), you will have to remove
unused baskets periodically by running the ”basket cleanup.php” cronjob script.

Please note that removing unused baskets usually takes a lot of time on sites with many
visitors. It is recommended to run the basket cleanup cronjob once a week. If you wish to run
it together with other (more frequent) cronjobs, use the ”BasketCleanupAverageFrequency
(page 1538)” setting located at the same place to specify how often the baskets will actually
be cleaned up when the ”basket cleanup.php” cronjob is executed. If you wish to run ”basket
cleanup.php” separately from other cronjobs, add the following line to the ”[Session]” section
of your ”cronjob.ini.append.php” file:

BasketCleanupAverageFrequency=1

Please note that there is no need to run this cronjob if your site does not use the webshop
functionality (or if it does but the ”BasketCleanup” setting is set to ”pageload”).

Hiding nodes at specific times

The system can automatically hide a node when a specified date is reached. For example,
you may wish that an article published on your site should become invisible within a couple
of days/weeks/months. However, you are not interested in removing the article, you just
want to hide it. In this case, you will have to add a new attribute using the ”Date and time
(page 443)” datatype to your article class and configure the hide cronjob. The following text
describes how this can be done.

Adding an attribute to the ”Article” class

Go to ”Setup - Classes” in the administration interface and select the ”Content” class group to
view the list of classes assigned to this group. Find the article class and click it’s corresponding
edit icon/button. You will be taken to the class edit interface. Select the ”Date and time”
datatype from the drop-down list located in the bottom, click the ”Add attribute” button and
edit the newly added attribute as shown in the following screenshot.

(see figure 4.51)

Note that both the name and the identifier can be set to anything (you specify what to use in
the ini file - see further below) and click ”OK”. The system will add a new field called ”Hide
date” (the name of the newly added attribute in the example above) to the class and thus
it will appear in the edit interface for the objects (in this case articles). When the articles
are edited, this field can be used to specify when the cronjob should hide the nodes. If the

4.6.1 Cronjobs / The cronjob scripts 304

4

Figure 4.51: Class attribute edit interface for the ”Date and time” datatype.

attribute is left blank, the article will not be affected by the hide cronjob. Please note that the
”hide.php” cronjob must be run periodically for this to work.

Configuring the ”hide” cronjob

Add the following lines to your ”content.ini.append.php” configuration file:

[HideSettings]

RootNodeList[]=2

HideDateAttributeList[article]=hide_date

You should specify the identifier of the newly added attribute in the ”HideDateAttributeList
(page 1346)” configuration array using the class identifier as a key. In addition, you need
to specify the ID number of the parent node for the articles using the ”RootNodeList (page
1347)” configuration directive.

Delayed search indexing

If the delayed indexing (page 1525) feature is enabled, newly and re-published objects will
not be indexed immediately. In other words, eZ Publish will not index the content during the
publishing process. Instead, the indexing cronjob will take care of this in the background and
thus publishing will go a bit faster (since you don’t have to wait for the content to be indexed).
In order for this to work, the ”indexcontent.php” cronjob must be executed periodically in the
background (otherwise the content will be published but not indexed).

Please note that you do not need to run this script unless you have ”DelayedIndex-
ing=enabled” in the ”[SearchSettings]” section of the ”site.ini” configuration file (or an over-
ride).

Cleaning up old/unneeded drafts

The purpose of the ”internal drafts cleanup.php” cronjob script is to remove drafts that prob-
ably will never be published. If a version of a content object is created but not modified (for

4.6.1 Cronjobs / The cronjob scripts 305

4

example, if someone clicked an ”Add comments” button but didn’t actually post anything),
the status of the version will be ”5”. The ”internal drafts cleanup.php” script will remove
status ”5” drafts that have been in the system for over 24 hours.

Synchronizing user data with LDAP server

If the users are authenticated through an LDAP server, eZ Publish will fetch user account
information from the external source and store it in the database. What happens is that it
creates local accounts when the users are logging in.

The ”ldapusermanage.php” cronjob script can be used to synchronize local user account in-
formation with the external source in the background. It is recommended to run this script
periodically when the site is connected to an LDAP server. The script will take care of typical
maintenance tasks. For example, if a user is deleted from the LDAP directory, it will disable
(but not remove) the local account.

Please note that the script will only update the eZ Publish database. Modification of external
data (stored on an LDAP server) is not supported.

Checking URLs

In eZ Publish, every address that is input as a link into an attribute using the ”XML block”
(page 497) or the ”URL” (page 493) datatype is stored in the URL table (page 144) and thus
the published URLs can be inspected and edited without having to interact with the content
objects. This means that you don’t have to edit and re-publish your content if you just want
to change/update a link.

The URL table contains all the necessary information about each address including its status
(valid or invalid) and the time it was last checked (when the system attempted to validate the
URL). By default, all URLs are valid. The ”linkcheck.php” cronjob script is intended to check
all the addresses stored in the URL table by accessing the links one by one. If a broken link is
found, its status will be set to ”invalid”. The last checked field will always be updated.

You will have to specify your site URLs using the ”SiteURL (page 1369)” configuration direc-
tive located in the ”[linkCheckSettings]” section of the ”crobjob.ini.append.php” file. This will
make sure that the ”linkcheck.php” cronjob handles relative URLs (internal links) properly.

Please note that the link check script must be able to contact the outside world through port
80. In other words, the firewall must be opened for outgoing HTTP traffic from the web
server that is running eZ Publish. From 3.9, it will be possible to fetch data using a HTTP
proxy specified in the ”[ProxySettings]” section of ”site.ini” (requires CURL support in PHP).

Sending notifications

eZ Publish has a built-in notification system (page 393) that allows users to receive informa-
tion about miscellaneous happenings. It is possible to be notified by email when objects are
updated or published, when workflows are executed and so on. If you are going to use notifi-
cations on your site, you will have to run the ”notification.php” cronjob script periodically. It
will take care of sending notifications to subscribed users (this is done by launching the main
notification processing script ”kernel/classes/notification/eznotificationeventfilter.php”).

http://en.wikipedia.org/wiki/LDAP
http://php.net/curl

4.6.1 Cronjobs / The cronjob scripts 306

4

If you are using the notification system, it is recommended to run this cronjob script every
15-30 minutes.

RSS import

The RSS import functionality makes it possible to receive feeds from various sites, for exam-
ple, the latest community news from www.ez.no (http://ez.no/rss/feed/communitynews).
You will have to configure this using the ”Setup - RSS” part of the administration interface and
run the ”rssimport.php” cronjob periodically. This script will get new items for all your active
RSS imports and publish them on your site (if an item already exists, it will be skipped).

Please note that the RSS import script must be able to contact the outside world through
port 80. In other words, the firewall must be opened for outgoing HTTP traffic from the web
server that is running eZ Publish. From 3.9, it will be possible to fetch data using a HTTP
proxy specified in the ”[ProxySettings]” section of ”site.ini” (requires CURL support in PHP).

Clearing expired template block caches

If you are using the ”cache-block (page 1206)” template function with the ”subtree expiry”
parameter to cache the contents of a template block, this cache block will only expire if
an object is published below the given subtree (instead of the entire content node tree).
The ”DelayedCacheBlockCleanup” setting located in the ”[TemplateSettings]” section of the
”site.ini” configuration file controls whether expired cache blocks with the ”subtree expiry”
parameter will be removed immediately or not. If this setting is enabled, the expired cache
blocks must be removed manually or using the ”subtreeexpirycleanup.php” cronjob script.

Removing objects at specific times

The ”unpublish.php” script makes it possible to remove content objects when a specified date
is reached. For example, you may wish to delete some articles (move them to the trash)
within a couple of days/weeks/months. The following list reveals how this can be done.

1. Add a new attribute of the ”Date and time (page 443)” datatype to your article class
using the ”Setup - Classes” part of the administration interface. Specify ”unpublish
date” as the attribute’s identifier; a new field will become available when the objects (in
this case articles) are edited. This field can be used to specify when the cronjob should
remove the object. If the attribute is left blank, the object will not be affected by the
unpublish cronjob.

2. Configure the ”unpublish.php” cronjob by adding the following lines to your ”con-
tent.ini.append.php” configuration file:

[UnpublishSettings]

RootNodeList[]=2

ClassList[]=2

You should specify the ID number of your article class in the ”ClassList (page 1349)”
configuration array and put the ID number of the parent node for your articles to the
”RootNodeList (page 1350)” setting.

http://www.ez.no/
http://ez.no/rss/feed/communitynews
http://php.net/curl

4.6.1 Cronjobs / The cronjob scripts 307

4

Analyzing the Apache log files

It is possible to have the view statistics for your site pages stored in the eZ Publish database.
To do this, you will have to run the ”updateviewcount.php” cronjob script periodically. The
script will update the view counters of the nodes by analyzing the Apache log file (the view
counters are stored in a database table called ”ezview counter”). When executed, the script
will update a log file called ”updateview.log” located in the ”var/example/log/” directory
(where ”example” is usually the name of the siteaccess that is being used - it is set by the
”VarDir” directive in ”site.ini” or an override). This file contains information about which line
in the Apache log file the script should start from the next time it is run.

You will also have to create an override for the ”logfile.ini” configuration file and add the
following lines there:

[AccessLogFileSettings]

StorageDir=/var/log/httpd/

LogFileName=access_log

SitePrefix[]=example

SitePrefix[]=example_admin

Replace ”/var/log/httpd/” with the full path of the directory where the Apache log file is
stored, specify the actual name of this file instead of ”access log”, replace ”example” and
”example admin” with the names of your siteaccesses (if you have more than two siteaccesses,
list all of them).

Once the correct settings are specified and the ”updateviewcount.php” cronjob script is run
periodically, you will be able to fetch the most popular (most viewed) nodes using the ”view
top list (page 657)” template fetch function and/or check how many times a node has been
viewed (as described in this example).

Processing workflows

In order to use workflows (page 171), you will have to run the ”workflow.php” cronjob script
periodically. The script will take care of processing the workflows. For example, let’s say
you are using the collaboration system and all the changes made in the ”Standard” section
(page 142) can not be published without your approval. (This can be done by creating a new
”Approve” event (page 975) within a new workflow initiated by the ”content-publish-before”
trigger function.) If somebody (except the administrator) changes article ”A”, the system will
generate a new collaboration message ”article A awaits your approval” for you and another
collaboration message ”article A awaits approval by editor” for the user who changed it. (Run
”notification.php” periodically in order to make it possible for users to be notified by E-mail
about new collaboration messages.) You will be able to view your collaboration messages
and review/approve/reject the changes using the ”My Account - Collaboration” part of the
administration interface. However, the changes will not be applied to article A immediately
after getting your approval. This will be done next time the ”workflow.php” cronjob script is
executed.

4.6.2 Cronjobs / Configuring cronjobs 308

4

4.6.2 Configuring cronjobs

You can configure which cronjob that will be enabled (can be executed by the ”runcron-
jobs.php” script) from within an override for the ”settings/cronjob.ini” configuration file. The
following list reveals which settings that can be specified in the ”[CronjobSettings]” section
of this file.

• The ScriptDirectories (page 1373) configuration array specifies the directories where
eZ Publish will search for built-in cronjob scripts (the ”cronjobs” directory is used by
default).

• The ExtensionDirectories (page 1371) directive specifies the extension directories where
eZ Publish will search for additional/custom cronjob scripts. By default, eZ Publish will
search in the ”cronjobs” subdirectory inside your extension(s).

• The Scripts (page 1372) array contains a list of cronjob scripts that will be run when
the main ”runcronjobs.php” script is executed without specifying the ”group of tasks”
option. The tasks specified in this configuration array is called the main set of cronjobs.

Cronjob parts

Some cronjobs must be executed more frequently than others. It is possible to configure
additional sets of cronjobs by adding specific sections (cronjob parts) to an override for ”cron-
job.ini” (see example 2).

The next examples demonstrate how the cronjobs can be configured.

Example 1 (default settings)

The following settings are specified in the ”[CronjobSettings]” section of ”cronjob.ini” by
default:

[CronjobSettings]

ScriptDirectories[]=cronjobs

Scripts[]=workflow.php

Scripts[]=notification.php

Scripts[]=linkcheck.php

Scripts[]=unpublish.php

Scripts[]=rssimport.php

Scripts[]=indexcontent.php

Scripts[]=hide.php

Scripts[]=subtreeexpirycleanup.php

Scripts[]=basket_cleanup.php

Scripts[]=internal_drafts_cleanup.php

ExtensionDirectories[]

This means that the main set of cronjobs contains the following ten tasks:

• workflow.php

4.6.2 Cronjobs / Configuring cronjobs 309

4

• notification.php

• linkcheck.php

• unpublish.php

• rssimport.php

• indexcontent.php

• hide.php

• subtreeexpirycleanup.php

• basket cleanup.php

• internal drafts cleanup.php

These scripts will be run each time the ”runcronjobs.php” script is executed without the
”group of tasks” option. The system will expect these scripts to be located in the ”cronjobs”
directory.

Example 2

To be able to run the cronjobs separately, you can add the following settings to the ”cron-
job.ini.append.php” file located in the ”settings/siteaccess/example” directory (replace ”ex-
ample” by the actual name of the siteaccess):

[CronjobSettings]

Scripts[]=hide.php

Scripts[]=indexcontent.php

Scripts[]=ldapusermanage.php

Scripts[]=rssimport.php

Scripts[]=subtreeexpirycleanup.php

Scripts[]=unpublish.php

Scripts[]=updateviewcount.php

[CronjobPart-infrequent]

Scripts[]=basket_cleanup.php

Scripts[]=internal_drafts_cleanup.php

Scripts[]=linkcheck.php

[CronjobPart-frequent]

Scripts[]=notification.php

Scripts[]=workflow.php

In this case, the main set of cronjobs will only contain seven scripts that are listed under the
”[CronjobSettings]” section. These scripts will be run when the ”runcronjobs.php” script is
executed in the following way:

4.6.2 Cronjobs / Configuring cronjobs 310

4

php runcronjobs.php -s example

The settings located in the ”[CronjobPart-infrequent]” section will instruct the system to run
the ”basket cleanup.php”, ”internal drafts cleanup.php” and ”linkcheck.php” scripts when the
”runcronjobs.php” script is executed in the following way:

php runcronjobs.php infrequent -s example

The ”frequent” set of tasks will only include the notification and workflow cronjobs. These
scripts will be run when the ”runcronjobs.php” script is executed in the following way:

php runcronjobs.php frequent -s example

However, you may need to divide cronjobs into a couple of groups/sets and run them sepa-
rately because some tasks must be executed more frequently than others.

With this configuration, you will be able to run each set of cronjobs separately, e.g.:

• Workflow.php and notification.php - every 15 minutes.

• The basket cleanup, internal drafts cleanup and link check cronjobs - once a week.

• All other cronjobs - once a day.

Example 3

It is possible to extend the system by creating custom cronjob scripts. For example, if you
have an extension ”nExt” that includes a cronjob script ”myjob.php”, you’ll need to put the
following lines into an override for the ”cronjob.ini” configuration file:

[CronjobSettings]

ExtensionDirectories[]=nExt

Scripts[]=myjob.php

or

[CronjobSettings]

ScriptDirectories[]=extension/nExt/cronjobs

Scripts[]=myjob.php

These settings will make eZ Publish expect the additional cronjob script to be located at
”extension/nExt/cronjobs/myjob.php”. This script will be added to the main set of cronjobs
and thus it will be run each time the ”runcronjobs.php” script is executed without the ”group
of tasks” option.

4.6.3 Cronjobs / Running cronjobs 311

4

4.6.3 Running cronjobs

The ”runcronjobs.php” script located in the root of the eZ Publish directory takes care of pro-
cessing your cronjobs in the background. This script should be executed periodically. The
most common practice is to instruct the operating system (or some application) to automati-
cally run the script at regular intervals. On UNIX/Linux systems, this can be done by making
use of ”cron”. On Windows, the script can be run by the ”Scheduled Tasks” service. The
following text describe how this script can be executed.

Running cronjobs from the shell

It is possible to execute the ”runcronjobs.php” script manually from within a system shell:

1. Navigate into the eZ Publish directory.

2. Run the script (replace ”example” with the actual name of the siteaccess):

php runcronjobs.php group_of_tasks -s example

The ”group of tasks” option indicates that only scripts listed in the ”[CronjobPart-group of
tasks]” section of the ”cronjob.ini” configuration file (or its override) will be executed. This
parameter is optional. If omitted, the list of scripts will be taken from the ”[CronjobSettings]”
section of the ”cronjob.ini” configuration file. (Please refer to the ”Configuring cronjobs (page
308)” section for more information.)

The ”-s example” indicates which siteaccess configuration the script should use. If you do not
specify a siteaccess when running the script, then the default siteaccess (page 1589) will be
used.

It is also possible to use the ”-d” parameter that instructs the script to display the debug output
at the end of execution, e.g.:

php runcronjobs.php group_of_tasks -d -s example

You can use this parameter with the ”all” option to get more detailed information:

php runcronjobs.php group_of_tasks -dall -s example

The following options are also available: ”accumulator”, ”debug”, ”error”, ”include”, ”notice”,
”timing”, ”warning”. Please note when provided, they must be separated using commas. The
instructions given in the following example will tell the script to display debug notices and
produce a list of includes:

php runcronjobs.php group_of_tasks -dinclude,notice -s example

The script will not make any changes to log files by default (the ones located in the ”var/log”
directory of your eZ Publish installation). If you need this functionality, you’ll have to run the
script using both ”-d” and ”--logfiles” parameters:

4.6.3 Cronjobs / Running cronjobs 312

4

php runcronjobs.php group_of_tasks -d -s example --logfiles

Cronjobs on UNIX/Linux

”Cron” is the name of a utility that allows the automatic execution of tasks in the background.
It is typically used for periodic system administration and maintenance tasks (for example,
creating a weekly backup). A program often referred to as the ”cron daemon” is running
silently in the background, spending its time waiting and executing cronjobs. A ”cronjob” is
a script or a command that is run at specified intervals by the daemon. The cronjobs must be
set up in a crontab. A crontab is a text file that contains information about the intervals and
the tasks that should be executed. The crontab files are not intended to be edited directly.
The following table reveals which shell commands that can be used for maintaining crontabs:

Shell command Description
Install a new

crontab /var/www/ezpublish/

ezpublish.cron crontab from the ”ezpublish.cron” file (re-
place ”/var/www/ezpublish” by the actual
path to your eZ Publish directory).
Display the current crontab.

crontab -l

Edit the current crontab. The modified
crontab -e crontab will be installed automatically.

Remove the current crontab.
crontab -r

The following example shows how a cronjob for eZ Publish can be set up in the crontab. It
assumes that eZ Publish is located in ”/var/www/ezpublish/”, that the PHP command line
interface program is located at ”/usr/local/bin/php” and that the name of the target siteaccess
is ”example”.

The path to the eZ Publish directory.

EZPUBLISH=/var/www/ezpublish

Location of the PHP command line interface binary.

PHPCLI=/usr/local/bin/php

Instruct cron to run the main set of cronjobs

at 6:35am every day

35 6 * * * cd $EZPUBLISH && $PHPCLI runcronjobs.php -q -s example 2>&1

Instruct cron to run the "infrequent" set of cronjobs

at 5:20am every Monday

20 5 * * 1 cd $EZPUBLISH && $PHPCLI runcronjobs.php infrequent -q -s example

2>&1

Instruct cron to run the "frequent" set of cronjobs

every 15 minutes

http://en.wikipedia.org/wiki/Crontab

4.6.3 Cronjobs / Running cronjobs 313

4

0,15,30,45 * * * * cd $EZPUBLISH && $PHPCLI runcronjobs.php frequent -q -s

example 2>&1

When added to the crontab, the cron daemon will run the ”runcronjobs.php” script using
the PHP command line interface binary at the specified time. With this configuration, the
main set of cronjobs will be run at 6:35am every day. This means that all the scripts listed in
the ”[CronjobSettings]” section of the ”cronjob.ini” configuration file (or its override) will be
executed once a day.

The ”infrequent” set of cronjobs will be run at 5:20am every Monday, i.e. the scripts listed
in the ”[CronjobPart-infrequent]” section of ”cronjob.ini.append.php” will be executed once a
week.

The ”frequent” set of cronjobs will be run every 15 minutes (only the scripts that are listed in
the ”[CronjobPart-frequent]” section of ”cronjob.ini.append.php” will be executed).

The ”-q” parameter instructs the script to run in quiet/silent mode (suppressing unnecessary
output). The ”-s example” indicates which siteaccess configuration the script should use. The
”2>&1” notation instructs the system to combine standard output and error messages into
one stream.

Scheduled tasks on Windows

Unlike UNIX/Linux systems, Windows does not provide access to cron. Instead, Windows
has its own solution called ”Scheduled Tasks”. A scheduled task can be set up by selecting
”Scheduled Tasks” from the Control Panel. This will bring up a wizard that asks what should
be executed, when and so on. It should be configured to run a batch (.bat) file at regular
intervals. The batch file should navigate into the eZ Publish directory and run the ”runcron-
jobs.php” script.

4.7 Advanced redirection after login 314

4

4.7 Advanced redirection after login

In eZ publish 3.8 you can configure where to redirect a user when he/she logs in to the
system. To enable this possibility for users, do the following:

1. Add an attribute of the ”Text line (page 490)” datatype to your user class. If you have
several user classes and wish to enable advanced redirection for all of them then you
should add this attribute to each of your user classes (make sure you enter the same
attribute identifier for all of them).

2. Specify the identifier of the newly added attribute in the ”LoginRedirectionUriAttribute”
setting located in the ”[UserSettings]” section of the ”settings/siteaccess/example/
site.ini.append.php” configuration file (replace ”example” with the actual name of your
siteaccess) like this:

LoginRedirectionUriAttribute[key]=attribute_id

key There are two keys that can be used:
”user” for user class(es) or ”group” for
user group class(es).

attribute id The identifier of the newly added at-
tribute (not ID number of the attribute).

Now you can specify the redirection URI in the text line field when creating/editing a user.

This possibility can be also enabled for user groups in the same way as for users. This means
that you should add an attribute of the ”Text line (page 490)” datatype to your user group
class(es) and specify its identifier in the ”LoginRedirectionUriAttribute” setting using ”group”
as a key.

Example 1

Let’s say that user John must be redirected to the ”News” folder after login. The following list
reveals how this could be done:

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and
select the ”Users” class group. You should see the list of classes assigned to this group.
Find your user class there and click the ”Edit” button located in the same line of the
list. You will be taken to the class edit interface. Select the ”Text line” datatype from
the drop-down list located in the bottom, click the ”Add attribute” button and edit the
newly added attribute as shown below. (see figure 4.52)

Click ”OK” to save your changes.

2. Specify the identifier of the newly added attribute in the ”LoginRedirectionUriAttribute”
setting located under the ”[UserSettings]” section of an override for the ”settings/
site.ini” configuration file. To do this, you should add the following line:

4.7 Advanced redirection after login 315

4

Figure 4.52: A fragment of the class edit interface.

LoginRedirectionUriAttribute[user]=redirection_uri

where ”redirection uri” is the attribute identifier.

3. Access the ”User accounts” tab in the administration interface, use the ”Sub items” list
to find the user John and click the ”Edit” button located in the same line of the list.
You will be taken to the user edit interface. Specify ”/news” in the text field called
”Redirection URI” (the name of the newly added class attribute) as shown below. (see
figure 4.53)

Click the ”Send for publishing” button to save your changes and the user ”John” will be
always redirected to the ”News” folder after login.

Example 2

Let’s say that you wish to redirect all users that belong to the ”Guest accounts” group to the
”News” folder after login. The following list reveals how this could be done:

1. Edit your user group class and add an attribute of the ”Text line” datatype as shown
below: (see figure 4.54)

2. Add the following line into the ”[UserSettings]” section of an override for the ”settings/
site.ini” configuration file:

LoginRedirectionUriAttribute[group]=start_page

where ”start page” is the attribute identifier.

3. Edit the ”Guest accounts” user group and specify ”/news” in the text field called ”Start
page” (the name of the newly added class attribute) as shown below. (see figure 4.55)

Click the ”Send for publishing” button to save your changes and all the users that belong
to the ”Guest accounts” group will be always redirected to the ”News” folder after login.

4.7 Advanced redirection after login 316

4
Figure 4.53: Setting the redirection URI for the user John

Figure 4.54: A fragment of the class edit interface.

Important notes

If a user is a member of several groups (a child of several ”User group” nodes), the system will
use the redirection URI that is specified for the ”main” group (main parent node). The fol-
lowing screenshot shows the user view interface for the user John that belongs to both ”Guest
accounts” and ”Editors” user groups. The ”Locations” list located under user preview allows
to view and manage locations for the user object that is currently being viewed. The main

4.7 Advanced redirection after login 317

4

Figure 4.55: Setting the redirection URI for the ”Guest accounts” user group

location is displayed in a bold type (”Users / Guest accounts / John Doe” in our example).

(see figure 4.56)

Figure 4.56: A fragment of the object view interface for the user with two locations.

Please note that the advanced redirection feature will get disabled if the redirection URI is
already specified (e.g. via the ”LastAccessesURI” session variable. Let’s say that you have
specified ”/news” as the redirection URI for user John (see Example 1). If John launches a
browser and goes directly to for example ”http://yoursite.com/media files” then he will not
be redirected to ”http://yoursite.com/news”.

4.8 VAT charging system 318

4

4.8 VAT charging system

Charging the value added taxes in your webshop system is based on the VAT types. A VAT
type consists of a name and a fixed rate, for example: ”Std, 0%”. The administration interface
makes it possible to add, remove and modify VAT types as described in the ”Managing VAT
types (page 333)” section. Although the quantity of the VAT types is not limited, there must
be at least one VAT type in your webshop system. The only purpose of these VAT types is
to store some fixed rates of VAT in percent and thus you can call them ”static VAT types” or
”fixed VAT types”.

If you assign a static VAT type to a product then the system will always charge the fixed rate of
VAT specified by this VAT type for this product. (This is how the ”VAT per product” approach
works.)

Price inc. VAT / Price ex. VAT

There are two ways in which the assigned VAT type can be used. This configuration depends
on how the product prices are entered when the objects are created. The ”Price inc. VAT”
alternative is to be used if the prices that are entered already include the value added tax.
The ”Price ex. VAT” alternative should be used if the prices that are entered do not contain the
value added tax. When the first alternative is used and the product is viewed, the price that
was entered will be shown. When the second alternative is used and the product is viewed,
the price will be the price that was entered plus the amount of VAT.

Dynamic VAT type

The dynamic VAT type does not store any fixed rate of VAT and is not configurable from
the administration interface. This VAT type is represented by an additional alternative that
is displayed in the list of VAT types when you edit your products. This alternative is called
”Determined by VAT charging rules” by default. (The name is specified by the ”DynamicVat-
TypeName” INI setting described in the ”VAT settings (page 340)” section). Choosing this
alternative (assigning the dynamic VAT type to a product) will tell the system that no fixed
VAT percentage is assigned to this product and thus the amount of VAT should be determined
dynamically using some complex VAT charging logic. For example, the amount of VAT can be
changed dynamically depending on where the customer lives.

The dynamic VAT type is incompatible with the ”Price inc. VAT” configuration. You should set
the ”Price ex. VAT” configuration for your products and specify prices that do not contain the
value added tax. Please note that this VAT type is connected with the VAT handlers mechanism
and is disabled if no handler is used.

VAT handlers

If you wish to use some complex VAT charging logic, it must be implemented in a VAT handler
i.e. PHP class providing a mechanism that determines the rate of VAT for a product dynam-
ically in accordance with the implemented logic. You can either use the built-in default VAT
handler that supports the ”Country dependent VAT” approach or extend the system by creat-
ing your own VAT handler (the ”Extended VAT” approach). Using two or more VAT handlers
at the same time is not supported.

4.8 VAT charging system 319

4

The VAT handler to use must be specified in the ”Handler” INI setting described in the ”VAT
settings (page 340)” section. To enable the built-in default VAT handler, you will have to
add the following line to the ”[VATSettings]” section in an override for the ”settings/shop.ini”
configuration file:

Handler=ezdefault

The system will start to use the default VAT handler and add the dynamic VAT type to the list
of VAT types that is displayed when you create/edit a product or product class.

Please note that dynamic VAT type is a kind of virtual structure that comes into being after
enabling a VAT handler. If no VAT handler is enabled, the dynamic VAT type is not displayed
and can not be used.

4.8.1 VAT charging system / Assigning VAT types to products 320

4

4.8.1 Assigning VAT types to products

To assign a VAT type to a product, edit this product and select the desired VAT type from the
drop-down list called ”VAT type” as shown in the following screenshot. This can be done for
both simple price and multi-price products (supported by both price (page 480) and multi-
price (page 472) datatypes).

(see figure 4.57)

Figure 4.57: Setting the VAT type on the object level.

The screenshot above shows a part of the object edit interface for a simple price product
called ”Persian”. Since the price value is set to $1,250 and the ”Price inc. VAT” configuration
is selected, the actual product price displayed to a customer will be $1,250. If you assign the
25% static VAT to this product then the amount of VAT will be $250.

If you then select the ”Price ex. VAT”configuration then the amount of VAT will be calculated
like this:
1,250.00 * 25 / 100 = 312.50

The actual product price for customers will be calculated like this:
1,250.00 + 312.50 = 1,562.50

If you select the last item called ”Determined by VAT charging rules” then the dynamic VAT
type will be assigned to this product. This VAT type is only compatible with the ”Price ex.
VAT” configuration.

Default VAT type for a product class

It is possible to choose the default VAT type on the class level (when you create a new product
class or edit an existing one). This VAT type will be used by default when a new object of
this class is created. However, it will be still possible to choose another VAT type for each
individual product.

The following list reveals how you can set the default VAT type for a product class.

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and
select the ”Content” class group. You should see the list of classes assigned to this

4.8.1 VAT charging system / Assigning VAT types to products 321

4

group. Find your product class there and click the ”Edit” button located in the same line
of the list. You will be taken to the class edit interface.

2. Find the class attribute of the price or multi-price datatype. You should see a drop-down
list called ”Default VAT type” there. Select the desired VAT type from this list as shown
in the following screenshot and click the ”OK” button to save your changes. (see figure
4.58)

Figure 4.58: Setting the default VAT type on the class level.

The screenshot above shows a part of the class edit interface for a simple price product
class called ”Carpet”. Here you can select ”Price inc. VAT” or ”Price ex. VAT” as default
configuration for all newly created carpets and choose for example ”Norway general,
25%” as the default VAT type for them. Please note that you will be able to change
these default settings on the object level (for each particular carpet). If you select the
last item called ”Determined by VAT charging rules” then the dynamic VAT type will be
assigned by default to all newly created carpets. This VAT type can only be used with
the ”Price ex. VAT” configuration.

4.8.2 VAT charging system / Three approaches to VAT charging 322

4

4.8.2 Three approaches to VAT charging

The webshop system (page 167) supports the following three approaches to VAT charging:

1. VAT per product

2. Country dependent VAT

3. Extended VAT

The next subsections explain the difference between these approaches.

VAT per product

The primitive ”VAT per product” approach allows to choose one of the predefined static VAT
types when you create a new product or edit an existing one. Thus you can specify a fixed
VAT rate for each product. It is also possible to specify the default VAT type for a product class
so that this VAT type will be used by default when a new object of this class is created.

Example

Let’s say that you sell various products to Norwegian customers and need to charge the fol-
lowing rates of VAT depending on the type of goods:

• A general rate, 25% for most of the products.

• A reduced rate, 11% for food.

• A low rate, 7% for personal transport.

You will have to create these three VAT types (as described in the ”Creating a VAT type”
section) so that you can assign (page 320) an appropriate VAT type to each product.

It is also possible to create several product classes and specify different default VAT types for
them. The value specified for a product class will be selected by default for a new object of
this class.

For example, let’s say that you have created the following three product classes:

• ”Carpet” with default VAT type set to 25%

• ”Food product” with default VAT type set to 11%

• ”Motorcycle” with default VAT type set to 7%

In this case, the system will assign the 25% fixed VAT type to each newly created carpet, the
11% fixed VAT type to each newly created food product, and the 7% fixed VAT type to each
newly created motorcycle.

4.8.2 VAT charging system / Three approaches to VAT charging 323

4

Country dependent VAT

In most cases, the amount of the VAT depends on where the customer lives. The ”Country de-
pendent VAT” approach allows to charge different VAT percentage depending on the product
category (if specified) and the country the customer is from. This can be done by using the
dynamic VAT type and the built-in default VAT handler. This handler uses the VAT charging
rules to determine the appropriate VAT percentage for a product.

VAT charging rules

A VAT charging rule consists of the following components:

• User country (page 328)

• Product category (page 326) (one or more)

• VAT type

and determines which static VAT type to use in case when the customer is from the specified
country and the product belongs to one of specified categories. The administration interface
makes it possible to add, remove and modify VAT charging rules as described in the ”Managing
VAT rules (page 338)” section. The default VAT rule specified for ”Any” country and ”Any”
category determines which rate of VAT to use in case if all other VAT rules do not match.

The more exact match a rule provides for given ”country-category” pair, the higher priority it
has. In other words, the default VAT handler tries to choose the best matching VAT percentage.
To understand how this VAT choosing algorithm works, look at possible match cases and their
priorities described in the following table:

Country Category Example Priority
exact match exact match Norway-Food 4
exact match weak match Norway-Any 3
weak match exact match Any-Food 2
weak match weak match Any-Any 1

If there is no match on country and/or no match on category then the lowest (zero) priority
will be used.

Setting up country dependent VATs

If you sell for example carpets and need to levy the 16% VAT on purchases made by German
customers and 25% on purchases made from Norway then the ”VAT per product” approach is
not applicable. The following text explains how the ”country dependent VAT” approach can
be used in this particular case.

1. Enable the built-in default VAT handler as described in the ”VAT handlers” section.

2. Create the following two VAT types as described in the ”Creating a VAT type” section:

• Norway general, 25%

4.8.2 VAT charging system / Three approaches to VAT charging 324

4

• Germany general, 16%

3. Add an attribute of the country (page 439) datatype to your user class and specify its
identifier in the ”UserCountryAttribute” INI setting as described in the ”Adding a country
attribute to a user class” section.

4. Create the following two VAT rules as described in the ”Creating a VAT rule” section:

User country Product category VAT type
Norway Any Norway general, 25%
Germany Any Germany general, 16%

The system will also ask you to create the default VAT rule that will be applied to
customers from all other countries.
Since you sell only one type of goods, there is no need to create product categories. The
VAT rules specified for ”Any” product category will be applied to all your products.

5. To make your products affected by the VAT charging rules, you should assign the dy-
namic VAT type to them as described in the ”Assigning VAT types to products (page
320)” section.

Setting up country and category dependent VATs

If your webshop sells various types of products with different rates of VAT then the rate of
VAT will depend on both user country and product category. This means that you will have
to create product categories, assign them to your products and specify VAT rules for these
product categories (not for ”Any” category as described in the previous section).

For example, let’s say that you sell various products to Norwegian and German customers and
need to charge the following rates of VAT depending on the type of goods:

• Germany

– A general rate, 16% for most of the products.

– A reduced rate, 7% for food.

• Norway

– A general rate, 25% for most of the products.

– A reduced rate, 11% for food.

– A low rate, 7% for personal transport.

The following text explains how the ”country dependent VAT” approach can be used in this
particular case.

1. Enable the built-in default VAT handler as described in the ”VAT handlers” section.

2. Create the following four VAT types as described in the ”Creating a VAT type” section:

• Norway general, 25%

• Germany general, 16%

• Norway reduced, 11%

4.8.2 VAT charging system / Three approaches to VAT charging 325

4

• Norway low, Germany reduced, 7%

3. Add an attribute of the country (page 439) datatype to your user class and specify its
identifier in the ”UserCountryAttribute” INI setting as described in the ”Adding a country
attribute to a user class” section.

4. Add an attribute of the product category (page 482) datatype to your product class and
specify its identifier in the ”ProductCategoryAttribute” INI setting as described in the
”Adding a product category attribute to a product class” section.

5. Create the following two product categories as described in the ”Creating a product
category” section:

• Food

• Personal transport

6. Create the following five VAT rules as described in the ”Creating a VAT rule” section:

User country Product category VAT type
Germany Food Norway low, Germany re-

duced, 7%
Germany Any Germany general, 16%
Norway Personal transport Norway low, Germany re-

duced, 7%
Norway Food Norway reduced, 11%
Norway Any Norway general, 25%

The system will also ask you to create the default VAT rule for any category and any
country (this VAT rule will be used in case if none of the other VAT rules is applicable).

7. Assign the dynamic VAT type to your products (as described in the ”Assigning VAT types
to products (page 320)” section) and assign the appropriate product category to each
of them (as described in the ”Assigning a category to a product” section).

Extended VAT

If you need more complicated VAT charging logic for your webshop, you can extend the system
by creating your own VAT handler for special needs. This approach is incompatible with the
previous one because using two or more VAT handlers at the same time is not supported. The
”Handler” INI setting described in the ”VAT settings (page 340)” section determines the VAT
handler to use.

The VAT charging logic implemented by your handler will be applied to all products that have
the dynamic VAT type assigned. Keep in mind that dynamic VAT type does not work with
”Price inc. VAT” configuration.

Please refer to the ”Creating new VAT handlers (page 342)” section for more information.

4.8.3 VAT charging system / Product category 326

4

4.8.3 Product category

The ”Country dependent VAT” approach supposes that each of your products can be assigned
a product category. The next subsections reveal how this can be achieved. The administration
interface makes it possible to add, remove and rename product categories as described in the
”Managing product categories (page 335)” section.

Adding new attribute to a product class

It is necessary to add an attribute of the product category (page 482) datatype to your product
class otherwise it will be impossible to assign a category to a product. The following text
reveals how this can be done.

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and
select the ”Content” class group. You should see the list of classes assigned to this
group. Find your product class there and click the ”Edit” button located in the same line
of the list. You will be taken to the class edit interface.

2. Select the ”Product category” datatype from the drop-down list located in the bottom,
click the ”Add attribute” button and edit the newly added attribute as shown below. The
following screenshot shows the fragment of the class edit interface with newly added
attribute of the product category (page 482) datatype. (see figure 4.59)

Figure 4.59: Class attribute edit interface for the ”Product category” datatype.

The system will add a drop-down list called ”Category” (the name of the newly added
attribute) in the object edit interface for products. You can assign a category to the
product that is being edited by selecting the desired category from this list.

3. Specify the identifier of the newly added attribute in the ”ProductCategoryAttribute” set-
ting located under the ”[VATSettings]” section of an override for the ”settings/shop.ini”
configuration file.

Assigning a category to a product

If your product class contains an attribute of the product category (page 482) datatype then
you can assign a category to a product when editing this product. To do this, edit this product

4.8.3 VAT charging system / Product category 327

4

and select the desired category from the drop-down list called ”Category” as shown in the
following screenshot.

(see figure 4.60)

Figure 4.60: A fragment of the product edit interface.

Please note that product categories are always used together with the dynamic VAT type (as
you can see in the screenshot above the last item called ”Determined by VAT charging rules”
is selected). There is no point to select a category for a product with fixed VAT rate.

4.8.4 VAT charging system / User country 328

4

4.8.4 User country

The ”Country dependent VAT” approach supposes that each of your users can be assigned
a country. The next subsections reveal how this can be achieved. Please note that the list
of available countries is specified under the ”[CountrySettings]” section of the ”settings/
content.ini” configuration file.

Adding new attribute to a user class

It is necessary to add an attribute of the country (page 439) datatype to your user class
otherwise it will be impossible to assign a country to a user. The following text reveals how
this can be done.

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and
select the ”Users” class group. You should see the list of classes assigned to this group.
Find your user class there and click the ”Edit” button located in the same line of the list.
You will be taken to the class edit interface.

2. Select the ”Country” datatype from the drop-down list located in the bottom, click the
”Add attribute” button and edit the newly added attribute as shown below. The follow-
ing screenshot shows the fragment of the class edit interface with newly added attribute
of the country (page 439) datatype. (see figure 4.61)

Figure 4.61: Class attribute edit interface for the ”Country” datatype.

The system will add a drop-down list called ”Country” (the name of the newly added
attribute) in the object edit interface for users. You can assign a country to the user that
is being edited by selecting the desired country from this list.

3. Specify the identifier of the newly added attribute in the ”UserCountryAttribute” set-
ting located under the ”[VATSettings]” section of an override for the ”settings/shop.ini”
configuration file.

Assigning a country to a user

If your user class contains an attribute of the country datatype then a country can be assigned
to a user in one of the following ways:

4.8.4 VAT charging system / User country 329

4

• A new user will be asked to specify his/her country when filling in the registration form.

• A site administrator will be able to assign a country to a user when editing a user’s
details (as described in the ”Managing users” section of the ”User manual”).

• A site administrator can add a toolbar that allows a user to change his country ”on-the-
fly”.

Adding a toolbar for customers

It is recommended that you add a possibility for a user to choose his/her country ”on-the-fly”
using the ”User country” toolbar. To do this, add the following line into the ”[Toolbar right]”
section of the ”settings/siteaccess/example/toolbar.ini.append.php” file where ”example” is
your siteaccess name:

Tool[]=user_country

This setting instructs the system to display the country selection toolbar on the right. When
a user selects a country, the system will immediately update product prices according to the
VAT rules specified for the selected country.

In order to avoid problems with content caching, you will have to specify ”user preferred
country” in the ”CachedViewPreferences (page 1422)[full]” setting for all siteaccesses. To
do this, open the ”site.ini.append.php” configuration file located in the ”settings/siteaccess/
example” directory (replace ”example” with the actual name of the siteaccess) and edit it. If
the ”[ContentSettings]” section of the configuration file already contains something like

CachedViewPreferences[full]=<list_of_user_preferences>

then you will have to append a semicolon and ”user preferred country” at the end of the line,
for example:

CachedViewPreferences[full]=admin_navigation_content=0;

admin_navigation_details=0;<...>;admin_bookmarkmenu=1;

admin_left_menu_width=13;user_preferred_country=’’

Note that this configuration line tends to be very long. It is simplified in the example above
(a lot of settings were replaced with <...> in order to keep things short).

If the ”[ContentSettings]” section does not contain a line that starts from ”CachedViewPref-
erences[full]”, create it:

CachedViewPreferences[full]=user_preferred_country=’’

If this setting is not specified, your customers will have problems when changing the country
(the interface will not be updated because of the cache problem).

4.8.4 VAT charging system / User country 330

4

Using alternative country datatypes

There is an additional possibility to use an alternative country datatype instead of the built-in
country (page 439) datatype. This means that you can integrate an alternative datatype to the
system so that the user’s country will be stored in the same way by the datatype, by the VAT
rules management interface and by the shop user registration module (shop/userregister).
The following list reveals how this can be achieved.

1. Make sure your datatype’s content is either a hash having ”value” key or an object
capable of getting and setting ”value” attribute (like eZPersistentObject). It doesn’t
matter how the content is actually stored to database, but objectAttributeContent()
method must return an array/object. The returned value (usually a country code) is
then compared to VAT rules’ countries.

2. Override the ”view.tpl” and ”edit.tpl” templates located in the ”templates/shop/country”
directory of the standard design in your datatype extension so that countries can be dis-
played and edited in the VAT rules management interface and the shop user registration
module.

4.8.5 VAT charging system / Displaying VATs on the actual site 331

4

4.8.5 Displaying VATs on the actual site

The next subsections explain the way in which the VATs are displayed on the actual site in
case of using the ”VAT per product” and/or ”Country dependent VAT” approach.

VAT per product

Let’s say that a fixed rate of VAT is assigned to each product. When a user is viewing a product
page, the system displays price including VAT for this product. A user can add products to his
shopping basket where the VAT percentage will be displayed for each product. A user should
click the ”Checkout” button to make an order.

After clicking the ”Checkout” button a user will be asked to specify his/her name, email,
country and other details needed for customer account and this particular order. This infor-
mation is handled by the shop account handler that is specified under the ”[AccountSettings]”
section of the ”settings/shopaccount.ini” configuration file. Choosing a country is usually re-
quired (this behavior does not depend on the ”RequireUserCountry” INI setting described in
the ”VAT settings (page 340)” section).

Information about the specified country will be stored in the system together with the cus-
tomer’s order. A customer is determined by his unique email, i.e. orders with different emails
will belong to different customers. The customer’s account contains information about the
country that was specified in the first order made by this customer. Please note that a customer
account is a special data structure that is used in the webshop system and is not connected
with the actual user object.

If you have added an attribute of the country (page 439) datatype to your user class then it
is possible to assign a country to a user. This can be done automatically when the user makes
his first order if the attribute identifier is specified it in the ”UserCountryAttribute” INI setting.
Please note that this functionality is generally unneeded for ”VAT per product” approach and
thus it is disabled if no VAT handler is enabled. Moreover, the system will not automatically
change the user’s country if it is already set (the user’s country can be set when filling in the
user registration form, editing the user object or choosing a country from the toolbar).

Country dependent VAT

Let’s say that you use the ”country dependent VAT” approach, your user class contains an
attribute of the country (page 439) datatype and its identifier is specified in the ”UserCoun-
tryAttribute” INI setting.

When a user is viewing a product page, the system will display price including VAT for this
product. A user can add products to his shopping basket where the VAT percentage will
be displayed for each product. After clicking the ”Checkout” button a user will be asked to
specify his/her name, email, country and other details needed for customer account and this
particular order. The system will automatically re-calculate VATs using the best matching VAT
rules for the specified country and include these VATs into the final product prices that are
displayed on the ”Confirm order” page.

If a country is assigned to a user, the system will calculate the amount of VAT for a product
being viewed using the best matching VAT rule for user country and product category. If a
user selects another country after clicking the ”Checkout” button (not the country assigned to

4.8.5 VAT charging system / Displaying VATs on the actual site 332

4

this user), this country will not be assigned to the user but will be used only for this particular
order.

If no country is assigned to a user then the amount of VAT for a product being viewed will
be calculated using the default VAT rule. The country specified by user after clicking the
”Checkout” button will be automatically assigned to this user.

4.8.6 VAT charging system / Managing VAT types 333

4

4.8.6 Managing VAT types

This section describes how you can add, remove and modify static VAT types (page 318) using
the administration interface.

Creating a VAT type

It is necessary to create the VAT types in order to use value added taxes in your webshop
system. The following list reveals how this can be done.

1. Click the ”Webshop” tab in the administration interface and select the ”VAT types” link
on the left. You will be taken to the interface displaying the list of existing VAT types as
shown in the following screenshot. This interface can also be accessed by requesting ”/
shop/vattype” in the URL. (see figure 4.62)

Figure 4.62: The list of VAT types.

Click the ”New VAT type” button. The system will add a new list item called ”VAT type
1” with default percentage 0%.

2. Specify the desired name and percentage for this VAT type (see the next screenshot).
(see figure 4.63)

Figure 4.63: The newly added VAT type in the list of VAT types.

3. Click the ”Apply changes” button to save your changes or click the ”New VAT type”
button to continue adding new VAT types.

4.8.6 VAT charging system / Managing VAT types 334

4

Editing a VAT type

If you wish to modify one of your VAT types, do the following:

1. Open the list of VAT types by clicking the ”Webshop” tab in the administration interface
and selecting the ”VAT types” link on the left.

2. Specify the desired percentage and/or name for the VAT type you wish to modify (this
can be done for several VAT types at the same time).

3. Click the ”Apply changes” button to save your changes.

Removing a VAT type

You are not allowed to remove a VAT type that is used as ”default VAT type” for your product
class. Removing a VAT type that is assigned to your products and/or used by your VAT rules
is possible but not recommended. (These VAT rules will be removed and the default VAT
type will be assigned to the products.) In most cases, you should change the name and/or
percentage of the VAT type instead of removing it from the system.

Please note that you are not allowed to remove all the VAT types. If you do not wish to charge
any VAT for your products then just leave one VAT type and set its percentage to zero.

The following text reveals how to remove one or more VAT types from the webshop system.

1. Open the list of VAT types by clicking the ”Webshop” tab in the administration interface
and selecting the ”VAT types” link on the left.

2. Use the checkboxes to select the VAT types that you wish to remove. Do not select all
the VAT types.

3. Click the ”Remove selected” button.

4. If some of your products use this VAT type and/or some of your VAT rules are based on
this VAT type, the system will display a confirmation dialog as shown in the following
screenshot.

(see figure 4.64)

Figure 4.64: The confirmation dialog.

4.8.7 VAT charging system / Managing product categories 335

4

4.8.7 Managing product categories

This section describes how you can add, remove and modify product categories (page 326)
using the administration interface.

Creating a product category

The administration interface allows you to add new product categories to the webshop sys-
tem. The following text reveals how this can be done.

1. Click the ”Webshop” tab in the administration interface and select the ”Product cate-
gories” link on the left. You will be taken to the interface displaying the list of existing
product categories as shown in the following screenshot. This interface can also be
accessed by requesting ”/shop/productcategories” in the URL. (see figure 4.65)

Figure 4.65: The list of product categories.

Click the ”New product category” button. The system will add a new list item called
”Product category 1”.

2. Specify the desired name for this category (see the next screenshot). (see figure 4.66)

Figure 4.66: The newly added category in the list of product categories.

3. Click the ”Apply changes” button to save your changes or click the ”New product cate-
gory” button to continue adding new categories.

Editing a product category

If you wish to change the name of a product category, do the following:

4.8.7 VAT charging system / Managing product categories 336

4

1. Open the list of categories by clicking the ”Webshop” tab in the administration interface
and selecting the ”Product categories” link on the left.

2. Edit the name of the product category (this can be done for several categories at the
same time).

3. Click the ”Apply changes” button to save your changes.

Removing a product category

Removing a category that is assigned to your products and/or used by your VAT rules is
possible but not recommended. In most cases, you should change the name of the category
or VAT rules specified for this category instead of removing it from the system. Removing a
category will not result in removing all products that belong to this category. The system will
unset the ”category” attribute for these products and modify or remove the VAT rules specified
for this category.

Example

Let’s say that you have the following VAT rules (see the next table).

User country Product category VAT type
Any Chocolate, Coffee, Juice Norway reduced, 7%
Any Shampoo Norway general, 25%

If you remove the ”Shampoo” category, the last VAT rule will be removed. If you remove the
”Chocolate” category, the first VAT rule will be modified as shown in the following table:

User country Product category VAT type
Any Coffee, Juice Norway reduced, 7%

The following text reveals how you can remove the product category.

1. Open the list of categories by clicking the ”Webshop” tab in the administration interface
and selecting the ”Product categories” link on the left.

2. Use the checkboxes to select the categories that you wish to remove.

3. Click the ”Remove selected” button. If there are products and/or VAT rules assigned to
this category, the system will display the removal confirmation dialog as shown in the
following screenshot. Click ”OK” to confirm the removal. (see figure 4.67)

4.8.7 VAT charging system / Managing product categories 337

4
Figure 4.67: The confirmation dialog.

4.8.8 VAT charging system / Managing VAT rules 338

4

4.8.8 Managing VAT rules

The next subsections describe how you can add, remove and modify the VAT charging rules
from the administration interface.

Creating a VAT rule

The administration interface allows you to add new VAT charging rules to the webshop sys-
tem. The following text reveals how this can be done.

Please note that it is recommended (but not required) to create static VAT types (page 318)
and product categories (page 326) (if needed) before creating your VAT charging rules.

1. Click the ”Webshop” tab in the administration interface and select the ”VAT rules” link
on the left. You will be taken to the interface displaying the list of existing VAT rules as
shown in the following screenshot. This interface can also be accessed by requesting ”/
shop/vatrules” in the URL. (see figure 4.68)

Figure 4.68: The list of VAT charging rules.

Click the ”New rule” button. The system will bring up the VAT rule edit interface (look
at the next screenshot). (see figure 4.69)

Figure 4.69: The VAT charging rule edit interface.

2. Specify the desired parameters in the following way:

• Choose the desired country from the drop-down list. The VAT rule will be used for
customers from this country.

4.8.8 VAT charging system / Managing VAT rules 339

4

• Select one or more product categories that will be affected by the VAT rule.

• Choose one of the static VAT types from the drop-down list in the bottom. The
selected VAT type determines the actual VAT percentage that will be used.

• Click the ”Create” button.

The new VAT rule will appear in the list as shown in the screenshot below. (see figure
4.70)

Figure 4.70: The newly created VAT rule in the list of VAT charging rules.

Editing a VAT rule

The following text reveals how you can edit a VAT charging rule.

1. Open the list of VAT charging rules by clicking the ”Webshop” tab in the administration
interface and selecting the ”VAT rules” link on the left.

2. Find the desired VAT rule and click the ”Edit rule” button located in the same table row.

3. The system will bring up the VAT rule edit interface. Specify the desired parameters and
click the ”Store changes” button.

Removing a VAT rule

The following text reveals how you can remove a VAT rule.

1. Open the list of VAT rules by clicking the ”Webshop” tab in the administration interface
and selecting the ”VAT rules” link on the left.

2. Use the checkboxes to select the VAT rules that you wish to remove.

3. Click the ”Remove selected” button.

4.8.9 VAT charging system / VAT settings 340

4

4.8.9 VAT settings

The ”[VATSettings]” section of the ”settings/shop.ini” configuration file defines the VAT han-
dler that will be used for assigning the value added taxes to your products. Under this section,
the following settings can be specified:

• The ”Handler” setting specifies the VAT handler that will be used.

• The ”RepositoryDirectories[]” array specifies the directories where eZ publish will
search for built-in VAT handlers.

• The ”ExtensionDirectories[]” array specifies the extension directories where eZ pub-
lish will search for additional VAT handlers. By default eZ publish will search in the
”vathandlers” subdirectory inside your extension.

• The ”UserCountryAttribute” setting specifies the identifier of the user country content
attribute.

• The ”ProductCategoryAttribute” setting specifies the identifier of the product category
content attribute.

• The ”RequireUserCountry” setting is set to true by default so that the system will always
require a user country. If set to false, no error messages will be displayed in case if user
country is not specified.

• The ”DynamicVatTypeName” setting specifies how the system will display the name of
the dynamic VAT type. This alternative is called ”Determined by VAT charging rules”
by default. You can specify for example ”Dynamic VAT”, ”Country dependent VAT”,
”Extended VAT” or ”My own VAT” in this setting. The system will use this name for the
last item in the drop-down list of VAT types located in the class/object view and edit
interfaces.

Example 1

The following lines can be specified under the ”[VATSettings]” section of the ”shop.ini” con-
figuration file:

[VATSettings]

Handler=ezdefault

RepositoryDirectories[]=kernel/classes/vathandlers

These settings will instruct eZ publish to use the built-in update handler located at ”kernel/
classes/vathandlers/ezdefaultvathandler.php”.

Example 2

You can extend the system by creating custom VAT handlers for special needs. For example, if
you have an extension ”myextension” that includes a VAT handler ”myrule”, you can put the
following lines into an override for the ”shop.ini” configuration file:

4.8.9 VAT charging system / VAT settings 341

4

[VATSettings]

Handler=myrule

ExtensionDirectories[]=myextension

or

[VATSettings]

Handler=myrule

RepositoryDirectories[]=extension/myextension/vathandlers

These settings will instruct eZ publish to use the VAT handler located at ”extension/
myextension/vathandlers/myrulevathandler.php”.

4.8.10 VAT charging system / Creating new VAT handlers 342

4

4.8.10 Creating new VAT handlers

This section reveals some helpful tips for those developers who want to create a new VAT
handler (only for people who are familiar with PHP). Please note that it is not recommended
to modify the eZ publish kernel and thus you should implement it as an extension.

Handler interface

This section describes some implementation details that can be useful for PHP developers.

A VAT handler is a file that contains a class implementing the following method:

/**

*

* \public

* \static

* \param $object The product content object.

* \param $country Country the buyer is from, or false if not specified.

* \return VAT percent (integer), or null in case of an error.

*/

mixed function getVatPercent(eZContentObject $object, mixed $country);

A handler is not called directly but via eZVATManager class. Method getVAT() of that class
returns the VAT percentage that should be charged for a given product:

$vatPercent = eZVATManager::getVAT($object, $country);

All that getVAT() method does is invoking getVatPercent() method of the handler specified in
the ”Handler” INI setting.

The next subsection explains how you can implement your own VAT handler.

Creating your own handler

Let’s say that you need to determine the VAT percentage for a product depending on the
section this product belongs to. You can create your own VAT handler called ”mysectionbased”
as described below.

1. Create the following subdirectories in the ”extension” directory of your eZ publish in-
stallation:

• myextension

• myextension/settings

• myextension/vathandlers

2. Create a file called ”mysectionbasedvathandler.php” in the ”myextension/vathandlers/”
directory (this file must contain a PHP class called ”MySectionBasedVATHandler”) and
add the following lines into it:

4.8.10 VAT charging system / Creating new VAT handlers 343

4

<?php

class MySectionBasedVATHandler

{

/**

* \public

* \static

*/

function getVatPercent($object, $country)

{

$section = $object->attribute(’section_id’);

if ($section == 1)

$percentage = 10;

else

$percentage = 20;

return $percentage;

}

}

?>

3. Create a file called ”shop.ini.append.php” in the ”myextension/settings” directory and
add the following lines into it:

[VATSettings]

ExtensionDirectories[]=myextension

Handler=mysectionbased

RequireUserCountry=false

DynamicVatTypeName=Section based VAT

This will instruct eZ publish to use the VAT handler located at ”extension/myextension/
vathandlers/mysectionbasedvathandler.php”. Since the VAT percentage determined by
this handler does not depend on user country, the ”RequireUserCountry” setting must
be set to false. Since this handler does not use the VAT rules, it is reasonable to display
the name of the dynamic VAT type as ”Section based VAT” (not ”Determined by VAT
charging rules”). This is done by using the ”DynamicVatTypeName” setting.

4. To activate your extension in eZ publish, log in to your eZ publish administration inter-
face, click on the ”Setup” tab, and then click ”Extensions” on the left. You will see the
list of available extensions. Select the ”myextension” item and click the ”Apply changes”
button.

4.9 Improved shipping handling 344

4

4.9 Improved shipping handling

eZ publish 3.8 makes it possible to define custom shipping options for your webshop (e.g. the
cost of shipping may depend on the product properties). This could be done by implementing
a shipping handler i.e. PHP class providing a mechanism that keeps shipping information for a
product collection (basket or order) and calculates the cost of shipping for it. eZ publish does
not include any built-in shipping handlers so you will need to extend the system by creating
your own shipping handler in order to add shipping options for your webshop. Using two
or more shipping handlers at the same time is not supported (within one siteaccess). The
shipping handler to use must be specified in the ”Handler” INI setting described in the ”INI
settings” subsection.

When a user is viewing a product page, no shipping cost will be displayed and included
into product price. After adding some products to the basket the system will calculate their
shipping cost that will be shown under the list of items and included into order total. A
shipping handler returns not only shipping cost but also shipping options summary and a
link to the shipping management interface where shipping options can be modified. This
information will be displayed in the basket together with the shipping cost. The system will
also show shipping cost and shipping options summary when asking a user to confirm his/
her order and in the order view interface for site administrators.

INI settings

The ”[ShippingSettings]” section of the ”settings/shop.ini” configuration file defines the ship-
ping handler that will be used for calculating the cost of shipping for your products. Under
this section, the following settings can be specified:

• The ”Handler” setting specifies the shipping handler that will be used.

• The ”RepositoryDirectories[]” array specifies the directories where eZ publish will
search for built-in shipping handlers.

• The ”ExtensionDirectories[]” array specifies the extension directories where eZ publish
will search for additional shipping handlers. By default eZ publish will search in the
”shippinghandlers” subdirectory inside your extension.

Example 1

The following lines can be specified under the ”[ShippingSettings]” section of the ”shop.ini”
configuration file:

[ShippingSettings]

Handler=ezcustom

RepositoryDirectories[]=kernel/classes/shippinghandlers

These settings will instruct eZ publish to use the shipping handler located at ”kernel/classes/
shippinghandlers/ezcustomshippinghandler.php”.

4.9 Improved shipping handling 345

4

Example 2

If you have an extension ”myextension” that includes a shipping handler ”mycost”, you can
put the following lines into an override for the ”shop.ini” configuration file:

[ShippingSettings]

Handler=mycost

ExtensionDirectories[]=myextension

or

[ShippingSettings]

Handler=mycost

RepositoryDirectories[]=extension/myextension/shippinghandlers

These settings will instruct eZ publish to use the VAT handler located at ”extension/
myextension/shippinghandlers/mycostshippinghandler.php”.

Creating new shipping handlers

This section reveals some helpful tips for those developers who want to create a new shipping
handler (only for people who are familiar with PHP). Please note that it is not recommended
to modify the eZ publish kernel and thus you should implement it as an extension.

Implementation details

A shipping handler is a file that contains a class implementing the following methods:

/**

* Invoked to get shipping information for given product collection.

* \public

* \static

*/

function getShippingInfo($productCollectionID);

/*

* Invoked when shopping basket contents is changed

* to update shipping info/cost appropriately.

* \public

* \static

*/

function updateShippingInfo($productCollectionID);

/**

* Invoked when the associated product collection is removed

* to clean up shipping information.

* \public

* \static

4.9 Improved shipping handling 346

4

*/

function purgeShippingInfo($productCollectionID);

A handler is called via eZShippingManager class that has the same methods.

$shippingInfo = eZShippingManager::getShippingInfo($productCollection);

All that getShippingInfo() method does is invoking getShippingInfo() method of the shipping
handler that is specified in the ”Handler” INI setting. This method returns shipping informa-
tion for a given product collection as a hash containing the following elements:

Name Type Description
description string Shipping options summary.
cost integer Shipping cost for given set

of products.
management link string Link to the shipping man-

agement interface where
shipping options can be
modified.

The next subsection explains how you can implement your own shipping handler.

Creating your own handler

The following text describes the implementation of a trivial shipping handler for demonstra-
tion purposes.

1. Create the following subdirectories in the ”extension” directory of your eZ publish in-
stallation:

• myextension

• myextension/settings

• myextension/shippinghandlers

2. Create a file called ”mycostshippinghandler.php” in the ”myextension/
shippinghandlers/” directory (this file must contain a PHP class called ”MyCost-
ShippingHandler”) and add the following lines into it:

<?php

class MyCostShippingHandler

{

function getShippingInfo($productCollectionID)

{

return array(

’description’ => ’Manual’,

’cost’ => 10,

’management_link’ => ’/shop/basket/’ // dummy

);

}

4.9 Improved shipping handling 347

4

function purgeShippingInfo($productCollectionID)

{

// nothing to purge

}

function updateShippingInfo($productCollectionID)

{

// nothing to update

}

}

?>

3. Create a file called ”shop.ini.append.php” in the ”myextension/settings” directory and
add the following lines into it:

[ShippingSettings]

Handler=mycost

ExtensionDirectories[]=myextension

4. To activate your extension in eZ publish, log in to your eZ publish administration inter-
face, click on the ”Setup” tab, and then click ”Extensions” on the left. You will see the
list of available extensions. Select the ”myextension” item and click the ”Apply changes”
button.

This will make the system add the fixed cost of shipping to any set of products being purchased
from your site.

If you need more complicated shipping options, you can try to use the advanced example
from http://ez.no/community/contribs/examples/sample shipping handler or develop your
own shipping handler.

http://ez.no/community/contribs/examples/sample_shipping_handler

4.10 Multi-currency 348

4

4.10 Multi-currency

The purpose of this section is to introduce and describe the multi-currency feature available
in eZ Publish 3.8. People previously unfamiliar with eZ Publish webshop subsystem should
read the ”Webshop (page 167)” section of the ”Concepts and basics” chapter first. The next
sections will help you to understand the following issues:

• The concept of custom prices and auto prices

• What the base custom price is

• How to specify your own price rounding criteria for auto prices

• How the currency rates can be used (auto rates and custom rates)

• What the base currency is

• How to manage your currencies

• What the preferred currency is

• How to use additional view templates for multi-price products

• The purpose of the ”Products overview” interface

• How to use the default exchange rates update handler

• How to create your own handler for rates updating

• How to convert all your products to multi-price format

4.10.1 Multi-currency / Custom prices and auto prices 349

4

4.10.1 Custom prices and auto prices

The multi-price datatype (page 472) allows you to set prices in multiple currencies for each
product. If you use for example five currencies then a product will always have five prices.
However, you don’t have to enter all these prices manually although it is possible. It is
required that you specify at least one price per product which is called base custom price (base
price for short). The system will automatically convert it using the appropriate rates (page
354) in order to calculate prices in other currencies (the rest four prices in our example).
These are called auto prices. In contrast to these, prices that are specified manually are called
custom prices.

Custom prices are fully independent of the currency rates (page 354). By saying ”base custom
price” we mean a special custom price that is used for calculating the auto prices. All other
custom prices will be called non-base. Please note that non-base custom prices are indepen-
dent of the base price. If you change the base price, the system will automatically update all
the auto prices for this product but not the custom prices. If you change a non-base custom
price, no automatic updates will be done.

The auto prices are usually marked as ”(Auto)” in the object edit interface while the custom
prices aren’t. There is no special mark for a base custom price because this value usually
comes right after the auto prices and right before the non-base custom prices (if there are
any).

If you are not satisfied with the auto price value in some particular currency, you can set a
non-base custom price instead. This value will be independent of the base price.

If you remove a non-base custom price, the system will create an auto price in this currency.

If you remove the base price, the system will do the following:

• Set the earliest non-base custom price as a new base price.

• Remove the old base price and create a new auto price instead.

• Update all the auto prices in accordance with the new base price.

It is recommended that each product has at least one custom price. If you remove all the
custom prices for a product, the system will use zero auto prices in all currencies for this
product.

Example

Let’s say that you use three currencies with the rates indicated in the following table.

Currency code Currency rate
NOK 1.32015
EUR 0.16380
USD 0.19500

If you specify for example $50 as the base price, the system will automatically calculate two
auto prices for this product (look at the next screenshot).

(see figure 4.71)

These auto prices are calculated by converting $50 to Euro and Norwegian krone:

4.10.1 Multi-currency / Custom prices and auto prices 350

4

Figure 4.71: The base price in USD and two auto prices.

• EUR/USD cross rate = 0.16380 / 0.19500 = 0.84000

• price in EUR = 50*0.84=42.00

• NOK/USD cross rate = 1.32015 / 0.19500 = 6.77000

• price in NOK = 50*6.77=338.50

If you think that this product costs much more in some particular countries, for example in
Norway, you can set the desired price by creating a custom price in NOK. The result is shown
in the following screenshot.

(see figure 4.72)

Figure 4.72: The base price in USD, non-base custom price in NOK and auto price in EUR.

As you can see from the screenshot above, there are two custom prices (base $50 and non-
base 600nok) and one auto price (42). Please note that you can always remove non-base
custom prices, so that the system will automatically set auto prices instead.

If you remove the base price ($50), the non-base custom price (600 nok) will become new
base price so the system will automatically update the auto prices as shown in the screenshot
below.

(see figure 4.73)

Figure 4.73: The results of removing the base custom price.

4.10.1 Multi-currency / Custom prices and auto prices 351

4

These auto prices are calculated by converting 600 nok to Euro and US Dollars:

• EUR/NOK cross rate = 0.16380 / 1.32015 = 0.12408

• price in EUR = 600*0.12408 = 74.45

• USD/NOK cross rate = 0.19500 /1.32015 = 0.15

• price in NOK = 600*0.15 = 88.63

4.10.2 Multi-currency / Rounding auto prices 352

4

4.10.2 Rounding auto prices

The price rounding process is affected by settings which are specified in the ”[MathSettings]”
section of the ”settings/shop.ini” configuration file such as:

• RoundingPrecision

• RoundingType

• RoundingTarget

You can specify your own price rounding criteria for auto prices calculation by creating an
override for this configuration file.

RoundingPrecision

This setting specifies how many significant digits after the decimal point should be kept while
rounding. By default, the precision is set to 2. Normally, there is no need to set for example
”RoundingPrecision=3” because only two decimal digits are stored in the database for each
price.

RoundingType

This setting defines which rounding method should be used. The possible values are described
in the following table.

Setting Description Actual value Rounded value
RoundingType=round returns the closest 0.124 0.12

value
RoundingType=round returns the closest 0.125 0.13

value
RoundingType=ceil returns the 0.121 0.13

next highest value
by rounding up

RoundingType=floor returns the 0.129 0.12
next lowest value
by rounding down

RoundingType=none rounding is not 1/3 *0.333333...
used

* as long as only two decimal digits are stored in the database for each price, the result will
be 0.33

Please note that the examples above are calculated supposing that RoundingPrecision is set
to 2.

The default value of the ”RoundingType” setting is ”round”.

4.10.2 Multi-currency / Rounding auto prices 353

4

RoundingTarget

This setting allows you to force rounding to the specified target. For example, if you prefer
”retail” prices like $2.49 instead of $2.50, you can instruct the system to use 9 as the end digit
for all your auto prices.

The default value of the ”RoundingTarget” is ”false”.

Please refer to the following table for examples of usage.

Setting Actual value Rounded value
RoundingTarget=false 89.468543 89.47
RoundingTarget=5 89.468543 89.45
RoundingTarget=99 89.468543 89.99

Please note that the examples above are calculated supposing that RoundingPrecision is set
to 2 and RoundingType is set to ”round”.

Don’t forget to update auto prices for existing products after changing the rounding settings.

4.10.3 Multi-currency / Currency rates 354

4

4.10.3 Currency rates

There are two types of currency rates:

• Auto rates

• Custom rates

Auto rates

Auto rates are retrieved via automatic update of the exchange rates from the external source.
It is possible to get these rates from the website of the European Central Bank using the built-
in ”eZECB” handler or to extend the system by creating your own update handler. Please note
that you should specify the desired handler in the ”ExchangeRatesUpdateHandler” INI setting
described in the ”Exchange rates update handlers (page 373)” section, otherwise the system
will not be able to update auto rates.

An auto rate of the currency is nothing more than the amount of this currency that must be
given up in order to obtain one unit of the base currency. The base currency is determined by
the ”BaseCurrency” INI setting described in the ”Exchange rates update handlers (page 373)”
section. It is recommended (but not required) that you specify one of the existing currencies
in this setting.

The website of the European Central Bank allows to get the currency exchange rates relative
to EUR. If you use the ”eZECB” handler and set for example USD as the base currency, the
system will retrieve the exchange rates relative to EUR and then calculate the auto rates
relative to USD. Please note that you will get an error if the exchange rate for USD was not
retrieved.

Example

Let’s say that the following rates relative to EUR are indicated on the website of the European
Central Bank:

Currency Rate
NOK 7.85620
USD 1.20940
UAH not available

If you specify EUR as the base currency, the system will set the following auto rates:

Currency Auto rate
EUR 1.00000
NOK 7.85620
USD 1.20940
UAH N/A

If you do not specify the base currency, the result will be the same.

If you specify USD as the base currency, the system will calculate the auto rates relative to
USD as shown in the following table:

4.10.3 Multi-currency / Currency rates 355

4

Currency Auto rate
EUR 0.82685 (1 / 1.20940)
NOK 6.49594 (7.85620 / 1.20940)
USD 1.00000
UAH N/A

If you specify UAH as the base currency, the system will display the following error message:
”Unable to calculate cross-rate for currency-pair EUR/UAH” when trying to update the auto
rates. Since the exchange rate for UAH was not retrieved from the website of the European
Central Bank, the system will not be able to calculate the rates relative to UAH.

Custom rates

You can specify a fixed custom rate for a currency so that this value will be used instead of
the auto rate value (the auto rate will not be used and thus it will be displayed in gray color).
Please note that the custom rates must be relative to the same base currency as the auto rates.
If you have for example five currencies with auto rates relative to EUR and you wish to specify
a custom rate for one of them, make sure this rate is also relative to EUR.

If you are going to specify custom rates for all your currencies without exception, you may
use some other currency as the base one. It is recommended (but not required) that you use
one of the existing currencies as the base currency.

Example

Let’s say that you have four currencies: USD, EUR, NOK and UAH. You can consider USD as
the base currency and specify the custom rates relative to this currency, for example:

• 1 for USD

• 0.84 for EUR

• 6.52 for NOK

• 5.05 for UAH

If you then remove the ”USD” currency, the custom rates for EUR, NOK and UAH will not be
changed.

4.10.4 Multi-currency / Creating a new currency 356

4

4.10.4 Creating a new currency

The administration interface allows you to add new currencies to the webshop system. Let’s
say that you already have three currencies (USD, UAH and NOK) and you wish to add another
one (EUR). The following example demonstrates how to add EUR when you already have
USD, UAH, NOK.

1. Click the ”Webshop” tab in the administration interface, select the ”Currencies” link on
the left and click the ”New currency” button located under the list of existing currencies.
(This interface can also be accessed by requesting ”/shop/currencylist” in the URL.) (see
figure 4.74)

Figure 4.74: The list of available currencies.

The system will bring up the currency edit interface where you can specify the desired
properties for a new currency (look at the next screenshot). (see figure 4.75)

Figure 4.75: The currency edit interface.

2. Specify the currency attributes (these are described below) and click the ”Create” but-
ton. The system will add a new currency as shown in the screenshot below. (see figure
4.76)

Please note that after creating a new currency the system will automatically create zero auto
prices in this currency for all your products. It is recommended to click the ”Update au-
toprices” button when you have finished managing your currencies. This will instruct the
system to update auto prices for all products.

4.10.4 Multi-currency / Creating a new currency 357

4

Figure 4.76: The list of available currencies.

Currency code

The three-character currency code which is generally used to represent this currency (”USD”,
”EUR” and so on). This parameter is required. This code can be thought of as an unique
identifier of the currency. You can not use two currencies with the same codes. The currency
code consists of three English capital letters and often (but not always) corresponds to the
ISO 4217 standard.

Once the currency code is specified, the system will be able to display the currency name
(”European euro”, ”U.S. dollar” and so on). These currency names can be changed by provid-
ing a custom version of the ”currencynames.tpl” template which is located in the ”templates/
shop/” directory of the standard design. This template does not have any effect on the shop
functionality available for site visitors. The currency names are displayed only in the adminis-
tration interface. If you have created a new currency with unknown code for example ”ABC”
which is not listed in the ”currencynames.tpl” template, the system will display the currency
name as ”Unknown currency name”.

Currency symbol

A currency symbol is a string that will be displayed near the numerical price value (”$”, ”” and
so on). Currency symbols are used in everyday life to denote that a number is a monetary
value. This parameter is not required. If the currency symbol is not defined, the visitors who
prefer using this currency will see the numerical price values without any additional symbols.
Please note that if you are not able to type in the desired symbol then you can copy and paste
it from your browser or text editor.

Formatting locale

A formatting locale is a locale which is used for price formatting. This parameter is required.
You can choose the desired locale from the drop-down list of available locales. By default,
the current system locale is selected (this locale is determined by the ”Locale” setting located
in the ”[RegionalSettings]” section of the ”settings/site.ini” configuration file or its override).
The available locales and their settings are defined by the locale INI files located in the ”share/
locale” directory of your eZ Publish installation.

4.10.4 Multi-currency / Creating a new currency 358

4

Once the formatting locale is specified, the system will automatically format the prices us-
ing the ”DecimalSymbol”, ”ThousandsSeparator”, ”FractDigits” and ”PositiveFormat” settings
specified in the ”[Currency]” section of the locale’s INI file. Please note that the ”Symbol”,
”Name” and ”ShortName” settings defined in the same section will not have any effect in this
case.

Example

Let’s create a new currency ”ABC” and specify its properties as shown in the following screen-
shot.

(see figure 4.77)

Figure 4.77: The currency edit interface.

Since the ”ABC” code is not listed in the ”currencynames.tpl” template, the system will display
the currency name as ”Unknown currency name” (look at the next screenshot).

(see figure 4.78)

Figure 4.78: Unknown currency name in the list of currencies.

This problem can be solved by creating a custom version of the ”currencynames.tpl” which
is located in the ”templates/shop/” directory of the standard design. To do this, copy the
”currencynames.tpl” template into the ”templates/shop/” directory of the admin design and

4.10.4 Multi-currency / Creating a new currency 359

4

edit it. Add a new key/value pair to the list of pairs that are passed to the ”hash” template
operator which creates the ”set currency names” associative array as shown below:

{set currency_names = hash(’ABC’, ’AB-Currency’,

’AUD’, ’Australian dollar’,

...

’USD’, ’U.S.dollar’) }

After clearing the eZ Publish caches, the system will display the currency name as ”AB-
Currency”.

The ”eng-US.ini” configuration file located in the ”share/locale” directory contains the follow-
ing section:

[Currency]

Symbol=$

Name=US Dollar

ShortName=USD

DecimalSymbol=.

ThousandsSeparator=,

FractDigits=2

PositiveSymbol=

NegativeSymbol=-

PositiveFormat=%c%p%q

NegativeFormat=%c%p%q

Since the ”eng-US” locale is selected for the ”ABC” currency, the system will use ”.” as a
decimal symbol and ”,” as thousands separator, with 2 digits after decimal point and the cur-
rency symbol placed before the numeric value as specified in the ”DecimalSymbol”, ”Thou-
sandsSeparator”, ”FractDigits” and ”PositiveFormat” settings. (The ”Symbol”, ”Name” and
”ShortName” settings will not be used.)

Let’s say that some product costs for example 550 units in this currency. In this case, the
visitors who prefer using this currency will see the price of this product like this:

abc550.00

Custom rate

This required parameter tells the system about which rate to use for calculating auto prices
(page 349) for/in this currency. By default, the custom rate is set to 0 so the system will use
auto rate for this currency. However, it is possible to specify a non-zero fixed custom rate
value that will be used for calculating auto prices in this currency.

Rate factor

This required parameter is intended for supporting a kind of virtual rate that can be used for
calculating auto prices (page 349) in this currency. If a non-zero custom rate is specified,
the system will multiply it by rate factor in order to calculate the final rate, otherwise the
system will multiply the auto rate by this factor. The default value of the rate factor is 1. The

4.10.4 Multi-currency / Creating a new currency 360

4

following table reveals how the final rate is calculated according to the auto rate, custom rate
and rate factor values.

Custom rate Rate factor Auto rate Final rate
0 1 0.85 0.85
0 1.4 0.85 0.85*1.4=1.19
0.75 1 0.85 0.75
0.75 1.4 0.85 0.75*1.4=1.05

Status

The status of the currency can be either ”active or ”inactive”. When you create a new currency,
the status will be automatically set to ”Active”. Inactive currencies will be invisible for the site
visitors. In other words, you can hide a currency from your customers if you don’t wish them
to use this currency.

Inactive currencies are displayed in red color in the list of currencies as shown in the following
screenshot.

(see figure 4.79)

Figure 4.79: Displaying inactive currency in the list of currencies.

4.10.5 Multi-currency / Editing a currency 361

4

4.10.5 Editing a currency

The administration interface allows you to edit currencies. The following text reveals how
this can be done.

1. Open the list of currencies by clicking the ”Webshop” tab in the administration interface
and selecting the ”Currencies” link on the left. Find the target currency in the list and
click the ”Edit” button for this currency. You will be taken to the currency edit inter-
face that allows to modify the following attributes (these are described in the previous
section):

• Currency code

• Currency symbol

• Formatting locale

• Custom rate

• Rate factor

2. Specify the desired currency attributes.

3. Click the ”Store changes” button.

Changing the currency status

The currency edit interface does not support changing the statuses of the currencies. The
following text reveals how you can change the status for one or more currencies.

1. Open the list of currencies by clicking the ”Webshop” tab in the admin interface and
selecting the ”Currencies” link on the left.

2. Choose the desired status value from the drop-down list in the ”Status” column (this
can be done for several currencies).

3. Click the ”Apply changes” button to save your changes.

Changing rates for multiple currencies

You can update currency rates and/or rate factors for several currencies at the same time
using the list of currencies.

Updating auto rates

To update auto rates, do the following:

1. Open the list of currencies by clicking the ”Webshop” tab in the administration interface
and selecting the ”Currencies” link on the left.

4.10.5 Multi-currency / Editing a currency 362

4

2. If the ”Update auto rates” button is inactive, this means that the system can not update
auto rates because no update handler is specified. The following screenshot shows the
situation when the custom rates are specified for all currencies and therefore the system
will not use the auto rates. In this case, the auto rates are displayed in gray color. Since
no updates were performed, the ”N/A” marks are displayed in the ”Auto rate” column.
(see figure 4.80)

Figure 4.80: The list of currencies with disabled possibility to update auto rates.

3. Since no update handler is specified, the ”Update auto rates” button is inactive. To ac-
tivate this button, you should choose the desired handler as described in the ”Exchange
rates update handlers (page 373)” section and clear the eZ publish caches. The ”Update
auto rates” button will become active.

4. Click the ”Update auto rates” button. The auto rates will be automatically updated. (see
figure 4.81)

Figure 4.81: The list of currencies with updated auto rates.

This screenshot shows the situation when the auto rates are updated using EUR as the
base currency (the EUR auto rate value is 1.00000). As you can see, the retrieved auto
rates are still displayed in gray color because the custom rates are available. However,
you can remove the custom rates in order to enable the auto rates.

Enabling auto rates

An auto rate for a currency will not be used if a non-zero custom rate is specified. If you
remove the custom rate or set it to 0, the auto rate will be enabled. For example, if you

4.10.5 Multi-currency / Editing a currency 363

4

remove all the values from the ”Custom rate” column and click the ”Apply changes” button,
the system will start to use auto rates (look at the next screenshot).

(see figure 4.82)

Figure 4.82: The list of currencies with removed custom rates.

Please note that changing the rates will not result in updating auto prices for your products.
It is recommended to click the ”Update autoprices” button when you have finished managing
your currencies. This will instruct the system to update auto prices for all products.

Changing custom rates and/or rate factors

It is possible to change custom rates and/or rate factors for several currencies at the same
time. The following text reveals how this can be done.

1. Open the list of currencies by clicking the ”Webshop” tab in the administration interface
and selecting the ”Currencies” link on the left.

2. Set the desired custom rate in the ”Custom rate” column and/or specify the desired rate
factor value in the ”Factor” column (this can be done for several currencies).

3. Click the ”Apply changes” button to save your changes. The system will automatically
re-calculate the final rates indicated in the ”Rate” column. (see figure 4.83)

Figure 4.83: The list of currencies with one custom rate.

The screenshot above shows the list of currencies after changing the NOK custom rate
and the USD rate factor.

4.10.5 Multi-currency / Editing a currency 364

4

Please note that clicking the ”Apply changes” button will not result in updating auto prices
for your products. It is recommended to click the ”Update autoprices” button when you have
finished managing your currencies. This will instruct the system to update auto prices for all
products.

4.10.6 Multi-currency / Removing a currency 365

4

4.10.6 Removing a currency

It is possible (but not recommended) to remove currencies from the webshop system. If
you need to hide some currency from your customers, you should set its status to ”inactive”
instead of removing it from the system.

Please note that removing a currency will result in removing prices in this currency for all
products. This may cause problems if some of your products have a base price in this currency.

Example

Let’s say that some of your products have base prices in USD as shown in the following table.

Product 1 Product 2
USD 50.00 Base custom 50.00 Base custom

price price
NOK 338.50 Auto price 600.00 Non-base cus-

tom price
EUR 42.00 Auto price 42.00 Auto price

These base prices will be deleted if you remove the USD currency (see the next table).

Product 1 Product 2
NOK 0.00 Auto price 600.00 Base custom

price
EUR 0.00 Auto price 74.45 Auto price

As you can see from the table above, removing the base price may result in unwanted be-
havior like setting all the product prices to zero. That is why removing currencies is not
recommended.

The following text reveals how you can remove one or more currencies from the webshop
system.

1. Open the list of currencies by clicking the ”Webshop” tab in the administration interface
and selecting the ”Currencies” link on the left.

2. Use the checkboxes to select the currencies that you wish to remove.

3. Click the ”Remove selected” button.

4.10.7 Multi-currency / Preferred currency 366

4

4.10.7 Preferred currency

A user can select one of the active currencies as ”preferred currency”. The system will then
use this currency for the user. This can be done by requesting ”shop/preferredcurrency”
in the URL, choosing the desired currency from drop-down list and clicking the ”Set” but-
ton. There is an additional possibility to set preferred currency by requesting ”shop/
setpreferredcurrency/(currency)/NOK” in the URL (you should replace ”NOK” with the de-
sired currency code). You can either create links for different currencies on your site or add a
special toolbar as described below.

If the preferred currency is not specified, the system will use the default value specified by
the ”PreferredCurrency” setting in the ”[CurrencySettings]” section of the ”settings/shop.ini”
configuration file. It is strongly recommended that you specify one of the active currencies in
this setting.

It is possible to display only price in preferred currency to your customers when they are
viewing multi-price products (please refer to the ”Templates for viewing multi-price products”
section for more information). Note that if you do not specify one of the existing currencies
in the ”PreferredCurrency” INI setting, the system will display zero prices to the first-time
visitors of your site.

Example

Let’s say that you have two currencies: EUR, NOK and the ”settings/shop.ini” configuration
file (or an override configuration file) contains the following lines:

[CurrencySettings]

PreferredCurrency=USD

If a user visits your site for the first time, the system knows nothing about his preferred
currency and thus it will try to use the default value. However, the ”USD” currency is not
defined in your webshop system so there are no prices in this currency. The system will
display zero prices using the currency symbol taken from your locale settings.

Adding a toolbar for customers

You can add a possibility for site visitors to change their preferred currency ”on-the-fly” using
the ”Preferred currency” toolbar. To do this, add the following line into the ”[Toolbar right]”
section of the ”settings/siteaccess/example/toolbar.ini.append.php” file where ”example” is
your siteaccess name:

Tool[]=preferred_currency

This setting instructs the system to display the toolbar which is determined by the ”preferred
currency.tpl” template located in the ”templates/toolbar/full” directory of the standard de-
sign.

4.10.7 Multi-currency / Preferred currency 367

4

Preferred currency for site administrators

A site administrator can choose the preferred currency by requesting ”shop/
preferredcurrency” in the URL, choosing the desired currency from drop-down list and
clicking the ”Set” button. This interface can also be accessed by clicking the ”Webshop” tab
and selecting the ”Preferred currency” link on the left. The selected currency will be used for
displaying prices in the products overview (page 372) interface.

4.10.8 Multi-currency / Multi-price products 368

4

4.10.8 Multi-price products

An actual product is represented by a content object (with at least one node assignment) that
contains information about the product itself along with a price. The price can be represented
by an attribute that makes use of the built-in price (page 480) or multi-price (page 472)
datatype. These are special datatypes which plug more deeply into the system and connect
content objects with the webshop system. The main difference is that the price datatype
allows to specify only one price value for each object (simple price product) whereas the
multi-price datatype makes it possible to specify several price values in different currencies
for each object (multi-price product). Please note that simple price products are incompatible
with multi-currency feature.

A content class can only contain one price attribute or one multi-price attribute. There is no
way to have a simple price product and a multi-price one in the shopping basket at the same
time and it is not recommended to use both price and multi-price datatype on your site.

If you are going to use multi-price products, you should create at least one content class
containing an attribute of the multi-price (page 472) datatype as described in the next sub-
sections. Instances/objects of this class will be treated as multi-price products. If you already
have simple price products, you can automatically convert these to multi-price products as
described in the ”Upgrading your webshop (page 376)” section.

Creating a product class

Access the ”Setup” tab in the administration interface, click ”Classes” on the left, select the
”Content” class group and click the ”New class” button located in the bottom of the list. You
will be taken to the class edit interface as shown in the screenshot below.

(see figure 4.84)

Figure 4.84: The class edit interface for a product class.

Specify name, identifier, object name pattern and container flag for the newly created class

4.10.8 Multi-currency / Multi-price products 369

4

and add the desired attributes using the drop-down list located in the bottom of the class edit
interface.

Multi-price attribute

To add an attribute of the multi-price datatype, select the desired datatype from this list, click
the ”Add attribute” button and edit the newly added attribute (see the screenshot below).

(see figure 4.85)

Figure 4.85: Class attribute edit interface for the ”Multi-price” datatype.

It is recommended to specify ”price” as the identifier (this value is used in the additional view
templates). You have to select one of the predefined currencies as ”default currency”. This
currency will be used for custom prices (page 349) by default.

Example

Let’s say that there are four predefined currencies: NOK, EUR, USD, UAH, and you are creat-
ing a class called ”Products” with a multi-price attribute. If you set EUR as ”default currency”,
the system will create a base price (page 349) in EUR and auto prices in NOK, USD, UAH
for each new object of this class. When a new product is created, the system will set this
base price to 0.00 but you can specify the desired value instead (for example 50). It is also
possible to remove this price and create a new base price in some other currency (for example
$60).

After adding the attributes, click ”OK” to save the class.

Please note that if you need several different structures for storing info about your products,
you can create several multi-product classes. If you sell for example computer hardware, you
may need several content classes called ”Monitors”, ”Printers”, ”Scanners” and so on. In this
case, you will be able to filter products by class name in the products overview (page 372)
interface.

4.10.8 Multi-currency / Multi-price products 370

4

Creating a product

If you have a content class with multi-price datatype, you can create objects of this class i.e.
your multi-price products. Please refer to the ”Adding content” chapter of the ”User manual”
for more information about adding content objects.

Templates for viewing multi-price products

By default, the system will display prices in all currencies to a user. This is determined by
the default ”ezmultiprice.tpl” template located in the ”templates/content/datatype/view/”
directory of the standard design.

If you wish to display only price in the preferred currency, you can use the ”multiprice.tpl”
template located in the ”override/templates/datatype/” directory of the base design. To do
this, add the following lines to the ”override.ini.append.php” file located in the ”settings/
siteaccess/example” directory where ”example” is the name of your siteaccess (actual site but
not the administration interface):

[multiprice]

Source=content/datatype/view/ezmultiprice.tpl

MatchFile=datatype/multiprice.tpl

Subdir=templates

It is also recommended to add a possibility for site visitors to change their preferred currency
”on-the-fly” as described in the ”Adding a toolbar for customers” section.

The following templates for viewing multi-price products are also available:

• design/base/override/templates/full/multiprice product.tpl

• design/base/override/templates/line/multiprice product.tpl

• design/base/override/templates/embed/multiprice product.tpl

• design/base/override/templates/listitem/multiprice product.tpl

To use these templates, add the following lines to the ”override.ini.append.php” file:

[multiprice_product_full]

Source=node/view/full.tpl

MatchFile=full/multiprice_product.tpl

Subdir=templates

Match[class_identifier]=myproduct

[multiprice_product_line]

Source=node/view/line.tpl

MatchFile=line/multiprice_product.tpl

Subdir=templates

Match[class_identifier]=myproduct

4.10.8 Multi-currency / Multi-price products 371

4

[multiprice_product_embed]

Source=content/view/embed.tpl

MatchFile=embed/multiprice_product.tpl

Subdir=templates

Match[class_identifier]=myproduct

[multiprice_product_listitem]

Source=node/view/listitem.tpl

MatchFile=listitem/multiprice_product.tpl

Subdir=templates

Match[class_identifier]=myproduct

and replace ”myproduct” with the actual class identifier of your multi-price products. (To
check the class identifier, access the ”Setup” tab in the administration interface, click ”Classes”
on the left, select the ”Content” class group and find your multi-price product class.)

If you are going to use these templates, you will have to add the following line into the
”[ContentSettings]” section of the ”site.ini.append.php” file located in the ”settings/override/
” directory:

CachedViewPreferences[full]=user_preferred_currency=’’;

If this setting is not specified, your customers will have problems when changing the preferred
currency setting (the interface will not be updated because of the cache problem).

4.10.9 Multi-currency / Products overview 372

4

4.10.9 Products overview

A user/administrator can view all products grouped by class and sorted either by price or
name by requesting ”shop/productsoverview” in the URL. Site administrators can also access
this interface by clicking the ”Webshop” tab and selecting the ”Products overview” link on the
left.

The following screenshot shows how this interface looks like when a site administrator is
viewing products. Please note that only prices in the admin’s preferred currency (page 366)
are displayed for multi-price products.

(see figure 4.86)

Figure 4.86: The products overview interface.

Filtering by class

The screenshot above shows the situation when the products from the ”mobile phone” class
are displayed. If you wish to view products from another product class, select the desired
class name from the drop-down list and click the ”Show products” button.

Choosing the sorting order

The screenshot above shows the situation when the products are sorted alphabetically by
name. If you wish to sort products in some other order (for example by price), choose the
desired sorting parameters and click the ”Sort products” button.

4.10.10 Multi-currency / Exchange rates update handlers 373

4

4.10.10 Exchange rates update handlers

The exchange rates update handlers make it possible to retrieve the latest exchange rates
from external sources and thus update the auto rates. You should specify the desired handler
in the ”ExchangeRatesUpdateHandler” setting described in the next subsection, otherwise
the system will not be able to update the auto rates. You can either use the built-in ”eZECB”
handler for getting the exchange rates from the website of the European Central Bank or
extend the system by creating your own update handler.

Settings

The ”[ExchangeRatesSettings]” section of the ”settings/shop.ini” configuration file defines the
update handler that will be used for updating auto rates. Under this section, the following
settings can be specified:

• The ”RepositoryDirectories[]” array specifies the directories where eZ publish will
search for built-in update handlers. The exact location of the handler in the directory is
specified using the ”ExchangeRatesUpdateHandler” setting.

• The ”ExtensionDirectories[]” array specifies the extension directories where eZ publish
will search for additional update handlers. By default eZ publish will search in the
”exchangeratehandlers” subdirectory inside your extension. The exact location of the
handler in the directory is specified using the ”ExchangeRatesUpdateHandler” setting.

• The ”ExchangeRatesUpdateHandler” setting specifies the update handler that will be
used.

• The ”BaseCurrency” setting specifies the base currency for auto rates. The default value
of this setting is ”EUR”. It is recommended (but not required) that you specify one of
the existing currencies in this setting.

The ”[ECBExchangeRatesSettings]” section of the ”settings/shop.ini” configuration file de-
fines the specific settings for the ”eZECB” update handler. The combination of the ”Server-
Name”, ”ServerPort” and ”RatesURI” settings allows to specify the exact address of the XML
file containing the currency rates.

Example 1

The following lines can be specified in the ”[ExchangeRatesSettings]” section of the ”shop.ini”
configuration file:

ExchangeRatesUpdateHandler=eZECB

RepositoryDirectories[]=kernel/shop/classes/exchangeratehandlers

ExtensionDirectories[]

BaseCurrency=EUR

These settings will instruct eZ publish to use the built-in update handler located at”kernel/
shop/classes/exchangeratehandlers/ezecb/ezecbhandler.php” and use EUR as the base cur-
rency for auto rates.

4.10.10 Multi-currency / Exchange rates update handlers 374

4

Example 2

You can extend the system by creating custom update handlers for special needs. For example,
if you have an extension ”myshop” that includes an update handler ”mybank”, you can put
the following lines into an override for the ”shop.ini” configuration file:

[ExchangeRatesSettings]

ExchangeRatesUpdateHandler=mybank

ExtensionDirectories[]=myshop/classes

or

[ExchangeRatesSettings]

ExchangeRatesUpdateHandler=mybank

RepositoryDirectories[]=extension/myshop/classes/exchangeratehandlers/

These settings will instruct eZ publish to use the update handler located at”extension/
myshop/classes/exchangeratehandlers/mybank/mybankhandler.php”

Example 3

The following lines can be specified in the ”[ECBExchangeRatesSettings]” section of the
”shop.ini” configuration file:

ServerName=http://www.ecb.int

ServerPort=80

RatesURI=stats/eurofxref/eurofxref-daily.xml

These settings will instruct the eZECB handler to import the currency exchange rates from
http://www.ecb.int:80/stats/eurofxref/eurofxref-daily.xml.

Creating new handlers

This section reveals some helpful tips for those developers who want to create a new exchange
rates update handler (only for people who are familiar with PHP). Please note that it is not
recommended to modify the eZ publish kernel and thus you implement it as an extension.
The following list reveals how you can implement your own handler for rates updating.

1. Create the following subdirectories in the ”extension” directory of your eZ publish in-
stallation:

• myextension

• myextension/settings

• myextension/exchangeratehandlers

• myextension/exchangeratehandlers/mybank

4.10.10 Multi-currency / Exchange rates update handlers 375

4

2. Create a file called ”mybankhandler.php” in the ”myextension/exchangeratehandlers/
mybank” directory. This file must contain a PHP class called ”MyBankHandler”. You
should extend your class from the ”eZExchangeRatesUpdateHandler” class (kernel/
shop/classes/exchangeratehandlers/ezexchangeratesupdatehandler.php) and reimple-
ment the ”initialize” and ”requestRates” functions. The ”initialize” function is called
while creating a handler-object. It allows to initialize your handler with some preset
values (for example from INI file). The ”requestRates” function performs the actual up-
date of the rates. This function will assign an array of the retrieved rate values to the
”$RateList” member variable in the following format:

$RateList = array(’currencyCode1’ => ’rateValue1’,

.....

’currencyCodeN’ => ’rateValueN’);

3. Create a file called ”shop.ini.append.php” in the ”myextension/settings” directory and
add the following lines into it:

[ExchangeRatesSettings]

ExchangeRatesUpdateHandler=mybank

ExtensionDirectories[]=myextension

This will instruct eZ publish to use the update handler located at”extension/
myextension/exchangeratehandlers/mybank/mybankhandler.php”.

4. To activate your extension in eZ publish, log in to your eZ publish administration inter-
face, click on the ”Setup” tab, and then click ”Extensions” on the left. You will see the
list of available extensions. Select the ”myextension” item and click the ”Apply changes”
button.

4.10.11 Multi-currency / Upgrading your webshop 376

4

4.10.11 Upgrading your webshop

If you have just upgraded your eZ publish installation in order to start using multiple curren-
cies, you will need to create currencies (page 356) and convert all your products to multi-price
format using the ”convertprice2multiprice.php” script located in the ”bin/php/” directory.
Please note that you should launch this script from the root of your eZ publish installation.

The script will go through all classes and objects containing an attribute of the price (page
480) datatype and create an attribute of the multi-price (page 472) datatype instead without
changing the identifiers of the attributes, objects and classes. This means that your overrides
will still be applied to converted objects (please refer to the ”Templates for viewing multiple
products” section if you wish to display only price in the preferred currency to a customer).

It is recommended to create all the currencies (including your locale currency) and check
their exchange rates before launching the script.

Example

If your locale currency is USD, one of your simple price products costs for example $100 and
you wish to start using the multi-currency feature, you can create for example the following
three currencies:

Currency code Currency rate
EUR 1
NOK 7.9675
USD 1.2104

These rates can be for example auto rates retrieved from the website of the European central
bank.

After successful execution of the ”convertprice2multiprice.php” script the product with $100
simple price will be automatically converted to a multi-price product with one custom price
(base price) and two auto prices as shown in the following screenshot.

(see figure 4.87)

Figure 4.87: The resulting prices after product upgrading.

As you can see, the script converts the base price from USD to EUR and NOK using the existing
currency exchange rates.

If you have forgotten to create your locale currency, the script will automatically create it with
custom rate set to 1. The table of currencies will then look like this:

4.10.11 Multi-currency / Upgrading your webshop 377

4

Currency code Currency rate
EUR 1
NOK 7.9675
USD 1

These rates are incorrect (1 USD does not cost 1 EUR). The auto prices for all converted
products will be also incorrect since generated according to incorrect currency rates.

4.11 View caching 378

4

4.11 View caching

Caching is a widely used technique supposing that frequently used information is retained in
a temporary storage area for rapid access. It is extremely effective when the original data is
expensive (usually in terms of access time) to fetch or compute/generate relative to reading
the cache. Once the data is stored in the cache, future use can be made by accessing the
cached copy rather than re-fetching or re-computing the original data, so that the average
access time is lower.

eZ Publish includes a powerful caching mechanism that allows to improve system perfor-
mance. This chapter describes a fundamental part of the cache systems in eZ Publish, called
content view caching (”view caching” for short). This mechanism only works for ”view (page
692)” and ”pdf (page 676)” views of the ”content (page 575)” module.

Node view cache

This subsection describes how the view caches are generated when the nodes are accessed.

Whenever eZ Publish is requested to output information about a node (either by a system
URL or a virtual URL), it executes the program code that is associated with the ”view” view
of the ”content” module. Upon completion, the view returns a result to the module, which in
turn returns it to the rest of the system. eZ Publish automatically generates an array called
”module result” containing information about which module that was run, which view that
was called, the output that was produced and so on. The actual output of the view (i.e. the
XHTML code generated using one of the node templates (page 177)) is put to ”$module
result.content” and is included in the pagelayout (page 181) by accessing this template vari-
able:

{$module_result.content}

When the pagelayout is rendered, the {$module result.content} part will be replaced with the
actual output. If view caching is enabled, the entire result of the module will be cached. This
means that the contents of the ”module result” variable will be put into a cache file located
in the ”var/example/cache/content” directory (where ”example” is usually the name of the
siteaccess that is being used - it is set by the ”VarDir” directive in ”site.ini” or an override).

Please note that eZ Publish creates multiple view caches for the nodes based on roles and user
preferences. This means that for example different users (who are logged in, with different
permissions/preferences) will be served different caches while anonymous users and users
with the same type of permissions/preferences will be served the same file. In other words,
when view caching is on, the ”view” view of the ”content” module will only be run if the
system is unable to locate a view-cached version of the result - otherwise a cached version
will be inserted in the pagelayout. Please note that the pagelayout itself is not cached by
default.

Another thing worth noticing is that the view caches are also depending on some other pa-
rameters. For example:

• View mode

• Language

4.11 View caching 379

4

• View parameters in the URL

• Layout (for example print will be in different cache files)

• etc.

Example

Let’s say that node 46 is the company about page and the custom template ”aboutpage.tpl”
overrides the default ”node/view/full.tpl” template for this particular node.

Both the virtual URL ”http://www.mysite.com/company/about” and the system URL ”http:/
/www.mysite.com/content/view/full/46” point to this page. When one of these URLs is re-
quested, the system will execute the ”view” view of the ”content” module using ”46” as the
ID number of the node and ”full” as the view mode (page 177). The resulting XHTML code
containing the company about information will be generated using the ”aboutpage.tpl” tem-
plate. The output will be put to ”$module result.content” and then will be included in the
pagelayout.

If view caching is enabled for the ”full” view mode, the entire result of the mod-
ule will be cached in a file. The cache files get long names like for example ”46-
122bc591bf62e87a4e9ddcb5ba352bc4.cache”. Next time the company about page is being
accessed, the system will not go through the burden of executing the ”view” view of the
”content” module (generating the result, etc.) but load the cache file instead.

The $node variable

If view caching is enabled, the ”$node” variable will no longer be available in the pagelayout
after the cache is generated. If view caching is disabled, this variable might be present in the
pagelayout but should not be used (because it is not available in the pagelayout in eZ Publish
version 3.9 and later). It is recommended to use $module result for fetching the necessary
information (for example, ”$module result.node id” outputs the ID number of the node that
is being viewed).

PDF cache

The following text explains how the view cache is generated when a PDF version of a site
page (a content node) is being accessed.

Whenever eZ Publish is requested to generate a PDF version of a node, it executes the program
code that is associated with the ”pdf” view of the ”content” module. Instead of inserting the
output into the pagelayout via $module result.content, the system will fetch the actual page
content (i.e. the attributes of the object that is encapsulated by the specified node) using the
”pdf.tpl” template and generate a PDF file using ”execute pdf.tpl”. These default templates
are located in the ”templates/node/view” directory of the standard design.

If view caching is enabled for the ”pdf” view, the resulting PDF file will be cached. This
means that the system will save a copy of the actual PDF document into a cache file located
in the ”var/example/cache/content” directory (where ”example” is usually the name of the
siteaccess that is being accessed - it is controlled by the ”VarDir” directive in ”site.ini” or an
override).

4.11 View caching 380

4

Example

If node 46 is the company about page, then accessing the URL ”http://www.mysite.com/
content/pdf/46” will lead to executing the ”pdf” view of the ”content” module. The system
will generate a PDF version of the company about page and display it to the user.

If view caching is enabled for the ”pdf” view, the resulting PDF document will be cached in
a file, for example called ”46-3579d18de31e99fc84d2d9a5f113c3be.cache”. Please note that
this file can be opened using a PDF reader (in some cases it would have to be renamed to
.pdf).

4.11.1 View caching / Configuring the view cache 381

4

4.11.1 Configuring the view cache

The view caching mechanism is enabled by default. However, you probably want to turn it off
during site development (otherwise any changes being made in your custom node templates
(page 177) will not be visible on the site until you clear the caches). This can be done by
adding the following line under the ”[ContentSettings]” section in the ”site.ini.append.php”
file of your siteaccess:

ViewCaching=disabled

Please note that it is strongly recommended to re-enable the view caching when development
has finished. This can be done by changing it from ”disabled” to ”enabled”:

ViewCaching=enabled

The CachedViewModes (page 1423) setting located in the ”[ContentSettings]” section of the
”site.ini” configuration file (or an override) controls which view modes the caching will be
enabled for. The default value of this setting defines that view cache should be stored for
”full”, ”sitemap” view modes and for the ”pdf” view:

CachedViewModes=full;sitemap;pdf

If you need to disable view caching for a specific page, add the following line in the beginning
of the template that is used:

{set-block scope=root variable=cache_ttl}0{/set-block}

This will set the global variable ”cache ttl” to zero for the current template. The ”cache ttl”
variable contains the TTL (Time To Live) value as seconds. A value of 0 means that the result
should not be changed. A value of -1 means that the view cache should never expire, see the
example below.

{set-block scope=root variable=cache_ttl}-1{/set-block}

Roles

The cache files are different for dissimilar role combinations. This means that the templates
can have conditions based on roles (page 164) even when view caching is on.

User preferences

The following text describes handling of user preferences (page 1010) and the way the pref-
erences of the current user are taken into account when generating content view cache.

For example, whenever the user performs the following actions using the administration in-
terface:

• Enabling or disabling the bookmark menu (+/-)

4.11.1 View caching / Configuring the view cache 382

4

• Adjusting the horizontal size of the content structure menu (small / medium / large)

• Choosing the view mode (list / thumbnail / detailed) and ”items per page” limitation
(10 / 25 / 50) for the sub items window

• Changing the visibility of different windows (Preview / Details / Translations / Loca-
tions / Relations)

...or sets any other user preference, the system executes the ”preferences (page 857)” view
of the ”user (page 836)” module in order to save the selected value. The information about
which preference has been changed is passed using view parameters:

.../user/preferences/set/<name_of_preference>/<value>

for example

http://my.com/myadmin/user/preferences/set/admin_left_menu_width/medium

After saving the selected value, the ”preference” view of the ”user” module will redirect the
user back to the last accessed page.

If your templates of cached view modes have conditions based on user preferences, you should
specify which preferences that are used together with the different view modes - this can be
done using the CachedViewPreferences (page 1422) setting located under the ”[ContentSet-
tings]” section of the ”site.ini.append.php” configuration file.

Example

Let’s say that you are using prices in several currencies for your products and the ”node/view/
full.tpl” template is overridden for products in order to display prices in the user’s preferred
currency (page 366). If view caching is enabled for the ”full” view mode, the system will
store view cache files for the product view pages. If the cache is generated regardless of the
preferred currency, when another preferred currency is chosen, the same product page that is
being viewed will be returned (in other words, it will not change).

In order to avoid this, you need to specify the ”user preferred currency” preference in the
”CachedViewPreferences[]” array using ”full” as an array key so that the cache will be stored
for each possible preferred currency on your site. To do this, open the ”site.ini.append.php”
configuration file located in the ”settings/siteaccess/example” directory (replace ”example”
with the actual name of the siteaccess) and edit it. If the ”[ContentSettings]” section of the
configuration file already contains something like

CachedViewPreferences[full]=<list_of_user_preferences>

then you will have to append a semicolon and ”user preferred currency” at the end of the
line, for example:

CachedViewPreferences[full]=admin_navigation_content=0;

admin_navigation_details=0;<...>;admin_bookmarkmenu=1;

admin_left_menu_width=13;user_preferred_currency=’’

4.11.1 View caching / Configuring the view cache 383

4

Note that this configuration line tends to be very long. It is simplified in the example above
(a lot of settings were replaced with <...> in order to keep things short).

If the ”[ContentSettings]” section does not contain a line that starts from ”CachedViewPref-
erences[full]”, create it:

CachedViewPreferences[full]=user_preferred_currency=’’

Related siteaccesses

The RelatedSiteAccessList (page 1558) setting located under the ”[SiteAccessSettings]” sec-
tion of the ”site.ini.append.php” configuration file controls which other siteaccesses the view
cache should be cleared for when it is cleared for the current siteaccess. If this setting is
not specified, the cache subsystem will use the AvailableSiteAccessList (page 1580) setting
instead.

Please note that the AvailableSiteDesignList (page 1359) setting located under the ”[Version-
View]” section of the ”content.ini” configuration file is no longer (from eZ Publish 3.8) used
by the cache system. In 3.7 and earlier versions, it could contain an array of designs that
would be touched when the caches were cleared.

4.11.2 View caching / Clearing the view cache 384

4

4.11.2 Clearing the view cache

When a new version (also the first version) of an object is published, the system will auto-
matically clear the view cache for the following items:

• All published nodes of the object

• The parent nodes

• Nodes of related and reverse related objects that have relations at the object level (this
is controlled by the ”ClearRelationTypes (page 1670)” configuration setting)

• Nodes of other objects that have the same keyword as the object (if the ”Keywords (page
463)” datatype is used by at least one of the attributes).

This default behavior can be extended by configuring the smart viewcache cleaning system
(page 387).

Please note that clearing the view caches for a set of nodes within a certain siteaccess means
that caches for the same nodes will also be cleared on all the related siteaccesses (page 1558).

Using the administration interface

The administration interface allows you to clear the view cache for a node that is being
viewed:

1. Navigate to the node that you wish to clear the view cache for. In other words, make
sure that the target node is being displayed.

2. In the title bar of the preview window, click on an icon that indicates the node type and
select the ”Delete the view cache” item from the popup menu (shown in the following
screenshot): (see figure 4.88)

Figure 4.88: Clearing the view cache using popup menu.

You can also clear the view cache for the entire subtree (together with the node itself) by
selecting the ”Delete the view cache from here” item from the popup menu.

4.11.2 View caching / Clearing the view cache 385

4

Using the script

It is possible to clear the view cache for a specific node or subtree using the ”ezcontent-
cache.php” script located in the ”bin/php” directory of the eZ Publish installation. The fol-
lowing examples demonstrate how this can be done.

Example 1

Let’s say that node 46 is the company about page (http://www.mysite.com/company/about)
and you have made some changes to a custom template that is used for this node. If view
caching is enabled, your changes will not be seen until you clear the view cache for node 46:

1. Navigate into the eZ Publish directory.

2. Run the script using the following command:

./bin/php/ezcontentcache.php --clear-node=46

or

./bin/php/ezcontentcache.php --clear-node=/company/about

This will clear the view cache for node 46 (and for other locations of the same object, if
any), their parent nodes, nodes of objects containing the same keywords, nodes of related
and reverse related objects that have relations at the object level.
If you need to clear view caches for several nodes, specify their ID numbers (or nice URLs)
separated by commas:

./bin/php/ezcontentcache.php --clear-node=46,59,63

The script will clear all content caches related to each of the given nodes.

Example 2

Let’s say that node 72 is the company news folder (http://www.mysite.com/company/news)
containing a lot of news articles. To clear the view caches for this folder and the nodes below
it, do the following:

1. Navigate into the eZ Publish directory.

2. Run the script using the following command:

./bin/php/ezcontentcache.php --clear-subtree=72

or

4.11.2 View caching / Clearing the view cache 386

4

./bin/php/ezcontentcache.php --clear-subtree=/company/news

If you need to clear view caches for several subtrees, specify the nice URLs (or ID numbers)
of their root nodes separated by commas:

./bin/php/ezcontentcache.php --clear-subtree=/company/news,/partners

The script will then clear view caches for the specified subtrees.

4.11.3 View caching / Smart view cache cleaning 387

4

4.11.3 Smart view cache cleaning

The smart viewcache cleaning system (referred to as ”svcs” on this page) makes it possible to
set up custom rules that control which nodes the view cache should be cleared for when a
published object is changed. This feature is turned off by default and thus the system will only
clear the view cache for the following nodes when a new version of an object is published:

• All published nodes of this object

• The parent node(s)

• Nodes of the related and reverse related objects that have relations at the object level
(this is controlled by the ”ClearRelationTypes (page 1670)” configuration setting)

• Nodes of the objects that have the same keyword (if the object contains attribute(s) of
the ”Keywords (page 463)” datatype)

If you want to use the smart viewcache cleaning feature, make sure the ”view-
cache.ini.append.php” file located in the ”settings/siteaccess/example admin” directory (re-
place ”example admin” by the name of the siteaccess that is used for adding and editing
content) contains the following lines:

[ViewCacheSettings]

SmartCacheClear=enabled

These lines will instruct the system to follow the rules specified in this configuration file in
addition to the default behavior. The configuration file usually includes a single, common
settings section called ”[ViewCacheSettings]” and multiple specific sections that describe the
rules determining which additional nodes the view cache should be cleared for. These sections
are named after the class identifiers.
When a published object is changed, svcs gets its identifier as an input parameter. It checks
which class this object belongs to and looks for a section named after that class identifier in
the ”viewcache.ini” configuration file (and its overrides). The rules specified in this section
will be applied to the parent nodes that are listed in the path string (page 907) attribute
of the initially changed node. If the published object has several nodes/locations, svcs will
sequentially handle their path strings. The following list reveals how svcs will handle each
node of the published object:

1. Scan the parent nodes listed in the node’s ”path string” attribute (the maximal quantity
of nodes that will be scanned is controlled by the ”MaxParents” setting).

2. Perform the following actions for each of the parent nodes:

• Check which class the object encapsulated by that node belongs to.

• If the identifier of that class is listed in the ”DependentClassIdentifier[]” array, add
the matching parent node to the list of additional nodes.

3. If the ”ObjectFilter[]” setting is empty, clear the view caches for additional nodes.
Otherwise, check the identifiers of the objects encapsulated by additional nodes and
only clear caches for those that have their object identifiers listed in the ”ObjectFil-
ter[]” array. In both cases, the caches are cleared using the method(s) specified in the
”ClearCacheMethod[]” setting.

4.11.3 View caching / Smart view cache cleaning 388

4

The following table gives detailed description for the configuration settings mentioned above.

Name Type Description
DependentClassIdentifier An array of class identifiers Specifies which content

(not ID numbers) classes that will be consid-
ered as ”dependent classes”.
If a node encapsulating an
object of such a class is
listed in ”path string”, svcs
will add it to the list of ad-
ditional nodes. The view
cache for additional nodes
will be cleared using the
method(s) specified in the
next setting.

ClearCacheMethod An array of strings Sets which method(s) to
use when clearing the view
caches for additional nodes.
This setting is an array of
strings where only six pre-
defined values can be used
(see the next table).
Name: object
Description: Clear the view
cache for all the locations
(nodes) of the object.

Name: parent
Description: Clear the
view cache for the parent
node(s) of the object.

Name: relating
Description: Clear the view
cache for the related and
reverse related objects that
have relations at the ob-
ject level (according to the
relation types specified us-
ing the ”ClearRelationTypes
(page 1670)” configuration
setting).

Name: keyword
Description: Clear the view
cache for the objects that
have the same keyword as
this object.

Name: siblings

4.11.3 View caching / Smart view cache cleaning 389

4

Description: Clear the view
cache for all the siblings of
this node/object.

Name: all
Description: Clear the view
cache for all the listed
above.

ObjectFilter An array of object ID num- If specified, the view caches
bers will only be cleared

for those additional nodes
that encapsulate the objects
with these identifiers. If
not specified, all additional
nodes will have their view
cache cleared.

MaxParents Integer Sets how many par-
ents in ”path string” will be
checked . If not specified,
svcs will scan all the parents
listed in ”path string”.

Example 1

Let’s say that both view caching and svcs are enabled with the following part of a content
structure:

(see figure 4.89)

Figure 4.89: A part of the site content structure.

If you do not specify any rules for svcs, changing an article will lead to clearing the view
caches for all its published nodes, parent node(s), nodes of the related and reverse related
objects, nodes of the objects having the same keyword (this is the default behavior of svcs).

If the ”article2” object has only one location, does not contain any keywords and is not related
to any other objects, changing it will lead to clearing the view cache of the article itself and
the ”News” folder. The view cache of the ”About” and ”Company” nodes will not be cleared.

However, you can extend this default behavior by adding the following configuration group
to the ”viewcache.ini.append.php” configuration file of your (admin) siteaccess:

4.11.3 View caching / Smart view cache cleaning 390

4

[article]

DependentClassIdentifier[]

DependentClassIdentifier[]=folder

ClearCacheMethod[]

ClearCacheMethod[]=object

Now, if an article is changed, the system will fetch all the parent nodes of this article sequen-
tially according to its ”path string” attribute (the path string for ”article2” ends with ”/77/78/
80/82/”), check which of them are folder nodes and clear the view cache for those folders.
This means that changing ”article2” will lead to clearing the view cache of ”article2”, ”News”,
”About”, ”Company” and all the parent folder nodes that are located above the ”Company”
node.

Example 2

It is possible to limit the depth of fetching node IDs from the ”path string” attribute like this:

[article]

DependentClassIdentifier[]

DependentClassIdentifier[]=folder

ClearCacheMethod[]

ClearCacheMethod[]=object

MaxParents=2

This will tell the system to take into account only two penultimate items from the node’s path
string (i.e. parent and grandparent of the node). This means that changing ”article2” will
only lead to clearing the view caches of ”article2”, ”News” and ”About”. The view cache of
the ”Company” node and its parent folders will not be cleared.

Example 3

You can use the ”ObjectFilter[]” configuration array so that a folder node listed in ”path
string” will not be included in the list of additional nodes unless the object encapsulated by
this node is explicitly specified in the following way:

ObjectFilter[]

ObjectFilter[]=<object_id1>

ObjectFilter[]=<object_id2>

...

Assuming that the ”Company” folder object in example 1 has ID number 74 (while its node
ID is 77), you can specify the following settings in the ”viewcache.ini.append.php” of your
(admin) siteaccess:

[article]

DependentClassIdentifier[]

DependentClassIdentifier[]=folder

4.11.3 View caching / Smart view cache cleaning 391

4

ClearCacheMethod[]

ClearCacheMethod[]=object

ObjectFilter[]

ObjectFilter[]=74

If ”article2” is changed, svcs will check which of the folder nodes listed in the given path
string (nodes 80, 78, 77, ...) have their object ID numbers matching one of the values in
the ”ObjectFilter[]” array and thus only the ”Company” page will be included in the list of
additional nodes. The system will only clear view caches of ”article2”, ”News” and ”Company”
(according to the default behavior and the given svcs rules). The view cache of the ”About”
page will not be cleared because the ID number of that object is not 74.

4.11.4 View caching / Pre-generation of view cache 392

4

4.11.4 Pre-generation of view cache

The ”cache on request” approach described in the previous sections supposes that the view
cache for a page is created when this page is being accessed for the first time. The additional
”cache on publishing” functionality makes it possible to generate view cache files when a
node is being created or modified. This makes the publishing process a bit slower (not rec-
ommended for sites with lots of content editors), but reduces the access time when the pages
are being requested.

The ”cache on publishing” feature is disabled by default. This behavior is controlled by
the PreViewCache (page 1417) setting located under the ”[ContentSettings]” section of the
”site.ini” configuration file. Please note that enabling this feature will only affect the view
caches generated for the ”full” view mode. Whenever an object is published, the system will
generate the view cache for all the nodes/locations of this object and their parent nodes. The
PreCacheSiteaccessArray (page 1416) setting located at the same place controls which siteac-
cess(es) the view cache should be generated for (usually public siteaccesses that are used for
viewing content).

If you wish to create the view cache files on publishing, add the following lines to the ”[Con-
tentSettings]” section of ”settings/siteaccess/example admin/site.ini.append.php” configura-
tion file (replace ”example admin” by the name of the siteaccess that is used for creating and
editing content):

PreViewCache=enabled

PreCacheSiteaccessArray[]

PreCacheSiteaccessArray[]=example

This will enable the ”cache on publishing” feature and tell the system that the view cache
should be generated for the ”example” siteaccess. If you have a news folder containing a lot
of articles, editing one of them will lead to re-generating the view cache files of the article
itself and its parent (the news folder). When a new article is published in the folder, the
system will generate a view cache for the newly added article and re-generate the view cache
of the news folder.

Please note that the view cache will only be generated for the Anonymous user by default.
This behavior is controlled by the PreviewCacheUsers (page 1415) setting located in the
”[ContentSettings]” section of the ”site.ini” configuration file.

4.12 Notifications 393

4

4.12 Notifications

eZ Publish has a built-in notification system that allows users to be informed about miscella-
neous events that occur. It is possible to be notified when objects are updated or published,
when workflows are executed and so on.

There are two built-in types of notifications:

• Subtree notifications

• Collaboration notifications

Subtree notifications

It is possible to subscribe for notifications about a subtree. For example, if you have a set of
articles located under a folder called ”Business”, a user can subscribe for subtree notifications
for this folder. The system will then send an E-mail to the user every time changes are made
under the ”Business” folder. The following changes will trigger a notification:

• When a new node is published within the subtree.

• When the contents of an existing node is changed.

A user can choose to receive notifications in the form of a single E-mail or as a digest of
messages.

Collaboration notifications

The eZ Publish collaboration system allows you to work together with other people so that
you can approve/reject any changes they made when it comes to content. For example,
you can specify that all the changes made in the ”Standard” section (page 142) can not be
published without your approval. (This can be done by creating a new ”Approve” event
(page 975) within a new workflow (page 171) initiated by the ”content-publish-before” trig-
ger function.) If somebody (except you, the administrator) edits content located under the
”Standard” section, the system will generate new collaboration messages. For example, if
somebody changes article ”A”, the system will generate a new collaboration message ”article
A awaits your approval” for you and another collaboration message ”article A awaits approval
by editor” for the user who changed it.

To view your collaboration messages, click the ”My Account” tab in the administration inter-
face and then access the ”Collaboration” link on the left. You will be able to review/approve/
reject the changes.

You can use collaboration notifications to be notified by E-mail about new collaboration mes-
sages. The system will send you an E-mail every time a new collaboration message is gener-
ated for you.

4.12 Notifications 394

4

Processing notifications

In the root of the eZ Publish directory there is a file called ”runcronjobs.php”. It takes care of
processing the workflows, notifications and other tasks that should be processed in the back-
ground. If you are going to use the notification system, ”runcronjobs.php” must be executed
periodically. The most common way to do this is to set up a scheduled job that runs every
30-60 minutes or so. Please refer to the ”Configuring cronjobs (page 308)” and ”Running
cronjobs (page 311)” sections for more information.

In accordance with the instructions specified in the ”cronjobs/notification.php” file, ”run-
cronjobs.php” launches the main notification processing script ”kernel/classes/notification/
eznotificationeventfilter.php”.

If you need to launch this script manually, add the ”notification/runfilter” notation to the
administration interface URL and then click the ”Run notification filter” button there (see the
next screenshot).

(see figure 4.90)

Figure 4.90: The notification filter interface.

Please note that processing notifications may cause a timeout error if there is a huge amount
of notification events in the database. Because of this, the ”runfilter” view of the ”notification”
module (page 712) should only be used for testing and debugging.

4.12.1 Notifications / Using the admin interface 395

4

4.12.1 Using the admin interface

Subtree notifications

Subscribing

You can easily subscribe for subtree notifications about an object using either the context
menu or the notification settings interface.

Using the context menu

To subscribe for subtree notification for an object, you should do the following:

1. Log in to the administration interface. You should see the ”Content structure” tree on
the left where the top node is selected. The following screenshot shows how the system
will display the contents of the selected node and the list of its subitems. (see figure
4.91)

2. Locate the desired node in the ”Content structure” tree or the ”Sub items” window, click
on its icon and select ”Add to my notifications” from the context menu - this is shown
in the screenshot below. (see figure 4.92)

3. The system will add a new subtree notification and show you a confirmation: (see figure
4.93)

Using the notification settings interface

It is possible to subscribe for subtree notifications for an object by adding this object to the
”My item notifications” list located towards the bottom of the notification settings interface.
The following text reveals how this can be done:

1. Click the ”My Account” tab in the administration interface and select the ”My notifica-
tion settings” link on the left. You will be taken to the notification settings interface as
shown in the screenshot below. (see figure 4.94)

This interface can be also accessed by adding the ”/notification/settings” notation to
the site URL.

2. Look at the ”My item notifications” list located towards the bottom of the notification
settings interface. All the items that you have already subscribed for are listed here.
Click the ”Add items” button to add a new notification.

3. The system will bring up the browse interface which will allow you to select the desired
nodes: (see figure 4.95)

Use the list to select the node which encapsulates the object that you wish to be notified
about. Please note that it is possible to select multiple nodes/objects at the same time.
You can navigate the list by clicking on the names of the nodes. If the desired node is
located outside the ”Content structure” tree then simply click the up arrow icon/button
until it brings you to the root of the tree. This operation will allow you to for example

4.12.1 Notifications / Using the admin interface 396

4

Figure 4.91: Browsing the content tree.

Figure 4.92: Subscribing to subtree notifications using the context menu.

switch to the ”User accounts” tree and select user groups that are located there. The
following illustration shows the up-arrow. (see figure 4.96)

4.12.1 Notifications / Using the admin interface 397

4

Figure 4.93: The ”notification added” confirmation for administrators.

Figure 4.94: Notification settings for administrators.

It is possible to reconfigure how the list is displayed. For example, you can set the
quantity of objects per page by clicking the ”10” / ”25” and ”50” links. If you wish to
browse image objects as thumbnails, simply click the ”Thumbnail” button.

4. When you’re finished selecting the desired object(s) (simply use the checkboxes to do
this) click the ”OK” button. The system will subscribe you for subtree notifications about
these objects and add them to the ”My item notifications” list.

Setting up the digest mode

If you wish to receive the subtree notifications as a daily/weekly/monthly digest, enable the
digest mode as described below.

4.12.1 Notifications / Using the admin interface 398

4
Figure 4.95: Browsing the content tree.

Figure 4.96: The ”Up” button

1. Access the notification settings interface either by adding the ”/notification/settings”
notation to the URL or selecting ”My Account - My notification settings” in the adminis-
tration interface.

2. The digest settings are located at the top of the notification settings interface. By de-
fault, the digest mode is disabled (as shown in the screenshot below). (see figure 4.97)

Figure 4.97: Digest settings

To enable the digest mode, select the ”Receive all messages combined in one digest”

4.12.1 Notifications / Using the admin interface 399

4

checkbox and choose how often the digest should be sent to you.

• Once a day, at some fixed time (from 0:00 to 23:00).

• Once a week, on some fixed day (from Sunday to Saturday).

• Once a month, on some fixed day (from 1 to 31).

3. Click the ”Apply changes” button to save your settings.

Unsubscribing

If you no longer wish to receive notifications about an object, use the following instructions
to unsubscribe.

1. Access the notification settings interface either by adding the ”/notification/settings”
notation to the URL or selecting ”My Account” and then ”My notification settings” in
the administration interface.

2. The ”My item notifications” list located towards the bottom of the notification settings
interface contains all the items that you have already subscribed for. Use checkboxes
to select the item(s) that you no longer wish to be notified about (see the screenshot
below). (see figure 4.98)

Figure 4.98: The list of items for subtree notifications.

3. Click the ”Remove selected” button. The system will remove the selected item(s) from
the list of notifications and thus you will no longer receive any messages about that/
those object(s).

Collaboration notifications

If you’re using the collaboration system to work together with other people, you may wish to
be notified by E-mail every time a new collaboration message is created for you. In this case,
you should enable the collaboration notifications feature. The following text describes how
to do this.

1. Access the notification settings interface either by adding the ”/notification/settings”
notation to the URL or selecting ”My Account” and then ”My notification settings” in
the administration interface.

4.12.1 Notifications / Using the admin interface 400

4

2. Look at the ”Collaboration notification” section located under the digest settings. By
default, the collaboration notifications are disabled. If you wish to receive collaboration
notifications, select the ”Approval” checkbox as shown in the following screenshot. (see
figure 4.99)

Figure 4.99: Settings for collaboration notifications.

3. Click the ”Apply changes” button to save your settings. The system will then send you
an E-mail every time a new collaboration message is generated for you.

Please note that collaboration notifications do not support digest mode.

4.12.2 Notifications / Using an actual site 401

4

4.12.2 Using an actual site

Subtree notifications are available for those users who are allowed to use the ”notification”
module (page 712) by the role/policy settings. Please refer to ” Granting access to notifica-
tions (page 407)” for more information about access rights. Collaboration notifications are
only available when you’re using the administration interface.

Subscribing for subtree notifications

A user can subscribe for subtree notifications about the item that is being viewed by clicking
the ”Keep me updated” button. The following screenshot shows a forum from one of the
standard sites.

(see figure 4.100)

Figure 4.100: The ”keep me updated” button.

After clicking this button, the system will add a new subtree notification and show a confir-
mation:

(see figure 4.101)

Figure 4.101: The ”notification added” confirmation for users.

In the standard sites, the ”Keep me updated” button is always displayed on the forum pages
while other pages do not contain this button. The forum is controlled by the following tem-
plates:

• design/your siteaccess/override/templates/full/forum.tpl

• design/your siteaccess/override/templates/full/forum topic.tpl

Please refer to ” Adding the ”Keep me updated” button (page 404)” for more information
about adding the update button to other templates/pages.

4.12.2 Notifications / Using an actual site 402

4

Setting the digest mode

The notification settings can be accessed regardless of the siteaccess/design that is used (as
long as the permissions are ok). You can do the following to access the interface:

1. After logging in to the system, add the ”/notification/settings” notation to the site URL
(http://www.example.com/notification/settings) in order to access the notification set-
tings. You should see the digest settings and the ”Node notification” list (as shown in
the following screenshot). (see figure 4.102)

Figure 4.102: Notification settings for users.

2. By default, the digest mode is disabled. To enable the digest mode, select the ”Receive
all messages combined in one digest” checkbox, and choose how often the digest should
be sent to you.

• Once a day, at some fixed time (from 0:00 to 23:00).

• Once a week, on some fixed day (from Sunday to Saturday).

• Once a month, on some fixed day (from 1 to 31).

3. Click the ”Store” button to save your settings. (If you wish to discard changes, simply
click the ”Cancel” button.)

Unsubscribing

If you no longer wish to receive subtree notifications about an object, follow these instructions
to unsubscribe:

4.12.2 Notifications / Using an actual site 403

4

1. Access your notification settings by adding the ”/notification/settings” notation to the
site URL (http://www.example.com/notification/settings).

2. The ”Node notification” list located under the digest settings contains all the items that
you have already subscribed for (look at the previous screenshot). Use checkboxes to
select the item(s) that you no longer wish to be notified about.

3. Click the ”Remove” button. The system will remove the selected item(s) from the list of
notifications.

Please note that you can customize the notification settings template(s) by copying the default
templates from either the standard or the admin design and changing them to suit your site.

4.12.3 Notifications / Adding a ”Keep me updated” button 404

4

4.12.3 Adding a ”Keep me updated” button

A user can subscribe for subtree notifications for the page that is being viewed by making use
of a ”Keep me updated” button. Many of the default templates do not contain this button.
The only exception is made for the forum pages where the button code is included into the
following templates:

• design/your siteaccess/override/templates/full/forum.tpl

• design/your siteaccess/override/templates/full/forum topic.tpl

Returning to the previous example, if you have a set of articles located under a folder called
”Business”, your users will not be able to subscribe for subtree notifications for this folder as
long as there is no ”Keep me updated” button there. Please note that the user must be logged
in to make use of this feature.

You can easily add the ”Keep me updated” button by inserting the following code into the
override templates. For example, you can add this code to the ”design/your siteaccess/
override/templates/full/folder.tpl” template:

<form method="post" action={’/content/action’|ezurl}>

<input type="hidden" name="ContentNodeID" value="{$node.node_id}" />

<input type="submit" name="ActionAddToNotification" value="Keep me updated" /

>

</form>

After clearing the caches, the ”Keep me updated” button will appear every time a user is
viewing a folder. The same changes can be easily done for your articles and other content
objects.

Please note that some of the default templates may already contain a ”/content/action” form.
In this case, make sure that all the variables listed in the above code fragment are present
inside this form in the template. You can also have several forms posting data to”/content/
action”.

If you wish to have the button present in the pagelayout then you’ll have to do it a bit differ-
ently. The reason for this is that the $node variable is not present in the pagelayout.

{* Check if we have a node... *}

{if $module_result.node_id}

<form method="post" action={’/content/action’|ezurl}>

<input type="hidden" name="ContentNodeID" value="{$module_result.node_id}" /

>

<input type="submit" name="ActionAddToNotification" value="Keep me updated"

/

>

</form>

4.12.3 Notifications / Adding a ”Keep me updated” button 405

4

{/if}

4.12.4 Notifications / Customizing the E-mails 406

4

4.12.4 Customizing the E-mails

It is possible to customize the notification E-mails by modifying templates. For example, the
”plain.tpl” template located in the ”templates/notification/handler/ezgeneraldigest/view/”
directory of the standard design is the main notification template. It controls how the E-mails
will be generated.

If you need to make changes to this template, you should copy it to your custom design and
change it there. For example, you could copy it and add some additional/static text that
will appear in all E-mails that are sent out. Remember to clear the caches before testing the
changes. Please note that you should not change the default template but instead copy them
to your own design.

4.12.5 Notifications / Granting access to notifications 407

4

4.12.5 Granting access to notifications

The built-in permission system controls whether users are allowed to use notifications or not.
The following text explains how you can check and assign the necessary permissions.

Checking the access rights

The following text explains how you can view a user or a user group and check if the user or
the group is allowed to access the ”notification” module (page 712).

1. Log in to the administration interface and click the ”User accounts” tab. You should see
your users and groups on the left.

2. Select the target user/group using the tree or the ”Sub items” window. (see figure 4.103)

Figure 4.103: The usergroup view interface.

The screenshot above shows a situation when the ”Editors” user group is selected. You
can bring up a list of roles and policies assigned to this group by enabling the ”Roles”
and ”Policies” windows using the menu at the top.

3. Look at the ”Module” column in the table of policies. As long as the ”notification”
module (page 712) is not listed here, the selected user/group is not allowed to use
notifications. Please refer to the next sections for information about how you can create
a new role (that grants access to the module) and assign it to a user/group.

Creating a new role

The following text reveals how you can create a new role for granting access to notifications.

4.12.5 Notifications / Granting access to notifications 408

4

1. Click the ”User accounts” tab in the administration interface and then access the ”Roles
and policies” link on the left. You should see the list of existing roles as shown in the
screenshot below.

(see figure 4.104)

Figure 4.104: The list of roles.

2. Let’s create a new role called for example ”My notification role”. Click the ”New role”
button under the list of roles. You will be taken to the role edit interface as shown in
the following screenshot. (see figure 4.105)

Figure 4.105: Adding a new role.

3. Specify the name of the role and click the ”New policy” button.

4. The wizard will help you to create a new policy in two steps. (see figure 4.106)

The above screenshot shows the first step. Select the ”notification” module from the
dropdown list and click the ”Grant access to one function” button.

5. You will be taken to the second step as shown in the screenshot below. (see figure 4.107)

Choose the ”use” function from the dropdown list. Please note that you shouldn’t choose
the ”administrate” function because it grants access to the ”runfilter” view of the ”noti-
fication” module (page 712).

4.12.5 Notifications / Granting access to notifications 409

4

Figure 4.106: The new policy wizard, step 1.

Figure 4.107: The new policy wizard, step 2.

6. Click the ”Grant full access” button. (There is no point clicking the ”Grant limited
access” button because the functions of the ”notification” module do not support limi-
tations.)

4.12.5 Notifications / Granting access to notifications 410

4

7. The new policy will appear in the role edit interface as shown in the following screen-
shot. (see figure 4.108)

Figure 4.108: The role edit interface.

8. Click ”OK” to save your changes and go back the role view interface. (see figure 4.109)

Figure 4.109: The role view interface.

The new policy will appear in the role view interface as shown in the screenshot above.
You can now assign this role to any user or group (this is explained in the next section).

Assigning a role to a user and/or a user group

A role can be viewed by clicking on its name in the list of existing roles in the role interface
(select ”Roles and policies” from within the ”User accounts” to bring up the role interface).

When you’re looking at a role, there should be a list of users/groups towards the bottom of
the page. This list reveals the users and groups that the role which is being viewed has been
assigned to. The following text explains how to use this list in order to assign the role that is
currently being viewed to the ”Editors” user group.

4.12.5 Notifications / Granting access to notifications 411

4

1. Click the ”Assign” button located under the list of users in the role view interface.

2. Select the ”Editors” user group as shown in the following screenshot and click the ”OK”
button.
(see figure 4.110)

Figure 4.110: Assigning a role to a user group.

3. The ”Editors” user group will appear in the list of users. The screenshot below shows the
role view interface for ”My notification role” that is assigned to the ”Editors” user group
(this means that all users that belong to this group are allowed to use notifications).
(see figure 4.111)

Figure 4.111: The role view interface.

4.12.5 Notifications / Granting access to notifications 412

4

Please note that you can assign the role to a single user in the same way as to a user group.

4.12.6 Notifications / Notification events 413

4

4.12.6 Notification events

The following three notification events are supported by default:

• Publish

• Collaboration

• Current time

Publish

Every time an object is published, a new ”ezpublish” event is created.

Collaboration

Every time a collaboration message is generated, a new ”ezcollaboration” event is created.

Current time

Every time the ” runcronjobs.php” script is executed, a new ”ezcurrenttime” event is created.
This behavior is specified in the ”cronjobs/notification.php” file. The system uses ”ezcurrent-
time” events for generating digest notifications.

If you need to generate this event manually, add the ”notification/runfilter” notation to the
URL of your site administration interface and then click the ”Spawn time event” button. Please
note that the ”runfilter” view of the ”notification” module (page 712) should be used only for
testing and debugging.

The built-in notification event types are stored in the ”kernel/classes/notification/event/”
directory. It is possible to extend the system by creating custom notification events for special
needs.

Creation and storage

Let’s say that you have an article on your site, and a user has subscribed for subtree noti-
fications about this article. Every time a new comment is posted or an updated version of
the article is published, the system will generate a new ”ezpublish” event and store it in the
database. This event can be processed by zero, one, or more notification handlers (page 415).

Settings

The available notification event types are specified in the ”[NotificationEventTypeSettings]”
section of the ” notification.ini (page 1407)” configuration file located in the ”settings” direc-
tory. The following settings can be used under this section:

The ”RepositoryDirectories[]” array specifies the directories where eZ Publish will search for
built in notification event types. The exact location of the event in the directory is specified
using the ”AvailableNotificationEventTypes” setting.

4.12.6 Notifications / Notification events 414

4

The ”ExtensionDirectories[]” array specifies the extension directories where eZ Publish will
search for additional notification event types. By default eZ Publish will search in the ”no-
tificationtypes” subdirectory inside your extension. The exact location of the event in this
subdirectory is specified with the ”AvailableNotificationEventTypes” setting.

The ”AvailableNotificationEventTypes[]” array contains a list of event types.

Example 1

The following lines can be specified in the ” notification.ini (page 1407)” configuration file:

[NotificationEventTypeSettings]

RepositoryDirectories[]=kernel/classes/notification/event/

ExtensionDirectories[]

AvailableNotificationEventTypes[]=ezpublish

AvailableNotificationEventTypes[]=ezcurrenttime

AvailableNotificationEventTypes[]=ezcollaboration

These settings will make eZ Publish search for the following files for built in notification
events:

• kernel/classes/notification/event/ezpublish/ezpublishtype.php

• kernel/classes/notification/event/ezcurrenttime/ezcurrenttimetype.php

• kernel/classes/notification/event/ezcollaboration/ezcollaborationtype.php

Example 2

You can extend the system by creating custom notification events. For example, if you have
an extension ”nExt” that includes a notification event ”nev”, put the following lines into an
override for ” notification.ini (page 1407)” configuration file:

[NotificationEventTypeSettings]

ExtensionDirectories[]=nExt

AvailableNotificationEventTypes[]=nev

or

[NotificationEventTypeSettings]

RepositoryDirectories[]=extension/nExt/notificationtypes/

AvailableNotificationEventTypes[]=nev

These settings will make eZ Publish expect the additional notification event to be located at
”extension/nExt/notificationtypes/nev/nevtype.php”

Please note that you must always clear at least the ini cache in order to make the system
re-read the changed configuration files.

4.12.7 Notifications / Notification handlers 415

4

4.12.7 Notification handlers

There are several handlers that process notification events. The following handlers are known
to the eZ Publish system by default:

• Subtree notification

• General digest

• Collaboration notification

Subtree notification

The ”ezsubtree” notification handler processes ”ezpublish” events.

General digest

The ”ezgeneraldigest” notification handler processes ”ezcurrenttime” events.

Collaboration notification

The ”ezcollaborationnotification” notification handler processes ”ezcollaboration” events.

The built-in notification handlers are stored in the ”kernel/classes/notification/handler/” di-
rectory. It is possible to extend the system by creating custom notification handlers for special
needs.

Processing the notification events

Whenever the ”eznotificationeventfilter.php” script is executed, the system will try to run
every unhandled notification event (page 413) with every available notification handler.

Please note that handling one event may result in sending/generating more than one notifi-
cation. For example, if a new version of an article is published, all the subscribed users will
be notified.

If every notification is sent successfully, the event will be deleted from the database. Other-
wise, if some of the generated notifications must be delayed in order to form a daily/weekly/
monthly digest, the system will add new notification items to the user collection. A notifica-
tion item contains data about the notification event, its handler, subscriber e-mail and time
when this notification must be sent.

The digest handler starts processing the ”ezcurrenttime” event by accessing the collection of
notification items. The time specified in the ”ezcurrenttime” event will be compared with the
time of each notification item in order to determine which items that must be handled at the
moment. As long as each notification item contains data on the notification event and its
handler, the system will process this event with the right handler. The resulting notifications
will be collected into digest messages and sent to the subscribers.

4.12.7 Notifications / Notification handlers 416

4

If the notification item was handled successfully, this item will be removed from the collection.
If none of the remaining notification items reference the handled notification event, this event
will be deleted from the database.

The ”ezcurrenttime” event will be deleted from the database when processing is completed.
Please note that processing the ”ezcurrenttime” event by the digest handler does not always
result in sending/generating digest notifications (for example, if none of the subscribers has
chosen the digest mode for notifications).

Settings

The ”[NotificationEventHandlerSettings]” section of the ” notification.ini (page 1407)” con-
figuration file defines the event handlers that will respond to the notification event. Under
this section, the following settings can be specified:

The ”RepositoryDirectories[]” array specifies the directories where eZ Publish will search for
built in notification handlers. The exact location of the handler in the directory is specified
using the ”AvailableNotificationEventTypes” setting.

The ”ExtensionDirectories[]” array specifies the extension directories where eZ Publish will
search for additional notification handlers. By default eZ Publish will search in the ”notifica-
tion/handler/” subdirectory inside your extension. The exact location of the handler in this
subdirectory is specified using the ”AvailableNotificationEventTypes” setting.

The ”AvailableNotificationEventTypes[]” array contains a list of handlers.

Example 1

The following lines can be specified in the ” notification.ini (page 1407)” configuration file:

[NotificationEventHandlerSettings]

RepositoryDirectories[]=kernel/classes/notification/handler/

ExtensionDirectories[]

AvailableNotificationEventTypes[]=ezgeneraldigest

AvailableNotificationEventTypes[]=ezcollaborationnotification

AvailableNotificationEventTypes[]=ezsubtree

These settings will make eZ Publish search for the following files for built in notification
handlers.

• kernel/classes/notification/handler/ezgeneraldigest/ezgeneraldigesthandler.php

• kernel/classes/notification/handler/ezcollaborationnotification/
ezcollaborationnotificationhandler.php

• kernel/classes/notification/handler/ezsubtree/ezsubtreehandler.php

Example 2

You can extend the system by creating custom notification handlers. For example, if you have
an extension ”nExt” that includes a notification handler ”nh” put the following lines into an
override for the ” notification.ini (page 1407)” configuration file:

4.12.7 Notifications / Notification handlers 417

4

[NotificationEventHandlerSettings]

ExtensionDirectories[]=nExt

AvailableNotificationEventTypes[]=nh

or

[NotificationEventHandlerSettings]

RepositoryDirectories[]=extension/nExt/notification/handler/

AvailableNotificationEventTypes[]=nh

These settings will make eZ Publish expect the additional notification handler to be located
at
”extension/nExt/notification/handler/nh/nhhandler.php”

4.12.8 Notifications / Frequently Asked Questions 418

4

4.12.8 Frequently Asked Questions

Q: Is there a standard user who automatically get notified about all the site changes (creation/
modification of content objects)?

A: By default, none of the users is notified about all the site changes. If you want to be notified
whenever content is changed or added, you can subscribe for subtree notifications for the top
node in the ”Content structure” tree.

Q: Is it possible to be notified about new user registrations?

A: You can subscribe for subtree notifications for the top node in the ”User accounts” tree
so that you will be notified every time a new user is created. To do this, click on the ”User
accounts” tab in the administration interface, locate the desired node (under which new users
are created upon user registration) in the tree and select ”Add to my notifications” using the
context menu.

Q: Is it possible to receive E-mails whenever I need to approve an article? Is it possible that the
writer of the article is notified whether or not the article was approved?

A: It is possible to get notifications when you need to approve an item (same for the author).
This can be easily done by enabling the collaboration notifications. Currently there is no
support for notifications to the author when the the article has been approved/rejected.

Q: I have subscribed for notifications but I do not receive any E-mails.

A: You might have forgotten about ” runcronjobs.php” script. If you wish to use the notifica-
tion system, this script must be executed periodically.

Q: I use both subtree and collaboration notifications. The subtree notifications work well but I
do not receive collaboration notifications.

A: The collaboration notifications are sent every time a new collaboration message is gener-
ated. Check your collaboration messages by clicking the ”My Account” tab in the adminis-
tration interface and select the ”Collaboration” link on the left. If there are no collaboration
messages there, check your collaboration settings by clicking the ”Setup” tab and choosing the
”Workflows” and/or ”Triggers” link on the left. Please refer to the ” Workflows (page 171)”
and ” Approve (page 975)” documentation chapters for more information about workflows,
triggers and approval events. (A simple example of implementing an approval mechanism
including creating a workflow, connecting it to a trigger function and approving entries can
be found in the old documentation.)

Q: Notification settings are not available for one of my users.

A: A user must be logged in to access the notification settings. If the notification settings are
still unavailable after logging in, please check the role/policy settings specified for the user(s)
as described in the ” Granting access to notifications (page 407)” part of the documentation.

Q: Why do the users see the ”access denied” page when they click the ”Keep me updated” button?

A: Perhaps they are not allowed to use notifications. Check the role/policy settings specified
for these users as described in the ” Granting access to notifications (page 407)” chapter.

Q: I have the default/built-in forum on my site and I wish that every registered user should be
able to subscribe/unsubscribe for subtree notifications about the forum/topic/reply. How can I
do this?

A: By default, all the users that belong to the ”Guest accounts” user group are allowed to use

http://ez.no/products/ez_publish_cms/documentation/building_an_ez_publish_site/the_guestbook/creating_a_workflow
http://ez.no/products/ez_publish_cms/documentation/building_an_ez_publish_site/the_guestbook/connecting_the_workflow_to_a_trigger_function
http://ez.no/products/ez_publish_cms/documentation/building_an_ez_publish_site/the_guestbook/approving_entries

4.12.8 Notifications / Frequently Asked Questions 419

4

notifications. This is specified in the default ”Forum user” role that is assigned to the guest
user group. It is possible to assign this role to other users (please refer to ” Assigning a role to
a user / user group” section of the ” Granting access to notifications (page 407)” chapter for
more information). There is no point to assign this role to the ”Administrator users” group.
The default ”Administrator” role assigned to the ”Administrator users” group allows these
users to access all modules including the ”notification” module (page 712).

Q: In the role/policy settings I can choose the ”administrate” function when granting access to
the ”notification” module. Does it mean that it is possible to view/edit the notification settings of
each subscribed user somewhere in the administration area?

A: Although letting administrators to view and/or edit notification settings for all users is
probably good idea, it is not implemented yet. The only difference between ”use” and ”ad-
ministrate” functions is that the latter grants access to the ”runfilter” view of the ”notification”
module (page 712). Please note that this view should only br used for testing and debugging.

Q: Is it possible to force digest mode for notifications so that the digest mode is set by default for
all the subscribed users (with the preset time)?

A: This functionality is not implemented. By default, the digest mode is off and the database
contains no records about this setting. If the user sets the digest mode, it will be recorded in
the database.

Q: Is there any way to set ”filters” for subtree notifications? I have a set of articles under a
certain folder and the users are notified whenever a new article is created there. However, they
also receive notifications when an existing article is edited or a new folder is created. I’d like to
specify ”only notify if a new object of type article is being created” or something similar.

A: This is not supported at the moment.

4.13 Search engine 420

4

4.13 Search engine

The system comes with a built-in search engine which integrates tightly with the content
structure. It is capable of indexing everything that is inputted through the native content
model.

In eZ Publish, a content class describes the actual data structures (for example news articles,
products, etc.). The classes are built up of attributes which are represented by datatypes. An
attribute can be the title of an article, the price of a product and so on. It is possible to control
which attributes that should be indexed by the search engine. This can be done by making
use of the ”Searchable” checkboxes while editing a class. Some datatypes (for example float,
price, etc.) do not support indexing. Please refer to the datatype overview (page 433) page
to see which datatypes that can be indexed.

When an object is published, the attributes that are marked searchable will be indexed by the
search engine. It will then be possible to use the search interface to find words or phrases
that are a part of the published content. For example, if the user searches for ”backpack”, the
system will return a list of all kinds of objects where the word ”backpack” occurs. This is the
default behavior. The following screenshot shows the standard search interface.

(see figure 4.112)

Figure 4.112: Standard search interface

Advanced search

The advanced search interface makes it possible tweak and narrow the search. The following
features are supported:

• Search for several words at the same time (for example ”car bike train”).

• Search for an exact phrase (for example ”cheap cars in Scandinavia”).

• Class level filtering (limit the search to a specific class).

• Attribute level filtering (search only a specific attribute).

• Tree level filtering (limit the search to a part of the node tree).

4.13 Search engine 421

4

• Section filtering (limit the search to objects that belong to a certain section).

• Time filtering (yesterday, last week/month/3-months/year).

The following screenshot shows the advanced search interface.

(see figure 4.113)

Figure 4.113: Advanced search interface

Wildcard searching

The default behavior of the search engine is that it only searches for complete words or
phrases. If the user searches for ”demo”, the system will not return objects that contain
words like ”demolition”, ”demonstration” and so on. However, eZ Publish does in fact support
wildcard searching, but it must be turned on by adding the following lines to a configuration
override for ”site.ini”:

[SearchSettings]

EnableWildcard=true

When the wildcard search feature is turned on, it is possible to use the asterisk character as a
wildcard, for example like this: ”demo*”. In this case, eZ Publish will return a list of objects
that contain words starting with ”demo”. For example, it would return objects containing
words like ”demonstration”, ”demolition”, etc. When this notation is used, the result will also
return objects that contain the word which was specified before the asterisk. In other words,
objects containing only the word ”demo” will also be returned.

Please note that the asterisk can only be used after a word. This means that the following
search queries are invalid: ”*demo” and ”some*thing”.

Warning! There is a good reason for the wildcard search being turned off by default. It
requires a lot more processing time than the standard search. This means that the server
might have to be upgraded in order to produce faster results and to achieve less overall
system load.

4.13 Search engine 422

4

Logical operators

Inline logical operators like ”AND” and ”OR” are not supported. This means that it is not
possible to specify search queries like ”cars AND minivans” or ”trucks OR vans”. However, it
is in fact possible to do an AND search. This can be done by making use of the ”Search for
all of the following words” input field in the advanced search interface. For example, if the
user inputs ”cars bikes” then the system will return a list of objects that contain both of these
words. The order of the words is insignificant.

Search statistics

The setup part of the administration interface provides access to a page that reveals informa-
tion about words/phrases that have been searched along with the average results that have
been returned. The following screenshot shows the search statistics interface.

(see figure 4.114)

Figure 4.114: Search statistics

The ”Reset statistics” button will simply clear the search log.

4.14 WebDAV 423

4

4.14 WebDAV

WebDAV is an abbreviation for ”Web-based Distributed Authoring and Versioning” (published
as an open standard under RFC 2518). WebDAV is a set of extensions to the HTTP protocol
which allows users to collaboratively edit and manage files on a web server. This is achieved
by making use of a WebDAV compatible client / application. For example, it is possible to
use recent versions of KDE’s Konqueror or Microsoft’s Internet Explorer. Using a WebDAV
compatible client, the user connects to the server and is able to browse and manage files in a
similar way as with a network share or an FTP server. In other words, what this protocol does
is that it makes it possible to browse, create, remove, upload, download, rename, etc. files
and directories on a web server. One of the most important advantages of this technology
is that it uses port 80 for network traffic. This means that if you are able to surf the site
from your workstation, you can also use WebDAV to administer it. It does not require firewall
reconfiguration.

eZ Publish and WebDAV

From version 3.2 and up, eZ Publish provides a built in WebDAV server. This implementation
allows users to communicate with eZ Publish using a WebDAV compatible client. Once con-
nected, it is possible to browse and manage the node tree of a site. The tree will be displayed
as if it were a filesystem (as directories and files).

When a user connects to the eZ Publish WebDAV server for the first time, the system will
display a list of the siteaccesses that have been made available for WebDAV. This list can be
configured using the ”SiteList[]” directive under ”[SiteSettings]” in a configuration override
for ”site.ini”. Please note that the system does not ask for a username/password combination
at this stage. In other words, anyone with network access will be able to see the names of the
available siteaccesses. The following screenshot shows what the user will see if there are two
available siteaccesses, ”example” and ”plain user”.

(see figure 4.115)

Figure 4.115: WebDAV - Virtual top folder

When a siteaccess is chosen, the system will attempt to authenticate the user by asking for a
username/password combination. The next screenshot shows this.

(see figure 4.116)

4.14 WebDAV 424

4

Figure 4.116: WebDAV - Login

The provided username and password must belong to a valid eZ Publish user that exists for
the selected siteaccess. Furthermore, the user must have sufficient privileges in order to be
able to see the contents of the node tree. The following screenshot shows a WebDAV client
displaying the contents of the root node of an eZ Publish siteaccess called ”plain user”.

(see figure 4.117)

Figure 4.117: WebDAV - Top level nodes

As the screenshot indicates, the user will be able to browse and manage the contents of the
”Content” and ”Media” top level nodes. The next screenshot shows an example of what the
user will see after doing some exploration of the node structure of the ”Content” top level
node.

(see figure 4.118)

Browsing and downloading

The default behavior is that all nodes are displayed as directories. The reason for this is
because in eZ Publish any object can be placed under any other object by the way of nodes.
Displaying the nodes as directories makes it possible to explore the structure of the node tree.

4.14 WebDAV 425

4

Figure 4.118: WebDAV - Content node tree

However, not all nodes are displayed as directories.

Nodes that reference objects containing datatypes that store files will be displayed as files
instead of directories. This means that for example nodes that make use of the image, media
or the file datatype will be displayed as files. When downloaded, eZ Publish will send the file
that is contained in the attribute which is represented by a datatype capable of storing a file.
If several attributes are represented by such datatypes, it is the contents of the first attribute
that will be used.

The ”FolderClasses[]” directive in ”webdav.ini” can be used to configure which types of nodes
that should be shown as directories in the WebDAV client. The default configuration assures
that nodes referencing folder objects are always displayed as directories. Adding a class that
makes use of a datatype capable of storing a file will result in an override of the behavior
described in the previous paragraph. In other words, this setting makes it possible to display
different types of nodes as directories even if they contain files.

Uploading

Any type of file can be uploaded to the system. Files will be stored using instances of the file
class. In other words, every time a file is uploaded, eZ Publish will create a file object where
the file attribute will contain the uploaded data. In addition, a node will be created at the
location where the file was uploaded in the tree. This is the default behavior. However, not
all file types will be created as file objects.

It is possible to configure the system so that it creates different kinds of objects based on the
type of the uploaded file. For example, the default configuration makes sure that uploaded
images are created as image objects. This behavior is controlled by mapping MIME types
to classes. The mappings can be configured using the ”MimeClassMap[]” directive under

4.14 WebDAV 426

4

”CreateSettings” in a configuration override for ”upload.ini”. The ”DefaultClass” directive
determines which class that should be used if there is no suitable mapping. This is usually
set to ”file”, which means that unrecognized file types will be created as file objects. The
following example shows the default mappings.

MimeClassMap[]

MimeClassMap[image]=image

MimeClassMap[video/quicktime]=quicktime

MimeClassMap[video/x-msvideo]=windows_media

MimeClassMap[video/vnd.rn-realvideo]=real_video

MimeClassMap[application/vnd.rn-realmedia]=real_video

MimeClassMap[application/x-shockwave-flash]=flash

Each entry in the ”MimeClassMap[]” array must be further specified using a block that re-
veals details about the class that is being mapped to. The blocks must contain the following
information:

• The identifier of the target class (appended with ” ClassSettings”).

• The class attribute identifier which will get the file data.

• The class attribute identifier which will get the name.

• A pattern that defines the name of the object.

The following example shows the default class map block for images.

[image_ClassSettings]

FileAttribute=image

NameAttribute=name

NamePattern=<original_filename_base>

The example above will tell eZ Publish that when an image is uploaded, the actual file data
should be put into an attribute identified by the string ”image”. The name of the image should
be stored using an attribute called ”name” (as before, it is the identifier of the attribute that
is used). The ”NamePattern” tells the system about how it should generate the name for
uploaded images. It may contain plain text and special tags enclosed by angle brackets (”<”
and ”>”). The following table reveals the tags that can be used.

Tag Description
original filename The name of the uploaded file, like it was on

the local machine (for example ”test.jpg”.
original filename base The name of the uploaded file without an

extension (for example ”test”).
original filename suffix The extension of the uploaded file (for ex-

ample ”.jpg”).
mime type The MIME type of the uploaded file (for ex-

ample ”image/jpeg”).

4.14 WebDAV 427

4

Custom upload handling

It is possible to use custom upload handlers in order to process uploaded files in a special way.
Custom upload handlers must be provided as extensions. A handler must be automatically
triggered whenever a certain type of file is uploaded to the system. This can be done by mak-
ing use of the ”MimeUploadHandlerMap[]” directive under ”[CreateSettings]” in ”upload.ini”.
For example, the following line will make sure that uploaded images (regardless of type) are
handled by a class called ”ezimageuploadhandler” located in ”ezimageuploadhandler.php”.

MimeUploadHandlerMap[image]=ezimageuploadhandler

It is also possible to have only a specific type of file be processed by the upload handler. The
following example demonstrates how to only handle JPEG images.

MimeUploadHandlerMap[image/jpeg]=ezimageuploadhandler

The upload handler itself must be put in a directory called ”uploadhandlers” in an extension,
like this:

eZ Publish

|

-extensions

|

-example

|

-uploadhandlers

|

-ezimageuploadhandler.php

The following code shows the skeleton of a custom upload handler.

include_once(’kernel/classes/ezcontentuploadhandler.php’);

class eZExampleUploadHandler extends eZContentUploadHandler

{

function eZExampleUploadHandler()

{

$this->eZContentUploadHandler(’Example file handling’, ’example’);

}

/*!

Handles the uploading of example files.

*/

function handleFile(&$upload, &$result,

$filePath, $originalFilename, $mimeInfo,

$location, $existingNode)

{

// Implement your import/conversion routine here

copy($filepath, "var/cache/example.jpeg");

4.14 WebDAV 428

4

}

}

4.14.1 WebDAV / Setting it up 429

4

4.14.1 Setting it up

This section describes how eZ Publish can be configured in order to function as a WebDAV
server. Please note that the DNS and the web server also needs to be configured.

Step 1: Enable the WebDAV server

The master WebDAV switch must be turned on. Create a global configuration override for
”webdav.ini” and make sure that it contains the following lines:

[GeneralSettings]

EnableWebDAV=true

Step 2: Add the desired siteaccesses

In order to allow WebDAV access for a specific siteaccess, the name of the siteaccess must
be specified in the ”SiteList[]” array under ”[SiteSettings]” in a configuration override for
”site.ini”. Make sure that the global configuration override for ”site.ini” contains the necessary
lines. The following example shows how WebDAV can be opened up for a siteaccess called
”plain user” and another one called ”example”.

[SiteSettings]

SiteList[]

SiteList[]=plain_user

SiteList[]=example

Step 3: Clear all caches

The eZ Publish part of the configuration is done. Clear all caches in order to make sure that
the system uses the updated version of the configuration.

Step 4: Setup a DNS entry

Set up a DNS entry (for example a subdomain) that will be used to access the WebDAV
server. The entry must point to the IP address of the web server. For example, if you’re using
”www.example.com” to access the web pages, you could set up ”webdav.example.com” for
WebDAV.

Step 5: Configure the web server

There is a file called ”webdav.php” in the root of the eZ Publish directory. This file provides
the actual WebDAV interface. The web server must automatically execute this file whenever a
WebDAV client sends a command to the server. The following lines show an example of how
this can be done in the configuration file of the Apache web server.

4.14.1 WebDAV / Setting it up 430

4

<Virtualhost 128.39.140.28>

<Directory /path/to/ezpublish>

Options FollowSymLinks Indexes ExecCGI

AllowOverride None

</Directory>

DocumentRoot /path/to/ezpublish

RewriteEngine On

RewriteRule . /webdav.php

ServerAdmin admin@example.com

ServerName webdav.example.com

</VirtualHost>

Note: make sure that you have a ”NamedVirtualHost” line before the declaratoin of the virtual
hosts.

Step 6: Test

Launch a WebDAV compatible client / application and attempt to connect to the server.

Internet Explorer

Recent versions of Microsoft’s Internet Explorer (6.0.2800.1106 or later) contain a built-in
WebDAV client. The target address must be opened as a web folder.

1. Start Internet Explorer.

2. Access the ”File” menu and select ”Open”, a dialog should appear.

3. Type in the address of the WebDAV server along with a hash (”#”) character at the end,
like this: http://webdav.example.com/#

(see figure 4.119)

Figure 4.119: WebDAV - IE open dialog

4. Make sure that the ”Open as web folder” checkbox is checked.

5. Click OK. You should be able to see the available siteaccesses as directories.

4.14.1 WebDAV / Setting it up 431

4

KDE/Konqueror

Make sure you have a recent version of Konqueror (3.1.3 or later). Open up a Konqueror
window and attempt to browse the WebDAV server by accessing it using a URL that resembles
the following example: ”webdav://webdav.example.com/”.

(see figure 4.120)

Figure 4.120: WebDAV - Content node tree

Chapter 5

Reference

This chapter provides reference information for developers. It covers the following topics:

• Datatypes (page 433)

• Content classes (page 512)

• Modules (page 539)

• Views (page 873)

• Objects (page 874)

• Workflow events (page 974)

• Template operators (page 982)

• Template functions (page 1198)

• Template control structures (page 1250)

• Template override conditions (page 1265)

• Template fetch functions (page 1289)

• Template PDF functions (page 1290)

• Configuration files (page 1329)

• Libraries (page 1685)

• XML tags (page 1698)

432

5.1 Datatypes 433

5

5.1 Datatypes

Authors (page 435)
Stores info about additional authors.

Checkbox (page 437)
Stores a binary value (on or off).

Country (page 439)
Stores a user country. [Webshop]

Date (page 441)
Validates and stores a date value.

Date and time (page 443)
Validates and stores a date and a time value.

E-mail (page 445)
Validates and stores an E-mail address.

Enum (page 446)
DEPRECATED

File (page 447)
Stores any type of file.

Float (page 450)
Validates and stores a decimal value.

Identifier (page 452)
Generates a non-editable identification string.

Image (page 454)
Validates and stores a digital image.

Ini setting (page 458)
DEPRECATED

Ini setting (page 459)
DEPRECATED

Integer (page 460)
Validates and stores an integer value.

ISBN (page 462)
Validates and stores an ISBN value.

Keywords (page 463)
Stores keywords.

Matrix (page 465)
Stores multiple rows and columns of text.

Media (page 467)
Stores a media file (Flash/QT/Real/etc.).

5.1 Datatypes 434

5

Multi-option (page 470)
Allows option selections. [Webshop]

Multi-price (page 472)
Stores prices in different currencies (inc/ex VAT). [Webshop]

Object relation (page 474)
Stores a relation to a content object.

Object relations (page 476)
Stores relations to other content objects.

Option (page 478)
Allows an option selection. [Webshop]

Price (page 480)
Stores a price (inc/ex VAT). [Webshop]

Product category (page 482)
Stores a product category. [Webshop]

Range option (page 483)
Allows an integer selection. [Webshop]

Selection (page 485)
Stores single and multiple choices.

Subtree subscription (page 487)
DEPRECATED

Text block (page 488)
Stores multiple lines of unformatted text.

Text line (page 490)
Stores a single line of unformatted text.

Time (page 492)
Validates and stores a time value.

URL (page 493)
Validates and stores a URL / address.

User account (page 495)
Validates and stores info about a user.

XML block (page 497)
Validates and stores multiple lines of formatted text.

5.1.1 Datatypes / Authors 435

5

5.1.1 Authors

Summary

Stores info about additional authors.

Properties

Name Internal name Searchable Information collector
Authors ezauthor Yes. No.

Description

This datatype allows the validation, storage and retrieval of additional authors. For each
author, it is capable of handling a name and an E-mail address. It is only the E-mail address
that will be validated. It is typically useful when there is a need for storing information
about additional authors who have written/created different parts of an object’s contents.
The following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.1)

Figure 5.1: Class attribute edit interface for the ”Authors” datatype.

As the screenshot indicates, the ”Authors” datatype does not have any class specific configu-
ration parameters.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.2)

Figure 5.2: Object attribute edit interface for the ”Authors” datatype.

5.1.1 Datatypes / Authors 436

5

When a new object is created, the attribute using this datatype will have its first row set to
the name and the E-mail address of the user who created the object.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezauthor (page 877) object.

5.1.2 Datatypes / Checkbox 437

5

5.1.2 Checkbox

Summary

Stores a binary value (on or off).

Properties

Name Internal name Searchable Information collector
Checkbox ezboolean Yes. Yes.

Description

This datatype allows the storage and retrieval of a binary value. It can be either on/true or
off/false. The following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.3)

Figure 5.3: Class attribute edit interface for the ”Checkbox” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.4)

Figure 5.4: Object attribute edit interface for the ”Checkbox” datatype.

Default value

The ”Default value” parameter makes it possible to control the initial value of an attribute
using this datatype when a new object is created.

5.1.2 Datatypes / Checkbox 438

5

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
either ”1” or ”0” depending on the state of the checkbox (checked or unchecked).

5.1.3 Datatypes / Country 439

5

5.1.3 Country

Summary

Stores a user country. [Webshop]

Properties

Name Internal name Searchable Information collector
Country ezcountry Yes. No.

Description

This datatype allows the storage of a user country and thus makes it possible to charge the
value added taxes depending on the country the customer is from. This functionality is de-
scribed in the ”VAT charging system (page 318)” section of the ”Features” chapter. The fol-
lowing screenshot shows the class attribute edit interface for this datatype.

(see figure 5.5)

Figure 5.5: Class attribute edit interface for the ”Country” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.6)

Figure 5.6: Object attribute edit interface for the ”Country” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns a
hash that consists of the following elements:

5.1.3 Datatypes / Country 440

5

Key Type Description
value string The actual name of the

country (for example ”Nor-
way”).

5.1.4 Datatypes / Date 441

5

5.1.4 Date

Summary

Validates and stores a date value.

Properties

Name Internal name Searchable Information collector
Date ezdate Yes. No.

Description

This datatype allows the validation, storage and retrieval of dates consisting of a year, month
and day value. The valid input range is 01.01.1970 - 19.01.2038. The following screenshot
shows the class attribute edit interface of this datatype.

(see figure 5.7)

Figure 5.7: Class attribute edit interface for the ”Date” datatype.

Default value

The ”Default value” parameter has two options: ”Empty” and ”Current date”. The default
setting is ”Empty”, which means that when a new object is created, the attribute using this
datatype will be empty. If the ”Current date” setting is used, the current date will be set when
a new object is created.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatye.

(see figure 5.8)

5.1.4 Datatypes / Date 442

5

Figure 5.8: Object attribute edit interface for the ”Date” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute object using this datatype returns an ezdate
(page 918) object.

5.1.5 Datatypes / Date and time 443

5

5.1.5 Date and time

Summary

Validates and stores a date and a time value.

Properties

Name Internal name Searchable Information collector
Date and time ezdatetime Yes. No.

Description

This datatype allows the validation, storage and retrieval of a date/time value. It is capable
of storing a date/time consisting of a year, month, day, hour and minute value. The following
screenshot shows the class attribute edit interface for this datatype.

(see figure 5.9)

Figure 5.9: Class attribute edit interface for the ”Datetime” datatype.

Default value

The ”Default value” parameter can be used to control the initial value of an attribute using
this datatype when a new object is created. There are three options:

• Empty

• Current datetime

• Adjusted current datetime

The default setting is ”Empty”, which means that when a new object is created, the attribute
using this datatype will be empty. If the ”Current datetime” option is used, the current date

5.1.5 Datatypes / Date and time 444

5

and time will be set. If the ”Adjusted datetime” is used, an adjusted value of the current
date and time will be set. How much the current date and time should be adjusted must be
specified using the fields within the ”Current datetime adjusted by” group.

Current datetime adjusted by

The fields within this group can be used to specify the desired date/time adjustment when
the (”Adjusted current datetime”) option is used. Both positive and negative numerical values
are allowed. If the values given in the example above are used and an object is created at
00:00 on the first of January 2005, the initial value of the attribute will be set to 04:05, third
of February, 2006.

Object attribute edit interface

The following screenshot shows the object attribute interface for this datatype.

(see figure 5.10)

Figure 5.10: Object attribute edit interface for the ”Date and time” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezdatetime (page 919) object.

5.1.6 Datatypes / E-mail 445

5

5.1.6 E-mail

Summary

Validates and stores an E-mail address.

Properties

Name Internal name Searchable Information collector
E-mail ezemail Yes. Yes.

Description

This datatype allows the validation, storage and retrieval of an electronic mail address. The
following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.11)

Figure 5.11: Class attribute edit interface for the ”Email” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.12)

Figure 5.12: Object attribute edit interface for the ”E-mail” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object returns the actual E-mail
address.

5.1.7 Datatypes / Enum 446

5

5.1.7 Enum

Summary

DEPRECATED

Properties

Name Internal name Searchable Information collector
Enum ezenum Yes. No.

Description

This datatype should not be used any more because it is slow. It has been substituted by the
”Selection” (page 485) datatype.

5.1.8 Datatypes / File 447

5

5.1.8 File

Summary

Stores any type of file.

Properties

Name Internal name Searchable Information collector
File ezbinaryfile Yes. No.

Description

This datatype allows the storage and retrieval of a single file. It is capable of handling virtually
any file type and is typically used for storing legacy document types such as PDF files, Word
documents, spreadsheets, etc. The maximum allowed file size is determined by the ”Max
file size” class attribute edit parameter and the ”upload max filesize” directive in the main
PHP configuration file (”php.ini”). The following screenshot shows the class attribute edit
interface for this datatype.

(see figure 5.13)

Figure 5.13: Class attribute edit interface for the ”File” datatype.

Max file size

The ”Max file size” parameter makes it possible to set the highest size (in megabytes) that
the system will allow. By default, this parameters is zero, which means that eZ publish will
not do any size checking when files are uploaded. In the example above, the ”Max file size”
parameter is set to 16 MB, which means that the object edit interface will not allow the upload
of files that are larger than 16 megabytes. However, if the value of the ”upload max filesize”
PHP setting is lower than 16 megabytes, the underlying system will cancel the upload.

Object attribute edit interface

The following screenshot shows the object attribute edit interface when an attribute using
this datatype does not contain any file.

5.1.8 Datatypes / File 448

5

(see figure 5.14)

Figure 5.14: Object attribute edit interface for the ”File” datatype.

The following screenshot shows the object attribute edit interface when an attribute using
this datatype contains a file. The interface reveals the name of the file that was uploaded
(”BDScratch.wav”), the MIME type (”audio/wav”) and the size (1.15 MB).

(see figure 5.15)

Figure 5.15: Object attribute edit interface for the ”File” datatype.

MIME types

The MIME type will be automatically set based on the extension of the uploaded file’s name.
If the extension is unknown, the default MIME type will be used (”application/octet-stream”).
The MIME types can be configured at the end of the ”/lib/ezutils/classes/ezmimetype.php”
file.

Storage

The uploaded files are stored on the filesystem. The main reason for this is because the
filesystem is much faster than the database when it comes to the storage and retrieval of
large data chunks. Having the files on the filesystem allows the webserver to serve them
directly without the need of going through the database. In addition, this technique makes it
easier to use external tools to manipulate/scan/index the contents of the uploaded files and
it dramatically decreases the size of the database.

All files uploaded through an attribute that makes use of the file datatype will be stored below
”storage/original” within the directory specified by the ”VarDir” directive in a configuration
override for ”site.ini”. A new subdirectory will be created for every MIME type. For example,
if an executable (.exe) file is uploaded, a directory called ”application” will be created; if a text
file is uploaded then a directory called ”text” will be created, and so on. The uploaded files
will be put in the different MIME type directories. Instead of re-using the original filenames,

5.1.8 Datatypes / File 449

5

eZ publish will create a hash for every file. The following illustration shows the location of
two uploaded files (an .exe and a .txt file) when the var directory is set to ”my site”.

(see figure 5.16)

Figure 5.16: Complete directory structure with uploaded files.

The system keeps track of the files using a database table called ”ezbinaryfile” consisting of
the following fields:

Field Description
content object attribute id The identification of the content object at-

tribute.
download count The number of times the file has been down-

loaded.
filename The name of the file on

the filesystem (for example
”5fd39fbaf751369965a4108715d5dea9.txt”).

mime type The MIME type of the file (for example
”text/plain”).

original filename The original name of the uploaded file (for
example ”readme.txt”).

version The version of the object that the file belongs
to.

Binary file indexing

eZ publish is capable of indexing the actual contents of uploaded files. This feature makes
it possible to use the built-in search engine to search for something that is inside a file; for
example the contents of a PDF file or a spreadsheet. By default, the system is only capable of
indexing the contents of plain text/ASCII files. However, by making use of external programs,
it is capable of indexing the contents of virtually any file type (as long as there is a program
that goes through the file and returns keywords/contents as plain text). The external handlers
can be set up in a configuration override for the ”binaryfile.ini” file.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezbinaryfile (page 881) object.

5.1.9 Datatypes / Float 450

5

5.1.9 Float

Summary

Validates and stores a decimal value.

Properties

Name Internal name Searchable Information collector
Float ezfloat No. No.

Description

This datatype makes it possible to validate, store and retrieve a single decimal value. It is
capable of handling both positive and negative numbers ranging from -3.402823466E+38
to 3.402823466E+38. Please note that these numbers may vary depending on the platform
and the database that is used. The following screenshot shows the class edit interface for this
datatype.

(see figure 5.17)

Figure 5.17: Class edit interface for the ”Float” datatype.

Default value

The ”Default value” parameter makes it possible to set a default decimal value. When the
parameter is used and a new object is created, the contents of the attribute using this datatype
will be preset to the given value. In the example above, the ”Temperature” attribute of new
objects will be set to 24.13.

Min integer value

The ”Min float value” parameter makes it possible to set the lowest value that the input
interface will allow. The default value of this parameter is empty, which means that the
system will allow the lowest possible value (-3.402823466E+38). In the example above, the

5.1.9 Datatypes / Float 451

5

parameter is set to ”-40.00”. This means that the input interface will not allow the storage of
numbers with values less than -40.00.

Max float value

The ”Max float value” parameter makes it possible to set the highest value that the input
interface will allow. The default value of this parameter is empty, which means that the
system will allow the highest possible value (3.402823466E+38). In the example above, the
parameter is set to ”120.00”. This means that the input interface will not allow the storage of
numbers with values as high as 120.00.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.18)

Figure 5.18: Object attribute edit interface for the ”Float” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns a
string containing the actual decimal value.

5.1.10 Datatypes / Identifier 452

5

5.1.10 Identifier

Summary

Generates a non-editable identification string.

Properties

Name Internal name Searchable Information collector
Identifier ezidentifier Yes. No.

Description

This datatype allows the automatic generation of unique identification strings for objects. An
instance of a class that makes use of this datatype will have a unique identification string
generated whenever the object is published for the very first time. The identification string is
system-wide and may consist of the following elements:

• User configurable start-text

• Automatically generated identification number (configurable start value and number of
digits)

• User configurable end-text

The system will increment the actual counter(s) whenever a new object is published. It will
not decrement and reorganize the identification strings when an object is removed. The
identification strings are generated and maintained by the system and thus they can not be
modified using the object edit interface. The identification strings are generated based on the
class type and the identification number of the class attribute. In other words, the identifiers
do not depend on the objects’ locations within the content node tree. In addition, the datatype
may be used to represent several attributes within the same class. The following screenshot
shows the class attribute edit interface for this datatype.

(see figure 5.19)

Figure 5.19: Class attribute edit interface for the ”Identifier” datatype.

5.1.10 Datatypes / Identifier 453

5

Pretext

The ”Pretext” parameter can be used to specify a desired start-text (all characters are allowed)
that should appear before the automatically generated identification number. In the exam-
ple above, the text ”ABC” is used. This means that the identification strings generated for
instances of this class will start with the letters ”ABC”.

Posttext

The ”Posttext” parameter can be used to specify a desired end-text (all characters are al-
lowed) that should appear after the automatically generated identification number. In the
example above, the text ”XYZ” is used. This means that the identification strings generated
for instanced of this class will end with the letters ”XYZ”.

Digits

The ”Digits” parameter makes it possible to insert additional zeros in order to generate equally
long identification strings. In the example above, the digits parameter is set to ”2”. This
means that numbers below 10 will appear with a prepended zero: ”01”, ”02”, ”03”...”09”. If
the parameter was set to ”3”, the system would generate ”001”, ”002” and so on. The ”Digits”
parameter can not be used to set the actual range / stop value. It only makes it possible to
prepend the actual number with zeros.

Start value

The ”Start value” parameter can be used to specify a desired start value for the counter; the
default value is zero. In the example above, the value ”1” is used. This means that the counter
will start at ”1”. Given all the parameters above, the identification string generated for the
very first object will be ”ABC01XYZ”.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns a
string containing the actual identification value.

5.1.11 Datatypes / Image 454

5

5.1.11 Image

Summary

Validates and stores a digital image.

Properties

Name Internal name Searchable Information collector
Image ezimage No. No.

Description

This datatype allows the storage of digital images. It is capable of handling virtually any
image type. The maximum allowed file size is determined by the ”Max file size” class attribute
edit parameter and the ”upload max filesize” directive in the main PHP configuration file
(”php.ini”). The following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.20)

Figure 5.20: Class attribute edit interface for the ”Image” datatype.

Max file size

The ”Max file size” parameter makes it possible to set the highest size (in megabytes) that
the system will allow. By default, this parameters is zero, which means that eZ Publish will
not do any size checking when image files are uploaded. In the example above, the ”Max file
size” parameter is set to 4 MB, which means that the object edit interface will not allow the
upload of images that are larger than 4 megabytes. However, if the value of the ”upload max
filesize” PHP setting is lower than 4 megabytes, the underlying system will cancel the upload.

Object attribute edit interface

The following screenshot shows the object attribute edit interface when an attribute using
this datatype does not contain an image.

(see figure 5.21)

5.1.11 Datatypes / Image 455

5

Figure 5.21: Object attribute edit interface for the ”Image” datatype.

The following screenshot shows the object attribute edit interface when an attribute using
this datatype contains an actual image. The interface reveals the image itself, the name of the
file that was uploaded (”dj cat.jpg”), the MIME type (”image/jpeg”) and the size (29.02 kB).

(see figure 5.22)

Figure 5.22: Object attribute edit interface for the ”Image” datatype.

Storage

The uploaded images are stored on the filesystem. The main reason for this is because the
filesystem is much faster than the database when it comes to the storage and retrieval of large
data chunks. Having the images on the filesystem allows the webserver to serve them directly
without the need of going through the database. In addition, this technique makes it easier
to use external tools to manipulate the images and it dramatically decreases the size of the
database.

All images uploaded through an attribute that makes use of the image datatype will be stored
below ”storage/images” within the directory specified by the ”VarDir” directive in a configu-
ration override for ”site.ini”. A directory structure is generated for each object that stores an
image. The structure will be an exact copy of the actual node path (consisting of the object
names) from the root to the main node that references the object which contains images. The
following illustration shows the path to a directory on the filesystem in which the different

5.1.11 Datatypes / Image 456

5

images of an object are stored.

(see figure 5.23)

Figure 5.23: Example of image path on the filesystem.

In the example above, an image has been stored by an object called ”My Something”. The
main node of this object is a child of a node called ”Example”. The var directory used by the
siteaccess is ”var/my site”. The images stored by the ”My Something” object will be located in
this directory. For each image, version and translation, a new directory will be created. The
following illustration shows the naming convention of the directories under which the actual
images are stored.

(see figure 5.24)

Figure 5.24: Example of an image subdirectory.

The example above shows a directory for an image that has been stored by the 1024th object
attribute. The image belongs to the British translation for the eight version of the content
object. The following illustration shows a complete directory structure with actual image
files.

(see figure 5.25)

Figure 5.25: Complete directory structure with uploaded image and generated variations.

As the illustration indicates, the image stored by the 1024th attribute (that belongs to the
”My Something” object) is represented by multiple files. The original image is ”test.png”, the
rest of the images are the different image variations.

5.1.11 Datatypes / Image 457

5

Image variations

With the help of an external application (ImageMagick) or the PHP image library (GD), eZ
Publish is capable of generating different variations of an uploaded image. This feature is
typically useful when there is a need to show the same image in different ways (for example
different sizes). The image variations are controlled by different configuration directives in
image.ini. The following table shows the default image variations.

Variation Width Height
reference max 600 pixels max 600 pixels
small max 100 pixels max 100 pixels
medium max 200 pixels max 200 pixels
large max 300 pixels max 300 pixels
rss max 88 pixels max 31 pixels

When an image variation is created (and the default settings are used), eZ Publish will gen-
erate a reference image using the file that was uploaded. The reference image is then used
to generate the different image variations (small, medium, large and rss) on-demand using
the constraints specified in the table above. The generated variations will be cached on the
filesystem.

Depending on the image system used, eZ Publish is capable of generating image variations
that consist of much more than just scaling. For example, it is possible to generate sharpened
grayscale images for the thumbnails of a photo album. Please refer to the documentation of
the image.ini configuration file for more information about the different possibilities.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezimagealiashandler (page 920) object.

5.1.12 Datatypes / Ini setting 458

5

5.1.12 Ini setting

Summary

DEPRECATED

Properties

Name Internal name Searchable Information collector
Ini setting ezinisetting Yes. No.

Description

This datatype should no longer be used.

5.1.13 Datatypes / Ini setting 459

5

5.1.13 Ini setting

Summary

DEPRECATED

Properties

Name Internal name Searchable Information collector
Ini setting ezinisetting Yes. No.

Description

This datatype should no longer be used.

5.1.14 Datatypes / Integer 460

5

5.1.14 Integer

Summary

Validates and stores an integer value.

Properties

Name Internal name Searchable Information collector
Integer ezinteger Yes. No.

Description

This datatype makes it possible to validate, store and retrieve a single integer value. It is
capable of handling both positive and negative numbers ranging from -2,147,483,648 to
2,147,483,647. The following screenshot shows the class edit interface for this datatype.

(see figure 5.26)

Figure 5.26: Class edit interface for the ”Integer” datatype.

Default value

The ”Default value” parameter makes it possible to set a default integer. When the parameter
is used and a new object is created, the contents of the attribute using this datatype will be
preset to the given value. In the example above, the ”Correct result” attribute of new objects
will be set to 13.

Min integer value

The ”Min integer value” parameter makes it possible to set the lowest value that the input
interface will allow. The default value of this parameter is empty, which means that the
system will allow the lowest possible value, which is -2,147,483,648. In the example above,
the parameter is set to ”-64”. This means that the input interface will not allow the storage of
numbers with values less than -64.

5.1.14 Datatypes / Integer 461

5

Max integer value

The ”Max integer value” parameter makes it possible to set the highest value that the input
interface will allow. The default value of this parameter is empty, which means that the
system will allow the highest possible value, which is 2,147,483,647. In the example above,
the parameter is set to ”48”. This means that the input interface will not allow the storage of
numbers with values as high as 48.

Object attribute edit interface

The following screenshot shows the object attribute interface for this datatype.

(see figure 5.27)

Figure 5.27: Object attribute edit interface for the ”Integer” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns a
string containing the actual integer.

5.1.15 Datatypes / ISBN 462

5

5.1.15 ISBN

Summary

Validates and stores an ISBN value.

Properties

Name Internal name Searchable Information collector
ISBN ezisbn Yes. No.

Description

The ”ISBN” datatype allows the validation, storage and retrieval of a single ISBN (Interna-
tional Standard Book Number) value. The following screenshot shows the class attribute edit
interface for this datatype.

(see figure 5.28)

Figure 5.28: Class attribute edit interface for the ”ISBN” datatype.

Object attribute edit interface

The following screenshot shows the object attribute interface for this datatype.

(see figure 5.29)

Figure 5.29: Object attribute interface for the ”ISBN” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object returns a string containing
the actual ISBN value.

5.1.16 Datatypes / Keywords 463

5

5.1.16 Keywords

Summary

Stores keywords.

Properties

Name Internal name Searchable Information collector
Keywords keywords Yes. No.

Description

This datatype allows the storage of keywords for an object. The keywords must be specified
as a comma separated list of words and/or phrases. This datatype can be used to connect
objects of the same type based on their keywords. It is typically useful when it comes to
creating interfaces that allow the user to quickly browse other pages with related content (for
example ”see also” or ”related pages” list of hyperlinks). If two objects share at least one
common keyword, the objects will be connected behind the scenes. The system will create
the necessary entries in the ”ezkeyword” and the ”ezkeyword attribute link” database tables.
Please note that this datatype does not generate object relations, it simply uses its own tables
in the database to connect the objects. The following screenshot shows the class attribute edit
interface for this datatype.

(see figure 5.30)

Figure 5.30: Class attribute edit interface for the ”Keywords” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.31)

Figure 5.31: Object attribute edit interface for the ”Keywords” datatype.

5.1.16 Datatypes / Keywords 464

5

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezkeyword (page 931) object.

5.1.17 Datatypes / Matrix 465

5

5.1.17 Matrix

Summary

Stores multiple rows and columns of text.

Properties

Name Internal name Searchable Information collector
Matrix ezmatrix Yes. No.

Description

This datatype allows the storage and retrieval of information structured in a table. The fol-
lowing screenshot shows the class attribute edit interface for this datatype.

(see figure 5.32)

Figure 5.32: Class attribute edit interface for the ”Matrix” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.33)

5.1.17 Datatypes / Matrix 466

5

Figure 5.33: Object attribute edit interface for the ”Matrix” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezmatrix (page 936) object.

5.1.18 Datatypes / Media 467

5

5.1.18 Media

Summary

Stores a media file (Flash/QT/Real/etc.).

Properties

Name Internal name Searchable Information collector
Media ezmedia No. No.

Description

This datatype allows the storage and playback of a video file. It is capable of handling Apple
QuickTime, Macromedia Flash, Microsoft Windows Media and Real Media files. The max-
imum allowed file size is determined by the ”Max file size” class attribute edit parameter
and the ”upload max filesize” directive in the main PHP configuration file (”php.ini”). The
following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.34)

Figure 5.34: Class attribute edit interface for the ”Media” datatype.

Media player type

The ”Media player type” parameter controls the way the video file will be played back on the
client side. The following options are available:

• Flash

• QuickTime

• Real player

• Windows media player

5.1.18 Datatypes / Media 468

5

Max file size

The ”Max file size” parameter makes it possible to set the highest size (in megabytes) that
the system will allow. By default, this parameters is zero, which means that eZ Publish will
not do any size checking when files are uploaded. In the example above, the ”Max file size”
parameter is set to 32 MB, which means that the object edit interface will not allow the upload
of files that are larger than 32 megabytes. However, if the value of the ”upload max filesize”
PHP setting is lower than 32 megabytes, the underlying system will cancel the upload.

Object attribute edit interface

The object attribute edit interface for the ”Media” datatype depends on the selected ”Me-
dia player type” (in class edit mode). The following screenshots show the different object
attribute edit interfaces for the supported media types.

(see figure 5.35)

Figure 5.35: Object attribute edit interface for the ”Media” datatype (Flash).

(see figure 5.36)

Figure 5.36: Object attribute edit interface for the ”Media” datatype (QuickTime).

(see figure 5.37)

(see figure 5.38)

5.1.18 Datatypes / Media 469

5

Figure 5.37: Object attribute edit interface for the ”Media” datatype (Real Media).

Figure 5.38: Object attribute edit interface for the ”Media” datatype (Windows media).

Storage

Files that have been uploaded through the ”Media” datatype are stored in the same way as
files that are uploaded using the ”File” (page 447) datatype. However, the system keeps track
of the media files using the ”ezmedia” table instead of the ”ezbinaryfile” table.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezmedia (page 939) object.

5.1.19 Datatypes / Multi-option 470

5

5.1.19 Multi-option

Summary

Allows option selections. [Webshop]

Properties

Name Internal name Searchable Information collector
Multi-option ezmultioption Yes. No.

Description

This datatype makes it possible to create multiple groups of options for each content object.
Each option can be assigned a short text and an additional price. This datatype works in
the same way as the ”Option” (page 478) datatype. The only difference is that instead of
supporting only one group of options, it allows the creation of multiple groups of options for
each content object. The following screenshot shows the class attribute edit interface for this
datatype.

(see figure 5.39)

Figure 5.39: Class attribute edit interface for the ”Multi-option” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.40)

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezmultioption (page 941) object.

5.1.19 Datatypes / Multi-option 471

5Figure 5.40: Object attribute edit interface for the ”Multi-option” datatype.

5.1.20 Datatypes / Multi-price 472

5

5.1.20 Multi-price

Summary

Stores prices in different currencies (inc/ex VAT). [Webshop]

Properties

Name Internal name Searchable Information collector
Multi-price ezmultiprice Yes. No.

Description

This datatype allows the storage of prices in multiple currencies and thus makes it possible
to connect content objects with the e-commerce subsystem. The e-commerce features of eZ
Publish are described in the ”Webshop (page 167)” section of the ”Concepts and basics” chap-
ter and in the ”Multi-currency (page 348)” section of the ”Features” chapter. The following
screenshot shows the class attribute edit interface for this datatype.

(see figure 5.41)

Figure 5.41: Class attribute edit interface for the ”Multi-price” datatype.

Parameters and usage

This is a special datatype which plugs more deeply into the system. Instances of any class
containing the multi-price datatype will automatically be treated as products. This datatype
works with VATs in the same way as the ”Price (page 480)” datatype. (Please note that
price and multi-price datatypes are incompatible. A content class can only contain one price
attribute or one multi-price attribute.)

It is possible to set one of the predefined currencies as ”default currency” on the class level so
that the system will create a custom price (page 349) in this currency and auto prices (page
349) in all other currencies when a new object is created. Note that a custom price can be
always modified or removed for each individual product / object.

5.1.20 Datatypes / Multi-price 473

5

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.42)

Figure 5.42: Object attribute edit interface for the ”Multi-price” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezmultiprice (page 943) object.

5.1.21 Datatypes / Object relation 474

5

5.1.21 Object relation

Summary

Stores a relation to a content object.

Properties

Name Internal name Searchable Information collector
Object relation ezobjectrelation Yes. No.

Description

This datatype allows the relation of a single object. The following screenshot shows the class
attribute edit interface for this datatype.

(see figure 5.43)

Figure 5.43: Class attribute edit interface for the ”Object relation” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.44)

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
either FALSE (if there is no relation) or an ezcontentobject (page 894) object.

5.1.21 Datatypes / Object relation 475

5

Figure 5.44: Object attribute edit interface for the ”Object relation” datatype.

5.1.22 Datatypes / Object relations 476

5

5.1.22 Object relations

Summary

Stores relations to other content objects.

Properties

Name Internal name Searchable Information collector
Object relations ezobjectrelationlist Yes. No.

Description

This datatype allows the relation of multiple objects. The following screenshot shows the
class attribute edit interface for this datatype.

(see figure 5.45)

Figure 5.45: Class attribute edit interface for the ”Object relations” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.46)

Figure 5.46: Object attribute edit interface for the ”Object relations” datatype.

5.1.22 Datatypes / Object relations 477

5

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
either FALSE (if there are no relations) or an array of ezcontentobjectattribute (page 894)
objects.

5.1.23 Datatypes / Option 478

5

5.1.23 Option

Summary

Allows an option selection. [Webshop]

Properties

Name Internal name Searchable Information collector
Option ezoption No. Yes.

Description

This datatype makes it possible to create a single group of options for each content object.
Each option can be assigned a short text and an additional price. For example, it can be used
to sell T-shirts in different colors where the price is different for some (or all) colors. The
following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.47)

Figure 5.47: Class attribute edit interface for the ”Option” datatype.

The ”Default name” parameter can be used to specify a name which will be used (as the name
for the option) every time a new object is created.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.48)

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezoption (page 947) object.

5.1.23 Datatypes / Option 479

5

Figure 5.48: Object attribute edit interface for the ”Option” datatype.

5.1.24 Datatypes / Price 480

5

5.1.24 Price

Summary

Stores a price (inc/ex VAT). [Webshop]

Properties

Name Internal name Searchable Information collector
Price ezprice No. No.

Description

This datatype allows the storage of a price and thus makes it possible to connect content
objects with the e-commerce subsystem. The e-commerce features of eZ Publish are described
in the ”Webshop (page 167)” section of the ”Concepts and basics” chapter. The following
screenshot shows the class attribute edit interface for this datatype.

(see figure 5.49)

Figure 5.49: Class attribute edit interface for the ”Price” datatype.

Parameters and usage

This is a special datatype which plugs more deeply into the system. Instances of any class
containing the price datatype will automatically be treated as products. This datatype does
not support prices in multiple currencies. It makes possible to set only one price value for
each product (the system will use your locale currency for this price). However, you can use
the ”Multi-price (page 472)” datatype for multi-currency support. (Please note that price and
multi-price datatypes are incompatible. A content class can only contain one price attribute
or one multi-price attribute.)

A class attribute represented by the price datatype makes use of one of the predefined VATs.
There are two ways in which the selected VAT can be used. This configuration depends on
how the product prices are entered when the objects are created. The first alternative (Price
inc. VAT) is to be used if the prices that are entered already include the value added tax. The
second alternative (Price ex. VAT) should be used if the prices that are entered do not contain

5.1.24 Datatypes / Price 481

5

the value added tax. When the first alternative is used and the product is viewed, the price
that was entered will be shown.

When the second alternative is used and the product is viewed, the price will be the price
that was entered plus the VAT. When the object is in the basket and the basket is viewed, it
is possible to see the price of the products with and without the VATs (regardless of which
approach that was used). The VAT parameters on the class level only control the default VAT
settings that will be used when a new object is created. In other words, the VAT settings may
be modified for each individual product / object.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.50)

Figure 5.50: Object attribute edit interface for the ”Price” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezprice (page 954) object.

5.1.25 Datatypes / Product category 482

5

5.1.25 Product category

Summary

Stores a product category. [Webshop]

Properties

Name Internal name Searchable Information collector
Product category ezproductcategory Yes. No.

Description

This datatype allows the storage of a product category and thus makes it possible to charge
different value added taxes depending on the product category. This functionality is described
in the ”VAT charging system (page 318)” section of the ”Features” chapter. The following
screenshot shows the class attribute edit interface for this datatype.

(see figure 5.51)

Figure 5.51: Class attribute edit interface for the ”Product category” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.52)

Figure 5.52: Object attribute edit interface for the ”Product category” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezproductcategory (page 955) object.

5.1.26 Datatypes / Range option 483

5

5.1.26 Range option

Summary

Allows an integer selection. [Webshop]

Properties

Name Internal name Searchable Information collector
Range option ezrangeoption No. No.

Description

This datatype makes it possible to create a single group of enumerated options for each con-
tent object. For example, it can be used in a scenario where the goal is to sell shoes of different
sizes and the size does not affect the price. For each content object, the administrator needs
to set up the available range (if any). The following screenshot shows the class attribute edit
interface for this datatype.

(see figure 5.53)

Figure 5.53: Class attribute edit interface for the ”Range option” datatype.

The ”Default name” parameter can be used to specify a name which will be used (as the name
for the option) every time a new object is created.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.54)

Figure 5.54: Object attribute edit interface for the ”Range option” datatype.

5.1.26 Datatypes / Range option 484

5

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezrangeoption (page 957) object.

5.1.27 Datatypes / Selection 485

5

5.1.27 Selection

Summary

Stores single and multiple choices.

Properties

Name Internal name Searchable Information collector
Selection ezselection Yes. No.

Description

This datatype allows the storage of single or multiple option selections. The options must be
defied on the class level. This datatype can for example be used to define different categories
for news articles (as shown in the example below: ”Local”, ”National”, etc.). The following
screenshot shows the class attribute edit interface for this datatype.

(see figure 5.55)

Figure 5.55: Class attribute edit interface for the ”Selection” datatype.

Style

The ”Style” parameter controls the behavior of the object attribute edit interface. It can be
either ”Single” or ”Multiple”. While ”Single” means that the object attribute edit interface will
only allow a single selection, the ”Multiple” setting allows the selection of multiple options.

5.1.27 Datatypes / Selection 486

5

Options

The ”Options” interface allows the specification of the options that should be available for
selection when an object is edited. The options are identified by an identification number.
The identification number of the first option is zero. Please note that the system does not
give any warning if an option that is used is removed. In other words, removing options may
result in an inconsistent database.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.56)

Figure 5.56: Object attribute interface for the ”Selection” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an array of the identification numbers (as strings) of the selected options.

5.1.28 Datatypes / Subtree subscription 487

5

5.1.28 Subtree subscription

Summary

DEPRECATED

Properties

Name Internal name Searchable Information collector
Subtree subscription ezsubtreesubscription No. No.

Description

This datatype should no longer be used. It has been replaced by the ”My notification settings”
interface of the ”My account” part in the administration interface.

5.1.29 Datatypes / Text block 488

5

5.1.29 Text block

Summary

Stores multiple lines of unformatted text.

Properties

Name Internal name Searchable Information collector
Text block eztext Yes. Yes.

Description

This datatype allows the storage and retrieval of multiple lines of unformatted text. It is
capable of handling up to 16,777,216 characters. The following screenshot shows the class
edit interface for this datatype.

(see figure 5.57)

Figure 5.57: Class edit interface for the ”Text block” datatype.

Preferred number of rows

The ”Preferred number of rows” parameter makes it possible to control the height of the input
field that is displayed when an object is being edited. The following options are available: 2,
5, 10, 15, 20 and 25.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.58)

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns a
string containing the actual text.

5.1.29 Datatypes / Text block 489

5

Figure 5.58: Object attribute edit interface for the ”Text block” datatype.

5.1.30 Datatypes / Text line 490

5

5.1.30 Text line

Summary

Stores a single line of unformatted text.

Properties

Name Internal name Searchable Information collector
Text line ezstring Yes. Yes.

Description

This datatype makes it possible to store and retrieve a single line of unformatted text. It is
capable of handling up to 255 number of characters. The following screenshot shows the
class edit interface for this datatype.

(see figure 5.59)

Figure 5.59: Class edit interface for the ”Text line” datatype.

Default value

The ”Default value” parameter makes it possible to set a default text. When the parameter
is used and a new object is created, the contents of the attribute using this datatype will be
preset to the given text. In the example above, the ”Summary” attribute of new objects will
be set to ”The summary has not yet been added.”.

Max string length

The ”Max string length” parameter makes it possible to control the maximum number of
characters that the input interface should allow. By default, this parameter is empty - which
means that the system will allow the maximum number of characters (255). In the example
above, the parameter is set to 64. This means that the input interface will not allow the
storage of strings that exceed 64 characters.

5.1.30 Datatypes / Text line 491

5

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.60)

Figure 5.60: Object attribute interface for the ”Text line” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns a
string containing the actual text.

5.1.31 Datatypes / Time 492

5

5.1.31 Time

Summary

Validates and stores a time value.

Properties

Name Internal name Searchable Information collector
Time eztime No. No.

Description

This datatype allows the validation, storage and retrieval of a time value consisting of
hour and minute. The following screenshot shows the class attribute edit interface for this
datatype.

(see figure 5.61)

Figure 5.61: Class attribute edit interface for the ”Time” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.62)

Figure 5.62: Object attribute edit interface for the ”Time” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an eztime (page 963) object.

5.1.32 Datatypes / URL 493

5

5.1.32 URL

Summary

Validates and stores a URL / address.

Properties

Name Internal name Searchable Information collector
URL ezurl No. No.

Description

This datatype allows the validation and storage of a hyperlink. The following screenshot
shows the class attribute edit interface for this datatype.

(see figure 5.63)

Figure 5.63: Class attribute edit interface for the ”URL” datatype.

Object attribute edit interface

For each link, an address and an additional text may be stored. The following screenshot
shows the object attribute edit interface for this datatype.

(see figure 5.64)

Figure 5.64: Object attribute edit interface for the ”URL” datatype.

URL storage and checking

URLs that are input either using the URL or the XML block datatype are stored and handled in
a special way. This solution makes it possible to view, edit and check if the URLs actually work

5.1.32 Datatypes / URL 494

5

on a massive scale. Please refer to the ”URL storage” (page 144) section of the ”Concepts and
basics” (page 103) chapter for more information about this feature.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns a
string containing the actual address.

5.1.33 Datatypes / User account 495

5

5.1.33 User account

Summary

Validates and stores info about a user.

Properties

Name Internal name Searchable Information collector
User account ezuser Yes. No.

Description

This datatype allows storage and retrieval of a single user account. Whenever an object that
uses this datatype is published for the first time, the system will create a new user. The user’s
ID number will be the identification number of the object. The following screenshot shows
the class attribute edit interface for this datatype.

(see figure 5.65)

Figure 5.65: Class attribute edit interface for the ”User account” datatype.

Object attribute edit interface

For each user, the ”User account” datatype stores the following information:

• A username

• A password

• An E-mail address

The username can only be modified before the object is published for the first time. The
following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.66)

5.1.33 Datatypes / User account 496

5

Figure 5.66: Object attribute edit interface for the ”User account” datatype.

User account settings

The properties of a user account can be tweaked by the administrator. This can be done
by following the ”Change user account settings” link from within the view of a user account
object in the administration interface. Currently it is only possible to change whether the user
account should be enabled or disabled (whether the user is allowed to log in to the system or
not). The following screenshot shows the user account settings panel.

(see figure 5.67)

Figure 5.67: Settings interface for the ”User account” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezuser (page 965) object.

5.1.34 Datatypes / XML block 497

5

5.1.34 XML block

Summary

Validates and stores multiple lines of formatted text.

Properties

Name Internal name Searchable Information collector
XML block ezxmltext Yes. No.

Description

Although there are no immediate visual clues, this datatype behaves quite differently com-
pared to the regular ”Text block” datatype. In particular, it is capable of validating and storing
multiple lines of formatted text instead of just plain text. The text in an XML block must be
formatted using a collection of predefined tags. The tags control the actual HTML markup
of the content. eZ Publish comes with a collection of tags that cover the needs of typical
everyday tasks. In addition, it is also possible to extend the system by creating custom tags
for special needs.

Please note that the ”<” sign means the beginning of an XML tag. If you need to insert a less-
than sign in the normal text flow (for example, ”3<5”), you will have to use the corresponding
XML entity as shown below:

3<5

By default, the datatype supports the following XML tags:

• Headings (page 499)

• Bold text (page 500)

• Italic text (page 501)

• Unformatted text (page 502)

• Lists (page 503)

• Tables (page 504)

• Hyperlinks (page 505)

• Anchors (page 507)

• Object embedding (page 508)

• Custom tags (page 510)

• Paragraphs (page 511)

The following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.68)

http://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references#Character_entities_in_XML

5.1.34 Datatypes / XML block 498

5

Figure 5.68: Class attribute edit interface for the ”XML block” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.69)

Figure 5.69: Object attribute edit interface for the ”XML block” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 902) object using this datatype returns
an ezxmltext (page 973) object.

5.1.34 Datatypes / XML block 499

5

Headings

Headings/titles can be added by making use of either the ”h” or the ”header” tag. The ”level”
parameter controls the size/level of the heading, it must be a number between 1 and 6. The
optional ”class” parameter allows the use of a desired CSS class. The optional ”anchor name”
parameter makes it possible to add an anchor to the heading. Usage:

<h[level=""][class=""] [anchor_name=""]>Example</h>

or

<header[level=""][class=""] [anchor_name=""]>Example</header>

By default, the specified levels are increased by one. In other words, a level 1 header in the
XML block will become a level 2 header (H2) in the resulting HTML. The reason for this is
because the H1 tag is reserved for the name / main title of the content object. The headings
inside the XML block will thus become subheadings of the main title. This behavior can
be changed by creating an override template for the ”/content/datatype/view/ezxmltags/
header.tpl” template (it can not be controlled from within an configuration file).

5.1.34 Datatypes / XML block 500

5

Bold text

Bold text can be achieved by using one of the following tags: ”b”, ”bold” or ”strong”. The
optional ”class” parameter allows the use of a desired CSS class. Usage:

<b[class=""]>Boldtext.

or

<bold[class=""]>Boldtext.</bold>

or

<strong[class=""]>Boldtext.

5.1.34 Datatypes / XML block 501

5

Italic text

Italic/emphasized text can be achieved by using one of the following tags: ”i”, ”em” or ”em-
phasize”. The optional ”class” parameter allows the use of a desired CSS class. Usage:

<i[class=""]>Emphasizedtext.</i>

or

<em[class=""]>Emphasizedtext.

or

<emphasize[class=""]>Emphasizedtext.</emphasize>

5.1.34 Datatypes / XML block 502

5

Unformatted text

The ”literal” tag can be used to output unformatted text, for example program source code,
HTML code, XML content, etc. Everything that is inside an a literal block will be rendered in
the same way (character by character) as it is within the literal tags (the text will be output
using the HTML PRE tags). The optional ”class” parameter allows the use of a desired CSS
class. Usage:

<literal[class=""]>Example<\literal>

Please note that in the example above, the slash is in the wrong way within the tag that
terminates the literal block. This was done in order to make the tag appear on the documen-
tation page (since we’re using literal tags to make code blocks). In other words, it should be
terminated with a frontslash instead of a backslash.

5.1.34 Datatypes / XML block 503

5

Lists

It is possible to create lists in the same way as in HTML by making use of the ”ol”, ”ul” and
”li” tags. The lists can be nested. The optional ”class” parameter allows the use of a desired
CSS class. The following examples demonstrate the usage of ordered and unordered lists.

Ordered lists

<ol[class=""]>

Element1

Element2

Element3

Unordered lists

<ul[class=""]>

Element1

Element2

Element3

5.1.34 Datatypes / XML block 504

5

Tables

Tables can be created in the same way as in HTML using ”table”, ”tr”, ”th” and ”td” tags. The
tables can be nested. Usage:

<table[class=""] [border=""] [width=""]>

...

</table>

The ”class”, ”border” and ”width” parameters are optional. The ”class” parameter can be used
to assign a desired CSS class. The ”border” parameter can be used to set a border (number
of pixels). The ”width” parameter can be used to control the table width (either 0-100% or
number of pixels). Table content should be written according to normal HTML table syntax
with ”tr”, ”th” and ”td” tags, see below.

Table rows

Table rows can be created in the same way as in HTML:

<tr>Tablerowcontentgoeshere.</tr>

Table headers

Table headers can be created in the same way as in HTML:

<th[class=""][width=""] [rowspan=""] [colspan=""]>Example.</th>

All parameters are optional. The ”class” parameter can be used to set the desired CSS class.
The ”width” parameter can be used to set the width (either as percentage or number of
pixels). The ”rowspan” and ”colspan” parameters are the same as in HTML.

Table data/cell

Table data/cells can be created in the same way as in HTML:

<td[class=""] [width=""] [rowspan=""] [colspan=""]>Example.</td>

All parameters are optional. The ”class” parameter can be used to set the desired CSS class.
The ”width” parameter can be used to set the width (either as percentage or number of
pixels). The ”rowspan” and ”colspan” parameters are the same as in HTML.

5.1.34 Datatypes / XML block 505

5

Hyperlinks

Hyperlinks can be inserted by making use of the ”a” or the ”link” tags. Usage:

<ahref=""[target=""][class=""] [title=""] [id=""]>Example.

or

<linkhref=""[target=""][class=""] [title=""] [id=""]>Example.</link>

The ”href” parameter is required and it must be set to a valid address (either external or
internal). The ”target” parameter can be used to determine how the target URL should be
opened (inside the existing/active browser window/tab or within a new window/tab). The
”class” parameter can be used to specify a CSS class that should be used when the link is
rendered. The ”title” parameter can be used to specify a short title text (will be shown when
the pointer is hovering over the link). The ”id” parameter is for assigning unique identifiers.

Internal links

It is possible to create internal links (to other nodes and objects) by making use of the ”ezn-
ode://” and the ”ezobject://” notation. The internal links will be created dynamically based
on the node/object ID numbers. In other words, if a node is moved, the link(s) will point to
the new location(s) and thus they will not be broken.

Link to a node

A link to a node can be created either by specifying the target node’s ID number or the node
path. The following examples demonstrate how an internal link to node number 128 can be
created.

Example.

or

<link href="eznode://128">Example.</link>

The following examples demonstrate how an internal link to a node located at ”products/
computers/example” can be created.

Example.

or

<link href="eznode://products/computers/example">Example.</link>

5.1.34 Datatypes / XML block 506

5

Link to an object

The following examples demonstrate how an internal link to object number 1024 can be
created.

Example.

or

<link href="ezobject://1024">Example.</link>

When object linking is used, the destination address will be generated using the main node
assignment of the target object.

5.1.34 Datatypes / XML block 507

5

Anchors

The ”anchor” tag makes it possible to insert HTML anchors inside the XML block. The inserted
anchors will work like standard HTML anchors. Usage:

<anchorname=""/>

The ”name” parameter must be set to a unique identifier for the anchor. Anchors can be
reached by appending the hash character (#) followed directly by the name of the anchor
that the browser should jump to. Example: http://www.example.com/hobbies#music

5.1.34 Datatypes / XML block 508

5

Object embedding

The ”embed” tag makes it possible to insert an arbitrary content object directly in the XML
block. It can for example be used to embed images. Usage:

<embed href="" [class=""] [view=""] [align=""] [target=""] [size=""] [id=""]

/

>

With this tag, embedded objects are inserted as ”block elements”. Such an element always
begins on a new line when it is displayed. It exists in its own virtual box and is always
followed by a carriage return (like if someone hit the ”Enter” key after inserting the object).
This means that, for example, inserting an image using the ”embed” tag will break the current
paragraph. The ”embed” tag is represented by block-level tags in the resulting XHTML code.

The ”embed-inline” tag makes it possible to insert objects as inline elements. For example,
this tag allows you to insert an image inside a text line. Usage:

<embed-inline href="" [class=""] [view=""] [align=""] [target=""] [size=""]

[id=""] /

>

This tag is represented by inline tags in the resulting XHTML code. The templates that are
used for rendering ”embed-inline” tags must not contain block-level XHTML tags.

The following table reveals the list of parameters supported by the ”embed” and ”embed-
inline” tags.

Parameter Description Required
href The ”href” parameter must Yes.

be a valid link to either
a node or an object us-
ing the same notation as
for hyperlinks (for example
”eznode://134”, ”eznode:/
/path/to/some/node” and
”ezobject://1024”). If the
provided link is a link to a
node, eZ Publish will use
the object that is encapsu-
lated by that node. In other
words, in both cases it is the
object that will be inserted
(the node notation is just a
wrapper).

class The No.
”class” parameter makes it
possible to specify a cus-
tom stylesheet that should
be used. In the template,
the specified stylesheet will

http://www.w3.org/TR/REC-html40/struct/global.html#h-7.5.3

5.1.34 Datatypes / XML block 509

5

be available in the $classifi-
cation variable.

view The ”view” pa- No.
rameter makes it possible to
specify the view mode that
should be used when the
object is rendered (for ex-
ample ”full”, ”line” and so
on). By default, the sys-
tem uses the ”embed” view
mode when rendering ob-
jects that are inserted using
the ”embed” tag, while the
”embed-inline”
view mode is used together
with ”embed-inline” tags.

align The ”align” parameter can No.
be used to specify the po-
sitioning of the embedded
object; possible values are
”left”, ”center” and ”right”.

target The ”target” parameter can No.
be used to set the opening
method (same browser tab/
window or new browser
tab/window) for the em-
bedded item (for example ”
self”, ” blank”, etc.).

size The ”size” parameter can be No.
used to set the image size
that should be used when
an image object is embed-
ded (for example ”small”,
”medium”, ”large”, etc.).
The available sizes are de-
fined by image.ini.

id The ”id” parameter makes it No.
possible to assign a unique
ID which will be the ID
attribute in the resulting
HTML.

5.1.34 Datatypes / XML block 510

5

Custom tags

In addition to the default tags described above, the ”XML block” datatype makes it possible
to use custom tags. A custom tag can be used both as a block or an inline element. Custom
tags must be specified using the ”AvailableCustomTags[]” array in the [CustomTagSettings]
block within an override for the ”content.ini” configuration file. When the XML is rendered,
the contents of a custom tag will be replaced by a custom template. The name of the template
must be specified using the ”name” parameter. Example of usage:

<customname="template_name" [custom_parameter="value" [...]]>

The quick brown fox jumps over the lazy dog.

</custom>

The custom tag in the example above will be replaced by a template called ”template
name.tpl”. This template must be located in the following directory within the current de-
sign: ”/templates/content/datatype/view/ezxmltags/” (or one of the fallback designs). It is
also possible to create an override template. The contents of the tag will be available in the
”$content” variable within the inserted template. The custom parameters are optional. When
used, a custom parameter will be available as a template variable with the same name as it
was specified in the tag itself.

5.1.34 Datatypes / XML block 511

5

Paragraphs

Paragraphs can be added by making use of either the ’p’ or the ’paragraph’ tag.

The optional ’class’ parameter allows the use of a desired CSS class. If you do not specify
the class parameter, the paragraph will be displayed in a natural way (without tags) in the
administration interface. To create a non-classified paragraph, you can simply press ’Enter’
key twice.

Usage:

<p [class=""]>Example</p>

or

<paragraph [class=""]>Example</paragraph>

By default, the system will use ’p’ tag in the resulting XHTML code. This behavior can
be changed by creating an override template for the ’/content/datatype/view/ezxmltags/
paragraph.tpl’.

5.2 Content classes 512

5

5.2 Content classes

The classes are documented in the following sections:

• Content (page 513)

• Media (page 529)

• Users (page 536)

5.2.1 Content classes / Content 513

5

5.2.1 Content

Article (page 514)
Defines a structure for storing articles.

Comment (page 515)
Defines a structure for storing comments/feedback.

Company (page 516)
Defines a structure for storing information about comapnies.

Feedback form (page 517)
Defines a structure for feedback forms.

Folder (page 518)
Defines a structure for folders / information pages.

Forum (page 519)
Defines a structure for storing forums.

Forum reply (page 520)
Defines a structure for storing forum replies.

Forum topic (page 521)
Defines a structure for storing forum topics.

Gallery (page 522)
Defines a structure for storing image galleries.

Link (page 523)
Defines a structure for storing hyperlinks.

Person (page 524)
Defines a structure for storing information about people.

Poll (page 525)
Defines a structure for storing polls.

Product (page 526)
Defines a strucutre for storing information about products.

Review (page 527)
Defines a structure for storing product reviews.

Weblog (page 528)
Defines a structure for storing personal logs.

5.2.1 Content classes / Content 514

5

Article

Summary

Defines a structure for storing articles.

Properties

Name Identifier Container Object name pattern
Article article Yes. <short title|title>

Attributes

Name Identifier Datatype R S C T
Title title Text line Yes. Yes. No. Yes.
Short title short title Text line No. Yes. No. Yes.
Author author Authors No. Yes. No. Yes.
Intro intro XML block Yes. Yes. No. Yes.
Body body XML block Yes. Yes. No. Yes.
Enable comments enable comments Checkbox No. No. No. No.
Image image Object relation No. Yes. No. No.
Keywords keywords Keywords No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 515

5

Comment

Summary

Defines a structure for storing comments/feedback.

Properties

Name Identifier Container Object name pattern
Comment comment Yes. <subject>

Attributes

Name Identifier Datatype R S C T
Subject subject Text line Yes. Yes. No. Yes.
Author author Text line Yes. Yes. No. Yes.
Message message Text block Yes. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 516

5

Company

Summary

Defines a structure for storing information about comapnies.

Properties

Name Identifier Container Object name pattern
Company company Yes. <company name>

Attributes

Name Identifier Datatype R S C T
Company name company name Text line Yes. Yes. No. Yes.
Company number company number Text line No. Yes. No. Yes.
Company address company address Matrix No. Yes. No. Yes.
Logo logo Image No. Yes. No. Yes.
Additional information additional information Text block No. Yes. No. Yes.
Contact information contact information Matrix No. Yes. No. Yes.
Contacts contacts Object relations No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 517

5

Feedback form

Summary

Defines a structure for feedback forms.

Properties

Name Identifier Container Object name pattern
Feedback form feedback form Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Subject subject Text line Yes. Yes. Yes. Yes.
Message message Text block Yes. Yes. Yes. Yes.
Email email E-mail Yes. No. Yes. Yes.
Recipient recipient E-mail Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 518

5

Folder

Summary

Defines a structure for folders / information pages.

Properties

Name Identifier Container Object name pattern
Folder folder Yes. <name|short name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Short name short name Text line Yes. Yes. No. Yes.
Short description short description XML block No. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Show children show children Checkbox No. No. No. No.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 519

5

Forum

Summary

Defines a structure for storing forums.

Properties

Name Identifier Container Object name pattern
Forum forum Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 520

5

Forum reply

Summary

Defines a structure for storing forum replies.

Properties

Name Identifier Container Object name pattern
Forum reply forum reply Yes. <subject>

Attributes

Name Identifier Datatype R S C T
Subject subject Text line Yes. Yes. No. Yes.
Message message Text block Yes. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 521

5

Forum topic

Summary

Defines a structure for storing forum topics.

Properties

Name Identifier Container Object name pattern
Forum topic forum topic Yes. <subject>

Attributes

Name Identifier Datatype R S C T
Subject subject Text line Yes. Yes. No. Yes.
Message message Text block Yes. Yes. No. Yes.
Sticky sticky Checkbox No. No. No. Yes.
Notifiy me about updates nofity me Subtree subscription No. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 522

5

Gallery

Summary

Defines a structure for storing image galleries.

Properties

Name Identifier Container Object name pattern
Gallery gallery Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Short description short description XML block No. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Image image Object relation No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 523

5

Link

Summary

Defines a structure for storing hyperlinks.

Properties

Name Identifier Container Object name pattern
Link link Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Location location URL No. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 524

5

Person

Summary

Defines a structure for storing information about people.

Properties

Name Identifier Container Object name pattern
Person person Yes. <first name> <last name>

Attributes

Name Identifier Datatype R S C T
First name first name Text line Yes. Yes. No. Yes.
Last name last name Text line Yes. Yes. No. Yes.
Job title job title Text line No. Yes. No. Yes.
Contact information contact information Matrix No. Yes. No. Yes.
Picture picture Object relation No. Yes. No. Yes.
Comment comment XML block No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 525

5

Poll

Summary

Defines a structure for storing polls.

Properties

Name Identifier Container Object name pattern
Poll poll Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Question question Option Yes. No. Yes. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 526

5

Product

Summary

Defines a strucutre for storing information about products.

Properties

Name Identifier Container Object name pattern
Product product Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Short description short description XML block No. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Image image Object relation No. Yes. No. Yes.
Price price Price No. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 527

5

Review

Summary

Defines a structure for storing product reviews.

Properties

Name Identifier Container Object name pattern
Review review Yes. <summary>

Attributes

Name Identifier Datatype R S C T
Summary summary Text line Yes. Yes. No. Yes.
Author author Text line No. Yes. No. Yes.
Message message Text block No. Yes. No. Yes.
Rating rating Selection No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 528

5

Weblog

Summary

Defines a structure for storing personal logs.

Properties

Name Identifier Container Object name pattern
Weblog weblog Yes. <title>

Attributes

Name Identifier Datatype R S C T
Title title Text line Yes. Yes. No. Yes.
Message message XML block Yes. Yes. No. Yes.
Enable comments enable commeents Checkbox No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 529

5

5.2.2 Media

File (page 530)
Defines a structure for storing binary files.

Flash (page 531)
Defines a structure for storing Macromedia Flash files.

Image (page 532)
Defines a structure for storing digital images.

QuickTime (page 533)
Defines a structure for storing Apple QuickTime files.

Real video (page 534)
Defines a structure for storing Real video files.

Windows media (page 535)
Defines a structure for storing ”.avi” files.

5.2.2 Content classes / Media 530

5

File

Summary

Defines a structure for storing binary files.

Properties

Name Identifier Container Object name pattern
File file Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
File file File Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 531

5

Flash

Summary

Defines a structure for storing Macromedia Flash files.

Properties

Name Identifier Container Object name pattern
Flash flash Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
File file Media Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 532

5

Image

Summary

Defines a structure for storing digital images.

Properties

Name Identifier Container Object name pattern
Image image Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Caption caption XML block No. Yes. No. Yes.
Image image Image No. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 533

5

QuickTime

Summary

Defines a structure for storing Apple QuickTime files.

Properties

Name Identifier Container Object name pattern
QuickTime quicktime Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
File file Media Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 534

5

Real video

Summary

Defines a structure for storing Real video files.

Properties

Name Identifier Container Object name pattern
Real video real video Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
File file Media Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 535

5

Windows media

Summary

Defines a structure for storing ”.avi” files.

Properties

Name Identifier Container Object name pattern
Windows media windows media Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
File file Media Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.3 Content classes / Users 536

5

5.2.3 Users

User (page 537)
Defines a structure for storing user accounts.

User group (page 538)
Defines a structure for storing user groups.

5.2.3 Content classes / Users 537

5

User

Summary

Defines a structure for storing user accounts.

Properties

Name Identifier Container Object name pattern
User user Yes. <first name> <last name>

Attributes

Name Identifier Datatype R S C T
First name first name Text line Yes. Yes. No. Yes.
Last name last name Text line Yes. Yes. No. Yes.
User account user account User account Yes. Yes. No. Yes.
Signature signature Text block No. Yes. No. Yes.
Image image Image No. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.3 Content classes / Users 538

5

User group

Summary

Defines a structure for storing user groups.

Properties

Name Identifier Container Object name pattern
User group user group Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description Text line No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.3 Modules 539

5

5.3 Modules

class (page 541)
Provides views for managing classes, class groups, etc.

collaboration (page 560)
Provides an interface to the collaboration engine.

content (page 575)
Provides views for managing content (nodes, objects, searching, etc.)

error (page 693)
Provides an interface for error handling / reporting.

ezinfo (page 694)
Provides views for displaying information about eZ publish.

form (page 699)
Provides a view that generates an E-mail containing the data that was posted.

infocollector (page 702)
Provides views for managing collected information.

layout (page 707)
Provides a view that makes it possible to use alternative pagelayouts.

notification (page 712)
Provides an interface to the notification engine.

package (page 724)
Provides views for importing/exporting packages.

pdf (page 747)
Provides views for configuring PDF exports.

reference (page 751)
Provides a view for displaying documentation generated by Doxygen.

role (page 752)
Provides views for managing roles.

rss (page 760)
Provides views for managing RSS imports and exports.

search (page 766)
Provides a view that displays search statistics.

section (page 769)
Provides views for managing sections.

setup (page 782)
Provides the web based setup wizard.

shop (page 783)
Provides views for the webshop (basket, wish list, order list, etc.).

5.3 Modules 540

5

trigger (page 824)
Provides a view for managing workflow triggers.

url (page 827)
Provides views for managing the URLs stored in the database.

user (page 836)
Provides views for logging users in/out, password changing, etc.

workflow (page 861)
Provides views for managing workflows, workflow groups, workflow events, etc.

5.3.1 Modules / class 541

5

5.3.1 class

Summary

Provides views for managing classes, class groups, etc.

Description

This module provides several interfaces that can be used to view and manage the content
classes and class groups that are present in the system. The views that the module provides
are used by the ”Class” section of the ”Setup” part of the administration interface.

The module components are documented in the following sections:

• Fetch functions (page 542)

• Views (page 549)

5.3.1 Modules / class 542

5

Fetch functions

attribute list (page 543)
Fetches the attributes of a class.

latest list (page 544)
Fetches the most recently modified classes.

list (page 545)
Fetches a collection of classes.

override template list (page 547)
Fetches the override rules associated with a class.

5.3.1 Modules / class 543

5

attribute list

Summary

Fetches the attributes of a class.

Usage

fetch(’class’, ’attribute_list’, hash(’class_id’, class_id))

Parameters

Name Type Description Required
class id interger The ID number of the target class. Yes.

Returns

Array of ezcontentclassattribute (page 888) objects or FALSE.

Description

This function fetches the attributes of a class specified by the ”class id” parameter. The func-
tion returns an array of ezcontentclassattribute (page 888) objects or FALSE.

Examples

Example 1

{def $attributes=fetch(’class’, ’attribute_list’, hash(’class_id’, 13))}

{foreach $attributes as $attribute}

{$attribute.name|wash}

{/foreach}

Outputs the names of the attributes that belong to class number 13.

5.3.1 Modules / class 544

5

latest list

Summary

Fetches the most recently modified classes.

Usage

fetch(’class’, ’latest_list’, hash([’offset’, offset] ,

[’limit’, limit]))

Parameters

Name Type Description Required
offset integer The offset to start at. No.
limit integer The number of classes that should be

fetched.
No.

Returns

Array of ezcontentclass (page 884) objects.

Description

This function fetches the most recently modified classes. The function returns an array of
ezcontentclass (page 884) objects. The ”offset” and ”limit” parameters are optional and can
be used to narrow down the result. If the ”offset” and ”limit” parameters are omitted, the
function will simply return all the available classes.

Examples

Example 1

{def $classes=fetch(’class’, ’latest_list’, hash(’limit’, 10))}

{foreach $classes as $class}

{$class.name|wash}

{/foreach}

Outputs the names of the ten most recently modified classes.

5.3.1 Modules / class 545

5

list

Summary

Fetches a collection of classes.

Usage

fetch(’class’, ’list’, hash([’class_filter’, array(class_id |

class_identifier [, ...])]))

Parameters

Name Type Description Required
class id integer The ID number of a desired class. No.
class identifier string The identifier of a desired class. No.
...

Returns

Array of ezcontentclass (page 884) objects or FALSE.

Description

This function fetches a collection of classes. The optional ”class filter” parameter can be used
to fetch only a given set of classes. This parameter must be either an array of class ID numbers
or an array of class identifier strings (in other words: mixing is not possible). If the ”class
filter” array is omitted, all classes will be returned.

Examples

Example 1

{def $classes=fetch(’class’, ’list’)}

{foreach $classes as $class}

{$class.name|wash}

{/foreach}

Outputs the names of all classes.

Example 2

5.3.1 Modules / class 546

5

{def $classes=fetch(’class’, ’list’, hash(’class_filter’, array(1, 2, 3)

))}

{foreach $classes as $class}

{$class.name|wash}

{/foreach}

Outputs the names of class number 1, 2 and 3.

Example 3

{def $classes=fetch(’class’, ’list’, hash(’class_filter’, array(’folder’,

’article’)))}

{foreach $classes as $class}

{$class.name|wash}

{/foreach}

Outputs the names of the classes identified by the strings ”folder” and ”article”.

5.3.1 Modules / class 547

5

override template list

Summary

Fetches the override rules associated with a class.

Usage

fetch(’class’, ’override_template_list’, hash(’class_id’, class_id))

Parameters

Name Type Description Required
class id integer The ID number of the target class. Yes.

Returns

An array of hashes containing information about the override rules.

Description

This function fetches the override rules that are associated with the class specified by the
”class id” parameter. The function returns an array of hashes. Each element of the returned
array contains the following structure:

Attribute Type Description
siteaccess string The siteaccess that the over-

ride belongs to.
block string The name of the override

block.
source string The path to the original

template.
target string The path to the override

template.

Examples

Example 1

{def $overrides=fetch(’class’, ’override_template_list’, hash(’class_id’,

13))}

{foreach $overrides as $override}

{$override.target} - ({$override.source})

{/foreach}

5.3.1 Modules / class 548

5

Outputs information about the overrides for class number 13.

5.3.1 Modules / class 549

5

Views

classlist (page 550)
Provides an interface for generating a class overview for a class group.

copy (page 551)
Provides an interface for copying a role.

down (page 552)
Provides an interface for moving an attribute to a lower position.

edit (page 553)
Provides an interface for editing a class.

groupedit (page 554)
Provides an interface for editing a class group.

grouplist (page 555)
Provides an interface for generating an overview of the class groups.

removeclass (page 556)
Provides an interface to the class removal mechanism.

removegroup (page 557)
Provides an interface to the class group removal mechanism.

up (page 558)
Provides an interface for moving an attribute to a higher position.

view (page 559)
Provides an interface for viewing a class.

5.3.1 Modules / class 550

5

classlist

Summary

Provides an interface for generating a class overview for a class group.

5.3.1 Modules / class 551

5

copy

Summary

Provides an interface for copying a role.

5.3.1 Modules / class 552

5

down

Summary

Provides an interface for moving an attribute to a lower position.

5.3.1 Modules / class 553

5

edit

Summary

Provides an interface for editing a class.

5.3.1 Modules / class 554

5

groupedit

Summary

Provides an interface for editing a class group.

5.3.1 Modules / class 555

5

grouplist

Summary

Provides an interface for generating an overview of the class groups.

5.3.1 Modules / class 556

5

removeclass

Summary

Provides an interface to the class removal mechanism.

5.3.1 Modules / class 557

5

removegroup

Summary

Provides an interface to the class group removal mechanism.

5.3.1 Modules / class 558

5

up

Summary

Provides an interface for moving an attribute to a higher position.

5.3.1 Modules / class 559

5

view

Summary

Provides an interface for viewing a class.

5.3.2 Modules / collaboration 560

5

5.3.2 collaboration

Summary

Provides an interface to the collaboration engine.

Description

This module provides an interface to the collaboration engine inside the eZ publish kernel.
The administration interface makes use of the views that the module provides in order to
allow the management of collaboration items. Although possible, it isn’t common to use
these views when building a website (unless there is a need to replicate the collaboration
management functionality of the administration interface).

The module components are documented in the following sections:

• Fetch functions (page 561)

• Views (page 570)

5.3.2 Modules / collaboration 561

5

Fetch functions

group tree (page 562)
Not documented yet.

item count (page 563)
Not documented yet.

item list (page 564)
Not documented yet.

message list (page 565)
Not documented yet.

participant (page 566)
Not documented yet.

participant list (page 567)
Not documented yet.

participant map (page 568)
Not documented yet.

tree count (page 569)
Not documented yet.

5.3.2 Modules / collaboration 562

5

group tree

Summary

Not documented yet.

5.3.2 Modules / collaboration 563

5

item count

Summary

Not documented yet.

5.3.2 Modules / collaboration 564

5

item list

Summary

Not documented yet.

5.3.2 Modules / collaboration 565

5

message list

Summary

Not documented yet.

5.3.2 Modules / collaboration 566

5

participant

Summary

Not documented yet.

5.3.2 Modules / collaboration 567

5

participant list

Summary

Not documented yet.

5.3.2 Modules / collaboration 568

5

participant map

Summary

Not documented yet.

5.3.2 Modules / collaboration 569

5

tree count

Summary

Not documented yet.

5.3.2 Modules / collaboration 570

5

Views

action (page 571)
Not documented yet.

group (page 572)
Not documented yet.

item (page 573)
Not documented yet.

view (page 574)
Not documented yet.

5.3.2 Modules / collaboration 571

5

action

Summary

Not documented yet.

5.3.2 Modules / collaboration 572

5

group

Summary

Not documented yet.

5.3.2 Modules / collaboration 573

5

item

Summary

Not documented yet.

5.3.2 Modules / collaboration 574

5

view

Summary

Not documented yet.

5.3.3 Modules / content 575

5

5.3.3 content

Summary

Provides views for managing content (nodes, objects, searching, etc.)

Description

This module provides an interface to the content engine that is built into eZ Publish. It is the
most important and most commonly utilized module. It provides views that make it possible
to display and edit the contents of objects, manage nodes in the content tree, searching,
translation, etc. A typical eZ Publish site uses many of the views and the fetch functions that
this module provides.

The module components are documented in the following sections:

• Fetch functions (page 576)

• Views (page 659)

5.3.3 Modules / content 576

5

Fetch functions

access (page 579)
Checks if the current user has access to a given function.

bookmarks (page 581)
Fetches the bookmarks of the current user.

calendar (page 583)
Not documented yet.

can instantiate classes (page 584)
Checks if the current user is allowed to create nodes.

can instantiate class list (page 586)
Fetches the classes that the current user can create objects of.

class (page 588)
Fetches a content class.

class attribute (page 589)
Fetches an attribute of a content class.

class attribute list (page 590)
Fetches the attributes of a class.

collected info collection (page 591)
Fetches an information collection.

collected info count (page 592)
Fetches the number of collections that match a certain criteria.

collected info count list (page 594)
Fetches the number of times different values were collected.

contentobject attributes (page 595)
Fetches the attributes of an object’s version (and translation).

draft count (page 596)
Fetches the number of drafts that belong to the current user.

draft version list (page 597)
Fetches the drafts that belong to the current user.

keyword (page 598)
Fetches nodes that use keywords starting with a given sequence.

keyword count (page 601)
Fetches the number of nodes that use certain keywords.

list (page 602)
Fetches the children of a node or a collection of nodes.

list count (page 618)
Fetches the number of children of a node.

5.3.3 Modules / content 577

5

locale list (page 619)
Fetches the available locales.

navigation part (page 620)
Fetches information about a navigation part.

navigation parts (page 621)
Fetches all available navigation parts.

node (page 622)
Fetches a node (identified by either an ID number or a path).

non translation list (page 624)
Fetches locales that a version of an object may be translated into.

object (page 625)
Fetches a content object (specified by an ID number).

object by attribute (page 626)
DEPRECATED

object count by user id (page 627)
Fetches the number of objects (of a class) created by a user.

pending count (page 628)
Fetches the number of pending objects for the current user.

pending list (page 629)
Fetches the pending objects for the current user.

recent (page 630)
Fetches nodes where the current user recently published something.

related objects (page 631)
Fetches related objects.

related objects count (page 634)
Fetches the number of related objects.

reverse related objects (page 635)
Fetches reverse related objects.

reverse related objects count (page 638)
Fetches the number of reverse related objects.

same classattribute node (page 639)
Fetches nodes containing attributes that match a certain value.

search (page 640)
Fetches nodes containing data that match a certain criteria.

section list (page 643)
Fetches the available sections.

tipafriend top list (page 644)
Fetches the most popular (most tipped) nodes.

5.3.3 Modules / content 578

5

translation list (page 645)
Fetches the locales that can be used to translate objects.

trash count (page 646)
Fetches the number of objects that are in the trash.

trash object list (page 647)
Fetches the objects that are in the trash.

tree (page 648)
Fetches the children of a node recursively.

tree count (page 651)
Fetches the number of children of a node recursively.

version (page 653)
Fetches a specific version of an object.

version count (page 654)
Fetches the number of versions of a content object.

version list (page 655)
Fetches all the versions of a content object.

view top list (page 657)
Fetches the most popular (most viewed) nodes.

5.3.3 Modules / content 579

5

access

Summary

Checks if the current user has access to a given function.

Usage

fetch(’content’, ’access’,

hash(’access’, access,

’contentobject’, contentobject,

[’contentclass_id’, contentclass_id,]

[’parent_contentclass_id’, parent_contentclass_id]))

Parameters

Name Type Description Required
access string The desired access method (see be-

low).
Yes.

contentobject object The target/location (either an object or
a node).

Yes.

contentclass id integer,
string

The ID number or identifier of the class
that should be included in the check.

No.

parent contentclass id integer,
string

The parent node’s class ID number or
identifier that should be included in
the check.

No.

Returns

TRUE if access is allowed, FALSE otherwise.

Description

This function makes it possible to find out if the current user has access (read, edit, cre-
ate, remove, etc.) to a given content object or a content node. The optional parameters
”contentclass id” and ”parent content class id” can be used to finetune the checking. These
parameters are compatible with both class ID numbers and class identifier strings. The func-
tion supports checking for the following access methods:

• bookmark

• create

• edit

• move

• read

5.3.3 Modules / content 580

5

• remove

• pdf

• restore

• translate

• versionread

When checking ”create” access and the ”contentclass id” is not specified, the function will
return TRUE as long as there is a create access for the given object. However, the user could
still not be allowed to create a specific class.

Examples

Example 1

{def $test=fetch(’content’, ’access’,

hash(’access’, ’read’,

’contentobject’, $node))}

{if $test}

The current user has read access to the given node.

{else}

The current user does not have read access to the given node.

{/if}

Checks if the content node represented by $node is can be read by the current user.

Example 2

{def $test=fetch(’content’, ’access’,

hash(’access’, ’create’,

’contentobject’, $node,

’contentclass_id’, ’folder’))}

{if $test}

The current user can create a folder below the given node.

{else}

The current user can not create a folder below the given node.

{/if}

Checks if the current user can create an instance of a given class below the specified node.

5.3.3 Modules / content 581

5

bookmarks

Summary

Fetches the bookmarks of the current user.

Usage

fetch(’content’, ’bookmarks’, hash([’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
offset integer Number of bookmarks to skip. No.
limit integer Maximum number of bookmarks to

fetch.
No.

Returns

An array of ezcontentbrowsebookmark (page 882) objects.

Description

Fetches the bookmarks of the current user and returns an array of ezcontentbrowsebookmark
(page 882) objects. The resulting array starts with the most recently added bookmark.

Examples

Example 1

{def $bookmarks=fetch(’content’, ’bookmarks’)}

{foreach $bookmarks as $bookmark}

{$bookmark.name|wash}

{/foreach}

Outputs all the bookmarks (as links) for the current user.

Example 2

{def $bookmarks=fetch(’content’, ’bookmarks’,

hash(’limit’, 5))}

5.3.3 Modules / content 582

5

{foreach $bookmarks as $bookmark}

{$bookmark.name|wash}

{/foreach}

Outputs the five most recently added bookmarks (as links) for the current user.

5.3.3 Modules / content 583

5

calendar

Summary

Not documented yet.

5.3.3 Modules / content 584

5

can instantiate classes

Summary

Checks if the current user is allowed to create nodes.

Usage

fetch(’content’, ’can_instantiate_classes’ [, hash(’parent_node’,

parent_node)])

Parameters

Name Type Description Required
parent node object Node to check if user can create new

object in
No.

Returns

TRUE if the current user is allowed to create nodes, FALSE otherwise.

Description

This fetch function checks if the current user is allowed to create nodes either below the
current position within the tree or below a given node (specified by the ”parent node” param-
eter). The function will return TRUE if the current user is allowed to create nodes, otherwise
FALSE will be returned.

Examples

Example 1

{if fetch(’content’, ’can_instantiate_classes’)}

The current user can create nodes below the current node.

{else}

The current user can not create nodes below the current node.

{/if}

Example 2

{def $target=fetch(’content’, ’node’, hash(’node_id’, 64)}

{if fetch(’content’, ’can_instantiate_classes’, hash(’parent_node’,

$target)}

The current user can create nodes below node number 64.

{else}

5.3.3 Modules / content 585

5

The current user can not create nodes below node number 64.

{/if}

5.3.3 Modules / content 586

5

can instantiate class list

Summary

Fetches the classes that the current user can create objects of.

Usage

fetch(’content’, ’can_instantiate_class_list’, hash([’group_id’,

group_id],

[’parent_node’,

parent_node])

Parameters

Name Type Description Required
group id integer The ID number of a class group to fetch

classes from.
No.

parent node object Alternative parent node. No.

Returns

Array of ezcontentclass (page 884) objects or FALSE.

Description

This function fetches a list of classes that the current user is allowed to create objects from. If
no parameters are given, the class list will be generated based on the current node and classes
from all class groups. The ”group id” parameter can be used to instruct the system to only
fetch classes from a certain class group. The ”parent node” parameter can be used to instruct
the system to check which classes the current user is allowed to instantiate below a certain
node instead of the current node. The function returns an array of ezcontentclass (page 884)
objects or FALSE / empty array if the current user can not create instances of any class.

Examples

Example 1

{def $classes=fetch(’content’, ’can_instantiate_class_list’)}

{foreach $classes as $class}

{$class.name}

{/foreach}

Outputs the name of all classes that the current user is allowed to create below the current
node.

5.3.3 Modules / content 587

5

Example 2

{def $classes=fetch(’content’, ’can_instantiate_class_list’, hash(

’group_id’, 3)}

{foreach $classes as $class}

{$class.name}

{/foreach}

Outputs the name of classes belonging to class group number 3 that the current user is al-
lowed to create below the current node.

5.3.3 Modules / content 588

5

class

Summary

Fetches a content class.

Usage

fetch(’content’, ’class’, hash(’class_id’, class_id))

Parameters

Name Type Description Required
class id integer The identifier or ID number of the of

class that should be fetched.
Yes.

Returns

The specified class as an ezcontentclass (page 884) object or FALSE.

Description

This function fetches the class specified by the ”class id” parameter and returns it as an ez-
contentclass (page 884) object. The function will return FALSE if the specified class is un-
available.

Examples

Example 1

{def $class=fetch(’content’, ’class’, hash(’class_id’, 13))}

{$class.name|wash}

Outputs name of class number 13.

5.3.3 Modules / content 589

5

class attribute

Summary

Fetches an attribute of a content class.

Usage

fetch(’content’, ’class_attribute’, hash(’attribute_id’, attribute_id,

[’version_id’, version_id]))

Parameters

Name Type Description Required
attribute id integer The ID number of the class attribute

that should be fetched.
Yes.

version id integer The status/version of the class. No.

Returns

The specified class attribute as an ezcontentclassattribute object or FALSE.

Description

This function fetches the class attribute specified by the ”attribute id” parameter and returns
it as an ezcontentclassattribute (page 888) object. The function will return FALSE if the
specified class attribute is unavailable. The optional ”version id” parameter can be used to
fetch the specified class attribute from a certain version of a class. The following versions /
status codes can be used:

• 0: defined

• 1: temporary

• 2: modified

Examples

Example 1

{def$class_attribute=fetch(’content’,’class_attribute’,hash(’attribute_id’,231))}

{$class_attribute.name|wash}

Outputs the name of class attribute number 231.

5.3.3 Modules / content 590

5

class attribute list

Summary

Fetches the attributes of a class.

Usage

fetch(’content’, ’class_attribute_list’,

hash(’class_id’, class_id,

[’version_id’, version_id]))

Parameters

Name Type Description Required
class id integer The ID number of the target class. Yes.
version id integer The version/status of the class. No.

Returns

Array of ezcontentclassattribute (page 888) objects or FALSE.

Description

This function fetches the attributes of a class. The ID number of the target class must be
specified using the ”class id” parameter. The function returns an array of ezcontentclassat-
tribute (page 888) objects or FALSE if the specified class attribute is unavailable. The optional
”version id” parameter can be used to fetch class attributes from a certain version of a class.
The following versions / status codes can be used:

• 0: defined

• 1: temporary

• 2: modified

Examples

Example 1

{def $attributes=fetch(’content’, ’class_attribute_list’, hash(’class_id’,

13))}

{foreach $attributes as $attribute}

{$attribute.name|wash}

{/foreach}

Outputs the names of the attributes that belong to class number 13.

5.3.3 Modules / content 591

5

collected info collection

Summary

Fetches an information collection.

Usage

fetch(’content’, ’collected_info_collection’,

hash(’collection_id’, collection_id,

’contentobject_id’, contentobject_id))

Parameters

Name Type Description Required
collection id integer The ID number of the collection that

should be fetched.
Yes.

contentobject id integer The ID number of the object that
should be fetched.

Yes.

Returns

An ezinformationcollection (page 927) object or FALSE.

Description

This function fetches an information collection. Both the ID number of the collection and the
contentobject must be provided. The function returns an ezinformationcollection (page 927)
object or FALSE.

Examples

Example 1

{def $collection=fetch(’content’, ’collected_info_collection’,

hash(’collection_id’, 123,

’contentobject_id’, 456))}

{foreach $collection.attributes as $attribute}

{$attribute.contentclass_attribute_name}

{/foreach}

Outputs the attributes for the 123rd information collection for object number 456.

5.3.3 Modules / content 592

5

collected info count

Summary

Fetches the number of collections that match a certain criteria.

Usage

fetch(’content’, ’collected_info_count’,

hash([’object_attribute_id’, object_attribute_id,]

[’object_id’, object_id,]

[’value’, value]))

Parameters

Name Type Description Required
object attribute id integer The ID number of the target object at-

tribute.
No.

object id integer The ID number of the target content
object.

No.

value integer Value filtering on the attribute level. No.

Returns

The number of collections (as an integer).

Description

This function counts the number of collections based on the provided parameters. An object’s
ID number (using the ”object id” parameter) or an object attribute’s ID number (using the
”object attribute id” parameter) must be specified. In addition, it is possible to filter out
collections that match a certain value. This is typically useful when it comes to counting
the number of times a specific value was submitted to a poll. If the ”value” parameter is
used then the ”object attribute id” parameter must also be provided. The function returns a
positive integer if the system is able to find collections matching the given parameters; if not,
zero will be returned.

Examples

Example 1

{def $collections=fetch(’content’, ’collected_info_count’,

hash(’object_attribute_id’, 42,

’object_id’, 20,

’value’, 1))}

{$collections}

5.3.3 Modules / content 593

5

Outputs the number of times attribute #42 for object number 20 has collected ”1”.

5.3.3 Modules / content 594

5

collected info count list

Summary

Fetches the number of times different values were collected.

Usage

fetch(’content’, ’collected_info_count_list’, hash(’object_attribute_id’,

object_attribute_id))

Parameters

Name Type Description Required
object attribute id integer The ID number of the target object at-

tribute.
Yes.

Returns

An array of integers representing a count for every value.

Description

This function calculates and returns the sum of collected values (integers). It was developed
for the poll feature.

Examples

Example 1

{def $counts=fetch(’content’, ’collected_info_count_list’,

hash(’object_attribute_id’, 1024))}

{foreach $counts as $count}

{$count}

{/foreach}

Outputs the number of times different values were collected.

5.3.3 Modules / content 595

5

contentobject attributes

Summary

Fetches the attributes of an object’s version (and translation).

Usage

fetch(’content’, ’contentobject_attributes’,

hash(’version’, version,

[’language_code’, language_code]))

Parameters

Name Type Description Required
version object The target version (must be an ezcon-

tentobjectversion object).
Yes.

language code string The language code. No.

Returns

An array of ezcontentobjectattribute (page 902) objects or FALSE.

Description

This function fetches the attributes that belong to a certain version. The version must be
provided (as an ezcontentobjectversion (page 912)) using the ”version” parameter. The
”language code” parameter is optional and can be used to get the attributes that belong to
a specific translation. The function returns an array of ezcontentobjectattribute (page 902)
objects or FALSE if something went wrong.

Examples

Example 1

{def $object=fetch(’content’, ’object’, hash(’object_id’, 14))

$attributes=fetch(’content, ’contentobject_attributes’,

hash(’version’, $object.current))}

{foreach $attributes as $attribute}

{$attribute.data_type_string}

{/foreach}

Outputs the names of the datatypes that are used by the different attributes within the current
version of object number 14.

5.3.3 Modules / content 596

5

draft count

Summary

Fetches the number of drafts that belong to the current user.

Usage

fetch(’content’, ’draft_count’)

Returns

The number of drafts (as an integer) that belong to the current user.

Description

This function fetches the number of drafts that belong to the current user and returns it as an
integer.

Examples

Example 1

{def $drafts=fetch(’content’, ’draft_count’)}

The current user has {$drafts} drafts.

Outputs the number of drafts that belong to the current user.

5.3.3 Modules / content 597

5

draft version list

Summary

Fetches the drafts that belong to the current user.

Usage

fetch(’content’, ’draft_version_list’,

hash([’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
offset integer The offset to start at. No.
limit integer The number of drafts/versions that

should be fetched.
No.

Returns

An array of ezcontentobjectversion (page 912) objects or FALSE.

Description

This function fetches the drafts that belong to the current user. The optional parameters
”offset” and ”limit” can be used to limit the result. The function returns an array of ezcon-
tentobjectversion (page 912) objects. If no drafts can be found or if something goes wrong,
the function returns FALSE.

Examples

Example 1

{def $drafts=fetch(’content’, ’draft_version_list’)}

{foreach $drafts as $draft}

{$draft.id}: {$draft.name}

{/foreach}

Outputs the ID numbers and the names of all drafts that belong to the current user.

5.3.3 Modules / content 598

5

keyword

Summary

Fetches nodes that use keywords starting with a given sequence.

Usage

fetch(’content’, ’keyword’, hash(’alphabet’, alphabet,

[’classid’, classid,]

[’limit’, limit,]

[’offset’, offset,]

[’owner’, owner,]

[’sort_by’, sort_by,]))

Parameters

Name Type Description Required
alphabet string The sequence that should be matched. Yes.
classid array Filtering: the ID number of the class or

an array of the ID numbers.
No.

offset integer The offset to start at. No.
limit integer The number of elements that should be

returned.
No.

owner integer Filtering by owner: the ID number of
the object representing the user.

No.

sort by array The sorting mechanism that should be
used.

No.

Returns

An array of hashes (see below) or FALSE.

Description

This function fetches nodes that encapsulate objects which make use of certain keywords. The
keyword must be prodived using the ”alphabet” parameter. This parameter can be a letter,
a part of a word or an entire word - the function will look for keywords that start with the
specified sequence. By default, the function will fetch nodes that encapsulate objects of all
types created by any user. However, it is possible to only fetch objects of a certain type that
are initially created by a certain user, this can be achieved by using the optional ”classid” and
”owner” parameters. The ”offset” and ”limit” parameters can be used to limit the result.

The ”sort by” parameter makes it possible to sort the result in different ways. This parameter
must be provided as an array. The first element of the array must be the desired sorting
method. The second element of the array must be the sorting direction, it can be either true()
or false() - ascending or descending. Please note that this parameter works in the very same
way as the ”sort by” parameter of the list (page 602) fetch function. However, it currently
only supports the following sorting methods:

5.3.3 Modules / content 599

5

• class identifier

• class name

• modified

• name

• published

• section

Please note that using other sort methods will lead to an error.

The function returns an array of hashes. Each hash consists of the following elements:

Key Type Description
keyword string The keyword that was

matched.
link object object The node (as a ezcontento-

bjecttreenode (page 907)
object) that encapsulates
an object which uses the
matched keyword.

If no match is found, the function will return FALSE.

Examples

Example 1

{def $list=fetch(’content’, ’keyword’,

hash(alphabet, ’computer’,

classid, 3))}

{foreach $list as $element}

{$element.link_object.name|wash} ({$element.keyword|wash})

{/foreach}

Outputs the names of nodes that encapsulate objects which make use of keywords starting
with the string ”computer”. In addition, the matched keywords are also printed.

Example 2

{def $list=fetch(’content’, ’keyword’,

hash(alphabet, ’computer’,

classid, array(1, 3)))}

Only nodes that encapsulate objects of the specified two classes will be fetched.

Example 3

5.3.3 Modules / content 600

5

{def $list=fetch(’content’, ’keyword’,

hash(alphabet, ’computer’,

classid, array(1, 3),

owner, 14,

sort_by, array(’modified’, false())))}

Only the nodes/objects that are created by the user that has ID number 14 will be included
in the result. The nodes will be sorted by the modification time of the objects; the node that
encapsulates the most recently modified object will be the first element in the collection.

5.3.3 Modules / content 601

5

keyword count

Summary

Fetches the number of nodes that use certain keywords.

Usage

fetch(’content’, ’keyword_count’, hash(’alphabet’, alphabet,

[’classid’, classid]))

Parameters

Name Type Description Required
alphabet string The sequence that should be matched. Yes.
classid integer Filtering: the ID number of the class. No.

Returns

The number of matching nodes (as an integer).

Description

This function returns the number of nodes that encapsulate objects which make use of certain
keywords. The keyword must be prodived using the ”alphabet” parameter. This parameter
can be a letter, a part of a word or an entire word - the function will look for keywords that
start with the specified sequence. By default, the function will count nodes that encapsulate
objects of all types. However, it is possible to only count objects of a certain type, this can be
achieved by using the optional ”classid” parameter. The function returns an integer.

Examples

Example 1

{def $count=fetch(’content’, ’keyword_count’,

hash(’alphabet’, ’computer’))}

There are {$count} number of nodes using keywords starting with "computer".

Outputs the number of nodes that encapsulate objects which use keywords starting with
”computer”.

5.3.3 Modules / content 602

5

list

Summary

Fetches the children of a node or a collection of nodes.

Usage

fetch(’content’, ’list’,

hash(’parent_node_id’, parent_node_id,

[’sort_by’, sort_by,]

[’offset’, offset,]

[’limit’, limit,]

[’attribute_filter’, attribute_filter,]

[’extended_attribute_filter’, extended_attribute_filter,]

[’class_filter_type’, class_filter_type,]

[’class_filter_array’, class_filter_array,]

[’only_translated’, only_translated,]

[’language’, language,]

[’main_node_only’, main_node_only,]

[’as_object’, as_object,]

[’depth’, depth,]

[’limitation’, limitation]

[’ignore_visibility’, ignore_visibility]))

5.3.3 Modules / content 603

5

Parameters

Name Type Description Required
parent node id mixed The ID number(s) of the parent

node(s).
Yes.

sort by array The sorting mechanism that should be
used.

No.

offset integer The offset to start at. No.
limit integer The number of nodes that should be

fetched.
No.

attribute filter mixed The attribute level filter logic. No.
extended attribute
filter

mixed The extended attribute level filter
logic.

No.

class filter type string The type of class filtering (include/
exclude).

No.

class filter array array The classes that should be filtered. No.
group by array DEPRECATED No.
only translated boolean Translation filtering (on/off). No.
language string The translations that should be

fetched.
No.

main node only boolean Type of nodes that should be fetched
(all or main nodes only).

No.

as object boolean If TRUE (or omitted), an array of ”ez-
contentobjecttreenode” objects will be
fetched. Otherwise, an array of arrays
will be returned.

No.

depth integer The maximum level of depth that
should be explored (1 by default).

No.

limitation array Limitation array (emtpy array = access
override).

No.

ignore visibility boolean Makes it possible to fetch hidden
nodes.

No.

Returns

An array of ezcontentobjecttreenode (page 907) objects or FALSE.

Description

This function fetches the children of a single node or a collection of nodes. The parent node(s)
must be specified using the ”parent node id” parameter. This parameter can either be the ID
number of a single node or an array containing several node ID numbers. The function will
fetch the nodes that are directly under the specified parent node(s). The collection is returned
as an array of ezcontentobjecttreenode (page 907) objects. If no nodes are found or if an
error occurs, the function will return FALSE. The optional ”group by” parameter (grouping
on a date/time basis) is deprecated since this functionality is not supported by Oracle and
PostgreSQL.

5.3.3 Modules / content 604

5

Sorting

The ”sort by” parameter makes it possible to sort the result in different ways. This parameter
must be provided as an array. The first element of the array must be the desired sorting
method. The second element of the array must be the sorting direction, it can be either true()
or false() - ascending or descending. The following table shows the sorting methods that can
be used.

Sorting method Description
attribute The nodes are sorted according to the value

of a specific attribute.
class identifier The nodes are sorted by the class identifiers

of the objects.
class name The nodes are sorted by the class names of

the objects.
depth The nodes are sorted by their depth in the

content tree.
modified The nodes are sorted by the modification

time of the objects.
name The nodes are sorted by the names of the

objects.
path The nodes are sorted by their node ID path

strings (/1/2/43/56).
path string The nodes are sorted by their virtual path

strings (/company/about).
priority The nodes are sorted by their priority.
published The nodes are sorted by the creation time of

the objects.
section The nodes are sorted by the section IDs of

the objects.

It is possible to combine different sorting methods. For example, it is possible to sort the
nodes alphabetically and by their publish date/time at the same time.

Sorting on the attribute level is supported for the following datatypes:

• Checkbox

• Date

• Date and time

• E-mail

• Integer

• Selection (will not work when used as multiple selector)

• Text line

• Time

The syntax for doing attribute level sorting is almost the same as for normal sorting. The only
difference is that the ID number or the identifier of the target attribute must be specified. If

5.3.3 Modules / content 605

5

the identifier is used then both the identifier of the class and the attribute must be specified
(separated by a slash, like this: ”my class/my attribute”). Attribute sorting can only be used
if the returned collection contains the same type of nodes.

Fetching subsets

By making use of the ”offset” and ”limit” parameters, it is possible to fetch only a subset of
the collection that would have been returned if these parameters were omitted. While the
”offset” parameter defines the start of the subset, the ”limit” parameter defines the length
(number of elements/nodes) of the subset. These parameters are processed at the final stage.
In other words, it is possible to do advanced sorting/filtering and grab only a specific chunk
of from the sorted/filtered/etc. collection.

Class filtering

The class filter mechanism is controlled by the ”class filter type” and ”class filter array” pa-
rameters. The ”class filter type” parameter tells eZ Publish to include or exclude specific node
types. This parameter must be either ”include” or ”exclude”. It is not possible to include one
set and to exclude another at the same time. The value of the ”class filter array” parameter
specifies the type of nodes that should be included or excluded. This parameter must be an
array of class ID numbers or class identifier strings.

Attribute filtering

The attribute filter mechanism is controlled by the ”attribute filter” parameter. Attribute filter-
ing makes it possible to fetch a set of nodes where an attribute (or several attributes) contains
some specific data. Filtering on the attribute level is supported for the following datatypes:

• Checkbox

• Date

• Date and time

• E-mail

• Integer

• Object relation

• Selection (will not work when used as multiple selector)

• Text line

• Time

The ”attribute filter” parameter must be an array. The first element may be set to either ”and”
or ”or” - this controls how the matching specified in the upcoming elements should be carried
out. If this parameter is omitted, the system will default to ”and”. The rest of the elements
are arrays, each array specifies a match. The elements in this array are:

5.3.3 Modules / content 606

5

1. Attribute ID

2. Match type

3. Match value

The attribute ID can be specified either as the ID number of the attribute or as a string that
contains the identifier of the class and the identifier of the attribute separated by a slash.
(Note that it is also possible to specify one of the pre-defined strings in order to do filtering
on a non-attribute.) The ID number of the attribute or the identifier of the class and the
attribute can be found when viewing/editing content classes.

The match type tells how eZ Publish should try to match the values. The match value is the
data that should be matched. The following match types can be used:

Type Description
= Equal
!= Not equal
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
in Matches one of the array values
not in Does not match any of the array values
between Is a part of the range determined by the start

and end values
not between Is outside the range determined by the start

and end values
like Matches the wildcard string (the wildcard

character is ’*’)

It is not possible to filter on attributes of different classes, for example it is not possible to
filter on both ”article/show comments” and ”folder/show comments” in the same filter.

Filtering on a non-attribute

Instead of the class/attribute syntax, you can use ”published” and ”priority” as ”AttributeID”.
It is also possible to use ”owner” as ”AttributeID” which refers to the owner’s identifier of the
content object. This can for instance be used to find all objects of a given user.

There are also some other pre-defined strings that can be used as ”AttributeID” (refer to the
following table). When one of these strings is used as ”AttributeID”, filtering is based on tem-
plate object attributes (not on content object (page 120) attributes). This means that if you
use f.ex. ”priority” as ”AttributeID”, the system will check the value of the ”priority” attribute
of the ”ezcontentobjecttreenode (page 907)” objects that represent information about content
nodes.

The following table describes the pre-defined strings and corresponding attributes.

Name Description
class identifier The identifier of the class which the object

encapsulated by the node is an instance of.
class name The name of the class which the object en-

5.3.3 Modules / content 607

5

capsulated by the node is an instance of.
depth The depth of the node within the content

node tree.
modified A UNIX timestamp pinpointing the exact

date/time when the object encapsulated by
the node was last modified (the ”modified”
attribute of the corresponding ”ezcontento-
bject” object).

modified subnode A UNIX timestamp pinpointing the exact
time a sub node was changed.

name The name of the object the node encapsu-
lates.

owner The ID number of the object representing
the user who initially created the object (the
”owner id” attribute of the corresponding
”ezcontentobject” object).

path The node’s path string (the ”path string” at-
tribute).

priority The node’s priority.
published A UNIX timestamp pinpointing the exact

date/time when the object was published
for the first time (the ”published” attribute
of the corresponding ”ezcontentobject” ob-
ject).

section The ID number of the section that the object
belongs to (the ”section id” attribute of the
corresponding ”ezcontentobject” object).

Extended attribute filtering

The ”extended attribute filter” parameter can be used to do advanced attribute filtering. It is
for expert/experienced users. This mechanism makes it possible to introduce additional SQL
conditions within the fetch. It allows filtering based on values in custom tables and/or special
filtering within the ”ezcontentobject attribute” table.

The mechanism must be configured using a configuration override for ”extendedattribute-
filter.ini”. This file allows the site administrator to set up different custom filters. Each filter
must be a named collection of configuration settings. The name of a filter is the name of the
configuration block under which the filter’s settings are defined. The following text shows an
example that demonstrates the setup of a filter called ”MyFilter”.

#The name of the filter.

[MyFilter]

#The name of the extension where the filtering code is defined.

ExtensionName=myextension

#The name of the filter class.

ClassName=eZMyExtendedFilter

5.3.3 Modules / content 608

5

#The name of the method which is called to generate the SQL parts.

MethodName=createSqlParts

#The file which should be included (extension/

myextension will automatically be prepended).

FileName=classes/ezmyextendedfilter.php

The function defined by the ”MethodName” setting must return an associative array contain-
ing two strings:

array(’tables’ => ’...’, ’joins’ => ’...’);

The contents of ”tables” must start with a comma. The rest of the string should contain a
comma separated list of other tables that should be included in the query. The contents of
”joins” will be added inside the ”WHERE” section of the query. This string must start with a
space and contain an ”AND” and an additional space at the end.

The example below shows a solution that filters the content based on values within an addi-
tional/custom table. This table is joined with the node table (by object ID and object version).
The additional/custom table would most likely be maintained by a special/custom datatype.

class eZMyExtendedFilter

{

/*!

Constructor

*/

function eZMyExtendedFilter()

{

// Empty...

}

function createSqlParts($params)

{

$sqlTables= ’, ezmyfiltertable ’;

$sqlJoins = ’ ezcontentobject_tree.contentobject_id =

ezmyfiltertable.contentobject_id AND

ezcontentobject_tree.contentobject_version = ezmyfiltertable.version AND ’;

if (isset($params[’value1’]))

{

$value1 = $params[’value1’];

}

else

{

$value1 = "10";

}

if (isset($params[’value2’]))

{

5.3.3 Modules / content 609

5

$value2 = $params[’value2’];

}

else

{

$value2 = "10";

}

$sqlCondArray = array();

$sqlCondArray[] = ’ezmyfiltertable.my_cond1 = ’ . $value1;

$sqlCondArray[] = ’ezmyfiltertable.my_cond1 = ’ . $value2;

$sqlCond = implode(’ or ’, $sqlCondArray);

$sqlCond = ’ (’ . $sqlCond . ’) AND ’ . $sqlJoins . ’ ’;

return array(’tables’ => $sqlTables, ’joins’ => $sqlCond);

}

}

The following template code shows how the extended attribute filter (see the PHP code
above) can be used within a fetch.

{fetch(’content’, ’list’,

hash(’parent_node_id’, 2,

’sort_by’, array(’priority’, false()),

’limit’, 15,

’extended_attribute_filter’,

hash(’id’, ’MyFilter’,

’params’, hash(’value1’, 15,

’value2’, 30)),

’depth’, 10,

’main_node_only’, true()))}

There is an additional example at the bottom of this page: Example 19.

Fetching main nodes only

The ”main node only” parameter can be used to tell eZ Publish that it should only fetch main
nodes (nodes that are main locations for content objects). This parameter is optional and can
be set to either true() or false(). When set to true(), the fetch function will only return main
nodes. This functionality can be used to avoid duplicates (different nodes but same objects)
in the result.

5.3.3 Modules / content 610

5

Fetching translated objects only

In some multi-language scenarios, not all objects are translated into other/all languages.
When the ”only translated” parameter is set to ”true()” the system will only fetch objects that
have been translated into the language used by the siteaccess (the current language). The
”language” parameter can be used to control which translations that should be fetched. The
value of this parameter must be a valid locale string, for example ”ger-DE”.

Access override

The ”limitation” parameter makes it possible to instruct the system to use an alternate set
of access limitations instead of the ones that belong to the current user. This is typically
useful when there is a need to fetch nodes that the current user does not have access to. All
permission checking can be skipped by providing an empty array. It is also possible to provide
arrays that dictate the access limitations of other users and/or virtual sets of limitations. The
array follows an internal structure that will be documented in the future.

Visibility override

The ”ignore visibility” parameter makes it possible to fetch hidden nodes. It can be set to
either ”true()” or ”false()”. If set to ”true()”, the fetch will ignore the visibility flags of nodes
and thus it will return all nodes regardless of their visibility status. In other words, this pa-
rameter overrides the ”ShowHiddenNodes” (page 1560) configuration directive for a specific
fetch operation in a template.

Examples

Example 1

{def $nodes=fetch(’content’, ’list’,

hash(’parent_node_id’, 42,

’depth’, 3))}

{foreach $nodes as $node}

{$node.name|wash}

{/foreach}

This example demonstrates how to fetch nodes which are until the third level under the
parent node number 42. Outputs the names of all these nodes.

Example 2

{fetch(’content’, ’list’,

hash(’parent_node_id’, 42,

’sort_by’, array(’published’, false())))}

5.3.3 Modules / content 611

5

This example demonstrates how to fetch all nodes that are the children of node number 42.
The nodes are sorted by the time they were created; the most recently created node will be
the first element in the collection.

Example 3

{fetch(’content’, ’list’,

hash(’parent_node_id’, 42,

’sort_by’, array(array(’name’, false()),

array(’published’, false())))}

This example demonstrates how to combine different sorting methods. The fetch function
will fetch the child nodes of node number 42. The fetched nodes will be sorted by their name
and the time they were created.

Example 4

{fetch(’content’, ’list’,

hash(’parent_node_id’, 42,

’sort_by’, array(’attribute’,

false(),

107)))}

This example demonstrates attribute sorting by using the ID number of the attribute.

Example 5

{fetch(’content’, ’list’,

hash(’parent_node_id’, 42,

’sort_by’, array(’attribute’,

false(),

’person/last_name’)))}

This example demonstrates attribute sorting by using the string notation to pinpoint the iden-
tifier of the class and the attribute.

Example 6

{fetch(’content’, ’list’,

hash(’parent_node_id’, 42,

’class_filter_type’, ’include’,

’class_filter_array’, array(’13’)))}

This example demonstrates how to use class filtering to fetch only nodes that reference objects
that are instances of class number 13.

5.3.3 Modules / content 612

5

Example 7

{fetch(’content’, ’list’,

hash(’parent_node_id’, 42,

’class_filter_type’, ’include’,

’class_filter_array’, array(’folder’)))}

This example demonstrates how to use class filtering to fetch only nodes that reference folder
objects.

Example 8

{fetch(’content’, ’list’,

hash(’parent_node_id’, 42,

’class_filter_type’, ’exclude’,

’class_filter_array’, array(’article’,

’comment’)))}

This example demonstrates how to use class filtering to exclude articles and comments from
a fetch.

Example 9

{fetch(’content’, ’list’,

hash(’parent_node_id’, 42,

’attribute_filter’, array(’or’,

array(152, ’=’, ’abc’),

array(153, ’=’, ’42’))))}

This example demonstrates how to do attribute filtering. Only nodes that have attributes
number 152 and 153 set to ”abc” and 42 respectively will be included in the result.

Example 10

{fetch(’content’,

’list’,

hash(’parent_node_id’, 42,

’attribute_filter’, array(array(’article/title’,

’like’,

’*story*’))))}

This example demonstrates how to do attribute filtering. Instead of specifying the ID number
of the attribute (as in the previous example), the identifier of the class and the attribute is
used. Only article nodes that contain the text ”story” in their title attribute will be included
in the result.

5.3.3 Modules / content 613

5

Example 11

{fetch(’content’,

’list’,

hash(’parent_node_id’, 42,

’attribute_filter’, array(array(’article/image’,

’=’,

87))))}

This example demonstrates how to do attribute filtering using an attribute of the ”Object
relation” datatype. Only article nodes that store relation to the specified content object (object
ID = 87) in their ”image” attribute will be included in the result.

Example 12

{fetch(’content’,

’list’,

hash(’parent_node_id’, 42,

’attribute_filter’, array(array(’review/rating’,

’between’,

array(0, 2)))))}

This example demonstrates how to do attribute filtering using an attribute of the ”Selection”
datatype. Only review nodes that contain ”Very good”, ”Good” or ”Ok” (options 0, 1 or 2) in
their ”rating” attribute will be included in the result.

Example 13

{fetch(’content’,

’list’,

hash(’parent_node_id’, 42,

’attribute_filter’, array(array(’bug/priority’,

’in’,

array(1, 4)))))}

Fetches bugs with priority 1 and 4 (i.e. bug nodes that have their priority attribute set to 1 or
4).

Example 14

{fetch(’content’,

’list’,

hash(’parent_node_id’, 42,

’attribute_filter’, array(array(’bug/priority’,

’between’,

array(2, 4)))))}

Fetches bugs with priority 2, 3 and 4 (i.e. bug nodes that have their priority attribute value
between 2 and 4).

5.3.3 Modules / content 614

5

Example 15

{fetch(’content’, ’list’,

hash(’parent_node_id’, 42,

’attribute_filter’, array(’and’,

array(’priority’, ’>’, ’20’),

array(’article/

title’, ’=’, ’abc’))))}

This example demonstrates how to do filtering on a non-attribute. Instead of specifying the
identifier of the class and the attribute, ”priority” is used. Only article nodes that have their
title attribute set to ”abc” and have a priority greater than 20 will be included in the result.

Example 16

{def $nodes=fetch(’content’, ’list’,

hash(’parent_node_id’, 42,

’attribute_filter’, array(’and’,

array(’owner’,

’=’,

$current_user.contentobject_id),

array(’class_identifier’, ’=’, ’folder’)),

’depth’, 3))}

{foreach $nodes as $node}

{$node.name|wash}

{/foreach}

{undef $nodes}

Fetches folder nodes which are until the third level under the parent node number 42 and are
created by the current user.

Example 17

{fetch(’content’, ’list’,

hash(’parent_node_id’, 2,

’only_translated’, true()))}

This example demonstrates how to fetch only nodes that reference objects that have been
translated into the current language (the language that the siteaccess is using).

Example 18

{fetch(’content’, ’list’,

hash(’parent_node_id’, 2,

’limit’, 3,

5.3.3 Modules / content 615

5

’only_translated’, true(),

’language’, ’ger-DE’))}

This example demonstrates another way to fetch translated objects. The fetch will return
nodes that reference objects which have been translated into the German language.

Example 19

{fetch(’content’, ’list’,

hash(’parent_node_id’, 2,

’sort_by’, array(’priority’, false()),

’limit’, 15,

’extended_attribute_filter’,

hash(’id’, ’MyFilter’,

’params’, hash(’value1’, ’text1’,

’value2’, ’text2’))))}

This example demonstrates how the extended attribute filter can be used. The template code
above will fetch objects that match the following condition: any object using the ezstring
datatype containing either ”text1” or ”text2”. The necessary PHP implementation is shown in
the example below.

class eZMyExtendedFilter

{

/*!

Constructor

*/

function eZMyExtendedFilter()

{

// Empty...

}

function createSqlParts($params)

{

$sqlTables= ’, ezcontentobject_attribute as myfilter_alias ’;

$sqlJoins = ’ ezcontentobject_tree.contentobject_id =

myfilter_alias.contentobject_id AND

ezcontentobject_tree.contentobject_version = myfilter_alias.version AND

myfilter_alias.data_type_string = "ezstring" AND’;

if (isset($params[’value1’]))

{

$value1 = $params[’value1’];

}

else

{

5.3.3 Modules / content 616

5

$value1 = ’fooo’;

}

if (isset($params[’value2’]))

{

$value2 = $params[’value2’];

}

else

{

$value2 = ’boooo’;

}

$sqlCondArray = array();

$sqlCondArray[] = ’myfilter_alias.data_text = "’ . $value1 . ’"’;

$sqlCondArray[] = ’myfilter_alias.data_text = "’ . $value2 . ’"’;

$sqlCond = implode(’ or ’, $sqlCondArray);

$sqlCond = ’ (’ . $sqlCond . ’) AND ’ . $sqlJoins . ’ ’;

return array(’tables’ => $sqlTables, ’joins’ => $sqlCond);

}

}

Example 20

{fetch(’content’, ’list’, hash(’parent_node_id’, 2,

’ignore_visibility’, true()))}

This example demonstrates how to fetch nodes regardless of their visibility status. The oper-
ation above will return both visible and hidden nodes that are directly below node #2.

Example 21

{def $nodes=fetch(’content’, ’list’, hash(’parent_node_id’, 2,

’as_object’, false()))}

The result is an array of arrays. The first inner array reveals information

about the node "{$nodes[0].name|wash}": <br /

> {$nodes[0]|attribute(show, 1)}

This example demonstrates the behavior when the ”as object” parameter is set to FALSE. The
following output will be produced:

The result is an array of arrays. The first inner array reveals information about the node
”Multiprice products”:

5.3.3 Modules / content 617

5

Attribute Type Value
contentclass id string 1
current version string 1
id string 61
initial language id string 2
is published string
language mask string 3
modified string 1161682117
name string ’Multiprice products’
owner id string 14
published string 1161682117
remote id string ’f3f9d3443e61498e01523e3016ca136b’
section id string 1
status string 1
contentobject id string 61
contentobject is published string 1
contentobject version string 1
depth string 2
is hidden string
is invisible string
main node id string 63
modified subnode string 1161682290
node id string 63
parent node id string 2
path identification string string ’multiprice products’
path string string ’/1/2/63/’
priority string
sort field string 2
sort order string
class name string ’Folder’
class identifier string ’folder’
real translation string ’eng-GB’

5.3.3 Modules / content 618

5

list count

Summary

Fetches the number of children of a node.

Usage

fetch(’content’, ’list_count’,

hash(’parent_node_id’, parent_node_id,

[’class_filter_type’, class_filter_type,]

[’class_filter_array’, class_filter_array,]

[’attribute_filter’, attribute_filter,]

[’main_node_only’, main_node_only,]))

Parameters

Name Type Description Required
parent node id integer The ID number of the parent node. Yes.
class filter type string The type of class filtering (include/

exclude).
No.

class filter array array The classes that should be filtered. No.
attribute filter mixed Filter logic for attribute level filtering. No.
main node only integer Type of nodes that should be fetched

(all or main nodes only).
No.

Returns

An integer (the number of nodes).

Description

This function operates in almost the same way as the ”list” fetch function. The difference is
that instead of returning the actual nodes, it returns the count (the number of nodes that
were found). The ”list count” function takes the same parameters as the ”list” function with
some exceptions (sorting, grouping, limit/offset, etc. is not supported). Please refer to the
documentation of the ”list” (page 602) function for a detailed description of the parameters.

Examples

Example 1

{def $count=fetch(’content’, ’list_count’, hash(’parent_node_id’, 42))}

Node number 42 has {$count} number of children.

Outputs the number of nodes that are below node number 42.

5.3.3 Modules / content 619

5

locale list

Summary

Fetches the available locales.

Usage

fetch(’content’, ’locale_list’)

Returns

An array of ezlocale (page 932) objects.

Description

This function fetches all the available locales and returns an array of ezlocale (page 932)
objects.

Examples

Example 1

{def $locales=fetch(’content’, ’locale_list’)}

{foreach $locales as $locale}

{$locale.locale_code} : {$locale.country_name}

{/foreach}

Outputs the locale codes and the names of the countries that the different locales belong to.

5.3.3 Modules / content 620

5

navigation part

Summary

Fetches information about a navigation part.

Usage

fetch(’content’, ’navigation_part’, hash(’identifier’, identifier))

Parameters

Name Type Description Required
identifier string The identifier of the desired navigation

part.
Yes.

Returns

An associative array (see below) or FALSE.

Description

This function fetches information about a navigation part. The identifier of the navigation
part must be specified using the ”identifier” parameter. The function returns a hash that
consists of the following elements:

Key Type Description
name string The actual name of the nav-

igation part (for example
”Content structure”).

identifier string The identifier of the naviga-
tion part (for example ”ez-
contentnavigationpart”).

Examples

Example 1

{def $navigation_part=fetch(’content’, ’navigation_part’,

hash(’identifier’, ’ezcontentnavigationpart’)

)}

{$navigation_part.name}

Outputs the name of the navigation part identified by the string ”ezcontentnavigationpart”.

5.3.3 Modules / content 621

5

navigation parts

Summary

Fetches all available navigation parts.

Usage

fetch(’content’, ’navigation_parts’)

Returns

An array of hashes (see below).

Description

This function fetches all the available navigation parts. The function returns an array with
hashes containing the following elements:

Key Type Description
name string The actual name of the nav-

igation part (for example
”Content structure”).

identifier string The identifier of the naviga-
tion part (for example ”ez-
contentnavigationpart”).

Examples

Example 1

{def $navigation_parts=fetch(’content’, ’navigation_parts’)}

{foreach $navigation_parts as $navigation_part}

{$navigation_part.identifier} : {$navigation_part.name}

{/foreach}

Outputs the identifiers and names of all the available navigation parts.

5.3.3 Modules / content 622

5

node

Summary

Fetches a node (identified by either an ID number or a path).

Usage

fetch(’content’, ’node’, hash([’node_id’, node_id,]

[’node_path’, node_path]))

Parameters

Name Type Description Required
node id integer The ID number of the node that should

be fetched.
No.

node path string The path of the node that should be
fetched.

No.

Returns

An ezcontentobjecttreenode (page 907) object of FALSE.

Description

This function fetches a single node and returns it as a ezcontentobjecttreenode (page 907).
The target node must be specified using either the ”node id” or the ”node path” parameter. If
no node can be found, or if an error occurs, the function will return FALSE.

Examples

Example 1

{def $my_node=fetch(’content’, ’node’, hash(’node_id’, 96))}

{$my_node.name|wash}

Fetches node number 96 and outputs the name of the object that is encapsulated by that
node.

Example 2

{def $my_node=fetch(’content’, ’node’, hash(’node_path’, ’news/

article_test’))}

{$my_node.name|wash}

Fetches the node by the specified path and outputs the name of the object that is encapsulated
by that node.

5.3.3 Modules / content 623

5

Example 3

{def $my_node=fetch(’content’, ’node’, hash(’node_path’, ’news/

article_test’))}

Views: {$my_node.view_count}

Fetches the node by the specified path and outputs the number of times this node has been
viewed. (The ”updateviewcount.php” cronjob must be run periodically.)

5.3.3 Modules / content 624

5

non translation list

Summary

Fetches locales that a version of an object may be translated into.

Usage

fetch(’content’, ’non_translation_list’, hash(’object_id’, id, ’version’,

version)

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
version integer The target version number. Yes.

Returns

An array of ezlocale (page 619) objects or FALSE.

Description

This function will fetch all the locales that a specific version of a content object may be
translated to. The locales which the version is already translated to will not be included. The
function returns an array of ezlocale (page 619) objects. It will return FALSE if there are no
more alternate locales.

Examples

Example 1

{def $locales=fetch(’content’, ’non_translation_list’,

hash(’object_id’, 42,

’version’, 3))}

{foreach $locales as $locale}

{$locale.language_name}

{/foreach}

Outputs the language names of the locales that version number 3 of object number 42 can be
translated to.

5.3.3 Modules / content 625

5

object

Summary

Fetches a content object (specified by an ID number).

Usage

fetch(’content’, ’object’, hash(’object_id’, object_id))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.

Returns

An ezcontentobject (page 894) object or FALSE.

Description

This function fetches a content object. The ID number of the object must be specified using
the ”object id” parameter. The function returns an ezcontentobject (page 894) object. It will
return FALSE if a non-existing ID number is provided or if an error occurs.

Examples

Example 1

{def $object=fetch(’content’, ’object’, hash(’object_id’, 13))}

{$object.name|wash}

Outputs the name of object number 13.

5.3.3 Modules / content 626

5

object by attribute

Summary

DEPRECATED

5.3.3 Modules / content 627

5

object count by user id

Summary

Fetches the number of objects (of a class) created by a user.

Usage

fetch(’content’, ’object_count_by_user_id’,

hash(’class_id’, class_id,

’user_id’, user_id))

Parameters

Name Type Description Required
class id integer The ID number of the target class. Yes.
user id integer The ID number of the user (object ID). Yes.

Returns

The number of objects (as an integer).

Description

This function counts the number of objects (of a certain type) that were created by a user.
Both the type of the object (the class) and the user must be specified. The function returns
an integer revealing the number of objects that were found.

Examples

{def count=fetch(’content’, ’object_count_by_user_id’, hash(’class_id’,

13, ’user_id’, 14))}

{$count}

{undef $count}

Outputs the number of objects (of class number 13) that have been created by user number
14.

5.3.3 Modules / content 628

5

pending count

Summary

Fetches the number of pending objects for the current user.

Usage

fetch(’content’, ’pending_count’)

Returns

An integer revealing the number of pending objects.

Description

This function reveals the number of pending objects that belong to the current user.

Examples

Example 1

{def $count=fetch(’content’, ’pending_count’)}

There are {$count} pending objects.

Outputs the number of pending objects that belong to the current user.

5.3.3 Modules / content 629

5

pending list

Summary

Fetches the pending objects for the current user.

Usage

fetch(’content’, ’pending_list’)

Returns

An array of (page 894) objects or FALSE.

Description

This function fetches the pending objects that belong to the current user. The function returns
an array of (page 894) or FALSE if there are no pending objects.

Examples

Example 1

{def $pending=fetch(’content’, ’pending_list’)}

{foreach $pending as $object}

{$object.name}

{/foreach}

Outputs the names of the pending objects that belong to the current user.

5.3.3 Modules / content 630

5

recent

Summary

Fetches nodes where the current user recently published something.

Usage

fetch(’content’, ’recent’)

Returns

An array of ezcontentbrowserecent (page 883) objects or FALSE.

Description

This function fetches nodes under which the current user recently has published something.
The function returns an array of ezcontentbrowserecent (page 883) objects. If there are no
nodes under which the current user has published something, the function will return FALSE.

Examples

Example 1

{def $recent=fetch(’content’, ’recent’)}

{foreach $recent as $element}

{$element.name}

{/foreach}

Outputs the names of the nodes under which the current user recently published something.

5.3.3 Modules / content 631

5

related objects

Summary

Fetches related objects.

Usage

fetch(’content’, ’related_objects’,

hash(’object_id’, object_id,

[’attribute_identifier’, attribute_identifier,]

[’all_relations’, boolean,]

[’group_by_attribute’, boolean,]

[’sort_by’, sort_by]))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
attribute identifier mixed The ID number or class/attribute iden-

tifier of the target attribute.
No.

all relations boolean Controls whether to fetch all types of
relations or not, default is FALSE.

No.

group by attribute boolean Groups the result based on the at-
tributes, default value is TRUE.

No.

sort by array The sorting mechanism that should be
used.

No.

Returns

An array of ezcontentobject (page 894) objects or a two-dimensional array if ’group by
attribute’ is TRUE. If no objects are found, the function will return FALSE.

Description

This function fetches the objects that have been related to an object specified by the ”object
id” parameter. It returns all related objects regardless of their relation type (attributes using
the ”Object relation” (page 474) or ”Object relations” (page 476) datatype or standard object-
level relations).

The ”attribute identifier” parameter makes it possible to specify either an ID number or an
identifier string (class/attribute - for example ”my class/my attribute”) of an attribute. This
parameter is not required. The default value is zero, which makes the function return only
objects that are related on an object level, not at the attribute level. This behavior is similar
to ’related contentobject array’ functional attribute of a content object. When the parameter
is used, the system will return objects that have been related using an attribute that is based
on either the ”Object relation” (page 474) or ”Object relations” (page 476) datatype.

5.3.3 Modules / content 632

5

The ”all relations” parameter makes it possible to fetch all types of relations. This parameter
is not required and the default value is FALSE.

The ”group by attribute” parameter can only be used when the ”all relations” parameter has
been set to TRUE. When the ”group by attribute” parameter has been set to TRUE, the func-
tion will return a two-dimensional array instead of just an array of objects. The following
example shows how this structure is built up:

$related_objects_grouped = array(

0 => array($object1, $object2 ...),

// Objects related on content object level

attr_id_1 => array($object1, $object2 ...),

attr_id_2 => array($object1, $object2 ...),

...

// Objects related by attributes

);

The ”sort by” parameter makes it possible to sort the result in different ways. This parameter
must be provided as an array of arrays that define the sorting methods. The first element of
each array must be the desired sorting method. The second element of the array must be the
sorting direction, it can be either TRUE or FALSE (ascending or descending). Please note that
this parameter works in the very same way as the ”sort by” parameter of the list (page 602)
fetch function. However, it currently only supports the following sorting methods:

• class identifier

• class name

• modified

• name

• published

• section

Please note that using other sort methods will lead to an error.

Examples

Example 1

{def $related=fetch(’content’, ’related_objects’,

hash(’object_id’, $node.object.id,

’all_relations’, true(),

’group_by_attribute’, true(),

’sort_by’, array(array(’class_name’, true()),

array(’name’, true()))))}

5.3.3 Modules / content 633

5

Returns all relations grouped in arrays by attribute ID, then sorted by
class name and by object’s name in ascending order.

5.3.3 Modules / content 634

5

related objects count

Summary

Fetches the number of related objects.

Usage

fetch(’content’, ’related_objects_count’,

hash(’object_id’, object_id,

[’attribute_identifier’, attribute_identifier,]

[’all_relations’, boolean,]))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
attribute identifier mixed The ID number or class/attribute iden-

tifier of the target attribute.
No.

all relations boolean Controls whether to fetch all types of
relations or not, default is FALSE.

No.

Returns

An integer (the number of related objects).

Description

This fetch function operates in almost the same way as the ”related objects” fetch function.
The difference is that instead of returning the related objects themselves, it returns the count
(the number of related objects that were found). The ”related objects count” function takes
the same parameters as the ”related objects” function with some exceptions (for example
sorting is not supported). Please refer to the documentation of the ”related objects” (page
631) function for a detailed description of the parameters.

5.3.3 Modules / content 635

5

reverse related objects

Summary

Fetches reverse related objects.

Usage

fetch(’content’, ’reverse_related_objects’,

hash(’object_id’, object_id,

[’attribute_identifier’, attribute_identifier,]

[’all_relations’, boolean,]

[’group_by_attribute’, boolean,]

[’sort_by’, sort_by]

[’ignore_visibility’, ignore_visibility]))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
attribute identifier mixed The ID number or class/attribute iden-

tifier of the target attribute.
No.

all relations boolean Controls whether to fetch all types of
relastions or not, default is FALSE.

No.

group by attribute boolean Groups the result based on the at-
tributes, default value is TRUE.

No.

sort by array The sorting mechanism that should be
used.

No.

ignore visibility boolean Makes it possible to fetch hidden nodes
(TRUE by default).

No.

Returns

An array of ezcontentobject (page 894) objects or FALSE.

Description

This function makes it possible to fetch reverse related objects. The target object must be
specified using the ”object id” parameter. The function will return an array of ezcontentobject
(page 894) objects which are using the target object through the conventional object relation
mechanism. If no objects are found, the function will return FALSE.

Class attribute filtering

By making use of the ”attribute identifier” parameter, it is possible to fetch reverse related
objects that make use of the target object by the way of an attribute. The attribute must use
either the ”Object relation” (page 474) or the ”Object relations” (page 476) datatype. The

5.3.3 Modules / content 636

5

”attribute identifier” parameter can either be the ID number of the class attribute or a string
that consists of the class identifier, a slash and the class attribute identifier (for example ”my
class/my attribute”).

The ”all relations” parameter makes it possible to fetch all types of relations. This parameter
is not required and the default value is FALSE.

The ”group by attribute” parameter can only be used when the ”all relations” parameter has
been set to TRUE. When the ”group by attribute” parameter has been set to TRUE, the func-
tion will return a two-dimensional array instead of just an array of objects. The following
example shows how this structure is built up:

$related_objects_grouped = array(

0 => array($object1, $object2 ...),

// Objects related on content object level

attr_id_1 => array($object1, $object2 ...),

attr_id_2 => array($object1, $object2 ...),

...

// Objects related by attributes

);

The ”sort by” parameter makes it possible to sort the result in different ways. This parameter
must be provided as an array of arrays that define the sorting methods. The first element of
each array must be the desired sorting method. The second element of the array must be the
sorting direction, it can be either TRUE or FALSE (ascending or descending). Please note that
this parameter works in the very same way as the ”sort by” parameter of the list (page 602)
fetch function. However, it currently only supports the following sorting methods:

• class identifier

• class name

• modified

• name

• published

• section

Please note that using other sort methods will lead to an error.

Fetching hidden nodes

The ”ignore visibility” parameter makes it possible to fetch hidden nodes. It can be set to
either ”true()” or ”false()”. If set to ”true()”, the fetch will ignore the visibility flags of nodes
and thus it will return all nodes regardless of their visibility status.

5.3.3 Modules / content 637

5

Examples

Example 1

{def $objects=fetch(’content’, ’reverse_related_objects’,

hash(’object_id’, 256))}

{foreach $objects as $object}

{$object.name|wash}

{/foreach}

Outputs the names of the objects that make use of object number 256 through the conven-
tional related objects mechanism.

Example 3

{def $objects=fetch(’content’, ’reverse_related_objects’,

hash(’object_id’, 256,

’attribute_identifier’, ’4096’))}

{foreach $objects as $object}

{$object.name|wash}

{/foreach}

Outputs the names of the objects that make use of object number 256 through class attribute
number 4096.

Example 3

{def $objects=fetch(’content’, ’reverse_related_objects’,

hash(’object_id’, 256,

’attribute_identifier’, ’my_class/

my_attribute’))}

{foreach $objects as $object}

{$object.name|wash}

{/foreach}

Outputs the names of the objects that make use of object number 256 through an attribute
called ”my attribute” that is a part of class ”my class”.

5.3.3 Modules / content 638

5

reverse related objects count

Summary

Fetches the number of reverse related objects.

Usage

fetch(’content’, ’reverse_related_objects_count’,

hash(’object_id’, object_id,

[’attribute_identifier’, attribute_identifier,]

[’all_relations’, all_relations,]

[’ignore_visibility’, ignore_visibility]))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
attribute identifier mixed The ID number or class/attribute iden-

tifier of the target attribute.
No.

all relations boolean Controls whether to fetch all types of
relastions or not, default is FALSE.

No.

ignore visibility boolean Makes it possible to fetch hidden
nodes.

No.

Returns

An integer (number of reverse related objects).

Description

This function is the same as the ”reverse related objects” function. However, instead of re-
turning an array of objects, it returns the number of objects that were found. Please refer to
the documentation of the ”reverse related objects” (page 635) function for information about
the parameters.

5.3.3 Modules / content 639

5

same classattribute node

Summary

Fetches nodes containing attributes that match a certain value.

Usage

fetch(’content’, ’same_classattribute_node’,

hash(’class_attribute_id’, class_attribute_id,

’value’, value,

’datatype’, datatype))

Parameters

Name Type Description Required
id integer The ID number of the class attribute

that should be examined.
Yes.

value mixed The value that should be matched. Yes.
datatype string Must be either ”int”, ”float” or ”text”. Yes.

Returns

An array of ezcontentobjecttreenode (page 907) objects or FALSE.

Description

This function will go through all object attributes that are instances of the class attribute
specified by the ”class attribute id” parameter. The value that should be matched must be
specified using the ”value” parameter. In addition, the type of data (either ”int”, ”float” or
”text”) that the datatype representing the attribute must be provided. The function returns
an array of ezcontentobjecttreenode (page 907) objects or FALSE (if there is no match).

Examples

{def $matched_nodes=fetch(’content’, ’same_classattribute_node’,

hash(’class_attribute_id’, 245,

’value’, ’example’,

’datatype’, ’text’))}

{foreach $matched_nodes as $matched_node}

{$matched_node.name|wash}

{/foreach}

Outputs the names of the nodes that make use of class attribute number 245 and where the
text contents of the object attribute equals the string ”example”.

5.3.3 Modules / content 640

5

search

Summary

Fetches nodes containing data that match a certain criteria.

Usage

fetch(content, search,

hash(text, text,

[offset, offset,]

[limit, limit,]

[section_id, id,]

[subtree_array, array,]

[publish_timestamp, time,]

[publish_date, date,]

[class_id, id,]

[class_attribute_id, id,]

[sort_by, sort_by]))

Parameters

Name Type Description Required
text string The text that should be matched. Yes.
subtree array mixed Array node ID number under which the

system should search.
No.

offset integer The offset to start at. No.
limit integer The number of nodes that should be re-

turned.
No.

publish timestamp integer Only search objects with the specified
publishing date/time (as a UNIX times-
tamp).

No.

publish date integer Only search objects published during
the last day / week / month / three
months / one year.

No.

section id integer Only match objects that are in this sec-
tion.

No.

class id integer Only match objects that are instances
of this class. This parameter can also
be an array of class ID numbers.

No.

class attribute id integer Only search within this attribute. This
parameter can also be an array of at-
tribute ID numbers.

No.

sort by mixed Sort the result. See description below. No.

Returns

An array of hashes (see below) or FALSE.

5.3.3 Modules / content 641

5

Description

This function will perform a search and it will return the hits that the current user has read
access to. The function returns an array of hashes. The hashes consist of the following
elements:

SearchResult array An array of the nodes (as
ezcontentobjecttreenode
(page 907) objects) that
matched the search condi-
tions.

SearchCount integer The total number of nodes
that matched the search
conditions.

StopWordArray array An array of strings contain-
ing words that were ex-
cluded from the search.

Sorting

The ”sort by” parameter makes it possible to sort the result in different ways. This parameter
behaves exactly in the same way as it does for the ”list” function. Please refer to the docu-
mentation page of the ”list (page 602)” function for a complete explanation of this parameter.

Searching by the date of publishing

The ”publish date” parameter makes it possible to search objects published during the speci-
fied period. The following table reveals the possible values of this parameter.

1 one day
2 one week
3 one month
4 three months
5 one year

The ”publish timestamp” parameter makes it possible to search objects with the specified
publishing date/time. This value must be a UNIX timestamp. You can also use an array of
two elements in order to search withing the given range.

Please note that you can not use both ”publish timestamp” and ”publish date” at the same
time. If you use ”publish timestamp” then ”publish date” will be ignored.

Examples

Example 1

{def $search=fetch(’content’, ’search’,

hash(’text’, ’example’,

’class_id’, array(’2’, ’5’)))}

5.3.3 Modules / content 642

5

The search returned {$search.SearchCount} matches.

{foreach $search.SearchResult as $matched_node}

{$matched_node.name|wash}

{/foreach}

Outputs the names of all nodes which encapsulte objects of classes 2 and 5 containing the
word ”example”.

Example 2

{def $search=fetch(’content’, ’search’,

hash(’text’, ’example’,

’publish_timestamp’, array(’1033920746’,

’1033920789’)))}

The search returned {$search.SearchCount} matches.

{foreach $search.SearchResult as $matched_node}

{$matched_node.name|wash}

{/foreach}

Outputs the names of all nodes which encapsulte objects published between the specified
date/time values.

5.3.3 Modules / content 643

5

section list

Summary

Fetches the available sections.

Usage

fetch(’content’, ’section_list’)

Returns

An array of ezsection (page 960) objects.

Description

This function fetches all the available sections. An array of ezsection (page 960) objects will
be returned.

Examples

Example 1

{def $sections=fetch(’content’, ’section_list’)}

{foreach $sections as $section}

{$section.name}

{/foreach}

Outputs the names of all the available sections.

5.3.3 Modules / content 644

5

tipafriend top list

Summary

Fetches the most popular (most tipped) nodes.

Usage

fetch(’content’, ’tipafriend_top_list’,

hash([’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
offset integer The offset to start at. No.
limit integer The number of nodes that should be re-

turned.
No.

Returns

An array of ezcontentobjecttreenode (page 907) objects or FALSE.

Description

This function fetches the nodes that were most tipped using the ”Tip a friend” feature (for
example ”/content/tipafriend/44). The optional parameters ”offset” and ”limit” can be used
to limit the result. The function returns an array of ezcontentobjecttreenode (page 907)
objects. If no nodes are found or if an error occurs, the function will return FALSE.

Examples

Example 1

{def $popular_nodes=fetch(’content’, ’tipafriend_top_list’, hash(’limit’,

10))}

{foreach $popular_nodes as $popular_node}

{$popular_node.name|wash}

{/foreach}

Outputs the names of the ten most tipped nodes.

5.3.3 Modules / content 645

5

translation list

Summary

Fetches the locales that can be used to translate objects.

Usage

fetch(’content’, ’translation_list’)

Returns

An array of ezlocale (page 932) objects.

Description

This function fetches all the available locales that can be used to translate the contents of ob-
jects. This translations can be managed from within the ”Translations” section of the ”Setup”
part within the administration interface. The function returns an array of ezlocale (page 932)
objects.

Examples

Example 1

{def $locales=fetch(’content’, ’translation_list’)}

{foreach $locales as $locale}

{$locale.language_name}

{/foreach}

Outputs the names of the languages that can be used to translate the contents of objects.

5.3.3 Modules / content 646

5

trash count

Summary

Fetches the number of objects that are in the trash.

Usage

fetch(’content’, ’trash_count’)

Returns

An integer revealing the number of objects that are in the trash.

Description

This function returns the number of objects (as an integer) that are in the trash. An object is
considered to be in the trash if its status field is set to archived.

Examples

Example 1

{def $trash_count=fetch(’content’, ’trash_count’)}

There are {$trash_count} objects in the trash.

Outputs the number of items that are in the trash.

5.3.3 Modules / content 647

5

trash object list

Summary

Fetches the objects that are in the trash.

Usage

fetch(’content’, ’trash_object_list’,

hash([’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
offset integer The offset to start at. No.
limit integer The number of objects that should be

returned.
No.

Returns

An array of ezcontentobject (page 894) objects or FALSE.

Description

This function fetches all the objects that are in the trash. An object is considered to be in the
trash if its status field is set to ”archived”. The optional ”offset” and ”limit” parameters can be
used to limit the result. The function returns an array of ezcontentobject (page 894) objects
or FALSE if no objects are found.

Examples

{def $trashed_objects=fetch(’content’, ’trash_object_list’) }

{foreach $trashed_objects as $object}

{$object.name|wash}

{/foreach}

Outputs the names of the objects that are in the trash.

5.3.3 Modules / content 648

5

tree

Summary

Fetches the children of a node recursively.

Usage

fetch(’content’, ’tree’,

hash(’parent_node_id’, parent_node_id,

[’sort_by’, sort_by,]

[’offset’, offset,]

[’limit’, limit,]

[’attribute_filter’, attribute_filter,]

[’extended_attribute_filter’, extended_attribute_filter,]

[’class_filter_type’, class_filter_type,]

[’class_filter_array’, class_filter_array,]

[’only_translated’, only_translated,]

[’language’, language,]

[’main_node_only’, main_node_only,]

[’as_object’, as_object,]

[’depth’, depth,]

[’depth_operator’, depth_operator]

[’limitation’, limitation]

[’ignore_visibility’, ignore_visibility]))

5.3.3 Modules / content 649

5

Parameters

Name Type Description Required
parent node id integer The ID number of the parent node. Yes.
sort by array The sorting mechanism that should be

used.
No.

offset integer The offset to start at. No.
limit integer The maximum number of nodes that

should be fetched.
No.

attribute filter mixed Filter logic for attribute level filtering. No.
extended attribute
filter

mixed The extended attribute level filter
logic.

No.

class filter type string The type of class filtering (include/
exclude).

No.

class filter array array The type of nodes that should be fil-
tered.

No.

only translated boolean Translation filtering (on/off). No.
language string The language that should be filtered. No.
main node only boolean Type of nodes that should be fetched

(all or main nodes only).
No.

as object boolean If TRUE (or omitted), an array of ”ez-
contentobjecttreenode” objects will be
fetched. Otherwise, an array of arrays
will be returned.

No.

depth integer The maximum level of depth that
should be explored.

No.

depth operator string The logic to use when checking the
depth.

No.

limitation array Limitation array (emtpy array = access
override).

No.

ignore visibility boolean Makes it possible to fetch hidden
nodes.

No.

Description

The ”tree” function is very similar to the ”list” fetch function. The only difference is that the
tree function fetches child nodes recursively. The recursion depth can be controlled by the
”depth” and ”depth operator” parameters. The rest of the parameters behave exactly in the
same way as they do for the ”list” function. Please refer to the documentation page of the
”list (page 602)” function for a complete explanation of the parameters.

Depth

The depth parameter can be used to specify the level of depth (within the branch) that the
function should explore when it is running. If the depth is set to one, this function will simply
act as the list function. If the depth is greater than one, the function will fetch nodes further
down in the branch. The default value is unlimited.

5.3.3 Modules / content 650

5

Depth operator

The depth operator can be set to either ”lt”, ”eq” or ”gt” - meaning ”less than”, ”equal to” and
”greather than”. For example, if it is set to ’eq’, only nodes with the depth that was specified
using the depth parameter will be fetched.

Examples

Example 1

{def $nodes=fetch(’content’, ’tree’,

hash(’parent_node_id’, 42))}

{foreach $nodes as $node}

{$node.name|wash}

{/foreach}

This example demonstrates how to fetch all the nodes that are under node number 42 re-
cursively (all children, grand-children, etc. will be fetched). The names of the nodes are
displayed.

5.3.3 Modules / content 651

5

tree count

Summary

Fetches the number of children of a node recursively.

Usage

fetch(’content’, ’tree_count’,

hash(’parent_node_id’, parent_node_id,

[’class_filter_type’, class_filter_type,]

[’class_filter_array’, class_filter_array,]

[’attribute_filter’, attribute_filter,]

[’main_node_only’, boolean,]

[’depth’, depth,]

[’depth_operator’, depth_operator]))

Parameters

Name Type Description Required
parent node id integer The ID number of the parent node. Yes.
class filter type string Filter type for class filtering (include/

exclude).
No.

class filter array array The type of nodes that should be fil-
tered.

No.

attribute filter mixed Filter logic for attribute level filtering. No.
main node only boolean Type of nodes that should be fetched

(all or main nodes only).
No.

depth integer The maximum level of depth that
should be explored.

No.

depth operator string The logic to use when checking the
depth.

No.

Returns

An integer (number of nodes).

Description

This function works in the very same way as the ”tree” function. The difference is that it
returns only the number of nodes (instead of the actual nodes). Please refer to the docu-
mentation of the ”list” (page 602), ”list count” (page 618) and the ”tree” (page 648) fetch
functions.

5.3.3 Modules / content 652

5

Examples

Example 1

{def $count=fetch(’content’, ’tree_count’,

hash(’parent_node_id’, 42,

’class_filter_type’, ’exclude’,

’class_filter_array’, array(’folder’, ’comment’)

))}

Number of nodes: {$count}

This example counts the number of nodes that are children of node number 42, recursively.
Nodes that reference ”folder” or ”comment” objects will be excluded from the count.

5.3.3 Modules / content 653

5

version

Summary

Fetches a specific version of an object.

Usage

fetch(’content’, ’version’, hash(’object_id’, object_id,

’version_id’, version_id))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
version id integer The version number that should be

fetched.
Yes.

Returns

An ezcontentobjectversion (page 912) object or FALSE.

Description

This function fetches a specific version of a content object. Both the ID number of the tar-
get object and the number of the desired version must be specified using the ”object id” and
the ”version id” parameters. The function returns an ezcontentobjectversion (page 912) ob-
ject. It will return FALSE if invalid parameters have been provided or if the current user has
insufficient permissions.

Examples

Example 1

{def $version=fetch(’content’, ’version’, hash(’object_id’, 13,

’version_id’, 3))}

Name of version: {$version.name}

Outputs the name of version number 3 for object number 13.

5.3.3 Modules / content 654

5

version count

Summary

Fetches the number of versions of a content object.

Usage

fetch(’content’, ’version_count’, hash(’contentobject’, object))

Parameters

Name Type Description Required
contentobject object The target object. Yes.

Returns

The number of versions of an object (as an integer).

Description

This function retrieves the number of versions of a content object. The target object must be
specified using the ”contentobject” parameter.

Examples

Example 1

{* Fetch object number 13. *}

{def $object=fetch(’content’, ’object’, hash(’object_id’, 13))}

{* Fetch the number of versions for object number 13. *}

{def $versions=fetch(’content’, ’version_count’, hash(’contentobject’,

$object))}

Object number 13 consists of {$versions} versions.

Outputs the numbre of versions that make up object number 13.

5.3.3 Modules / content 655

5

version list

Summary

Fetches all the versions of a content object.

Usage

fetch(’content’, ’version_list’, hash(’contentobject’, object,

[’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
contentobject object The target object. Yes.
offset integer Offset to start at. No.
limit integer The number of versions that should be

fetched.
No.

Returns

An array of ezcontentobjectversion (page 912) objects.

Description

This function fetches all the versions of a certain object. The object itself must be specified
using the ”contentobject” parameter. The ”offset” and ”limit” parameters are optional and
can be used to limit the result. The function returns an array of ezcontentobjectversion (page
912) objects.

Examples

Example 1

{* Fetch object number 13. *}

{def $object=fetch(’content’, ’object’, hash(’object_id’, 13))}

{* Fetch all the versions of object number 13. *}

{def $versions=fetch(’content’, ’version_list’, hash(’contentobject’,

$object))}

{* Loop through all versions and display their names. *}

{foreach $versions as $version}

{$version.name}

{/foreach}

5.3.3 Modules / content 656

5

Outputs the names of all versions that belong to object number 13.

5.3.3 Modules / content 657

5

view top list

Summary

Fetches the most popular (most viewed) nodes.

Usage

fetch(’content’, ’view_top_list’,

hash([’section_id’, section_id,]

[’class_id’, class_id,]

[’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
section id integer The ID number of the section. No.
class id integer The ID number of the class. No.
offset integer The offset to start at. No.
limit integer The number of nodes that should be re-

turned.
No.

Returns

An array of ezcontentobjecttreenode (page 907) objects.

Description

This function fetches the most popular (most viewed) nodes. The function returns an array of
ezcontentobjecttreenode (page 907) objects. The ”section id” and ”class id” parameters can
be used to filter out objects of certain type and/or objects that belong to a certain section.
The ”offset” and ”limit” parameters can be used to limit the result.

In order to work, this function requires the use of the cronjob script. A part of this script
will update the view counters of the nodes by analyzing the Apache log files. The ”Scripts[]”
array of a configuration override for ”cronjob.ini” should include the ”updateviewcount.php”
script:

...

Scripts[]=updateviewcount.php

...

In addition, the logfile settings in ”logfile.ini” should match the syntax of the Apache log files.

5.3.3 Modules / content 658

5

Examples

Example 1

{def $popular_nodes=fetch(’content’, ’view_top_list’,

hash(’class_id’, 2,

’limit’, 10,

’offset’, 0))}

{foreach $popular_nodes as $popular_node}

{$popular_node.name|wash}

{/foreach}

Outputs the names of the ten most popular nodes that encapsulate objects of class number 2.

5.3.3 Modules / content 659

5

Views

action (page 661)
Provides an interface to different actions (AddToBasket, SwapNode, etc.).

advancedsearch (page 662)
Provides the advanced search interface.

bookmark (page 663)
Provides an interface for managing the current user’s bookmarks.

browse (page 664)
Provides an interface for selecting node(s) by browsing the node tree.

collectedinfo (page 665)
Provides an interface for displaying the information that was collected.

collectinformation (page 666)
Provides an interface for collecting information.

copy (page 667)
Provides an interface for copying a single node.

copysubtree (page 668)
Provides an interface for copying an entire subtree of nodes.

download (page 669)
Provides an interface for downloading files stored by the ”File” datatype.

draft (page 670)
Provides an interface for managing the current user’s drafts.

edit (page 671)
Provides an interface for editing and translating the contents of objects.

hide (page 672)
Provides an interface for hiding and revealing nodes.

keyword (page 673)
Loads a template that can fetch objects which use keyword.

move (page 674)
Provides an interface for changing the location of a node.

new (page 675)
Loads a template that can be used to display new content since last visit.

pdf (page 676)
Provides on-the-fly PDF generation of a node.

pendinglist (page 677)
Provides an overview of the current user’s pending items.

removeassignment (page 678)
Provides an interface for removing node assignments.

5.3.3 Modules / content 660

5

removeeditversion (page 679)
Provides an interface for draft removal.

removenode (page 680)
Provides an interface for removing nodes.

removeobject (page 681)
Provides an interface for removing objects.

restore (page 682)
Provides an interface for restoring objects from the trash.

search (page 683)
Provides the standard search interface.

tipafriend (page 684)
Provides an interface to the ”tip a friend” feature.

translate (page 685)
Provides an interface for the translation of a node (DEPRECATED).

translations (page 686)
Provides an interface for managing content translations.

trash (page 687)
Provides an interface for managing the trash.

upload (page 688)
Provides an interface for uploading a file which will become a node.

urltranslator (page 689)
Provides an interface for managing virtual URLs.

versions (page 690)
Provides an interface for managing the versions of an object.

versionview (page 691)
Provides an interface for viewing a version of an object.

view (page 692)
Provides an interface for viewing a node.

5.3.3 Modules / content 661

5

action

Summary

Provides an interface to different actions (AddToBasket, SwapNode, etc.).

5.3.3 Modules / content 662

5

advancedsearch

Summary

Provides the advanced search interface.

5.3.3 Modules / content 663

5

bookmark

Summary

Provides an interface for managing the current user’s bookmarks.

5.3.3 Modules / content 664

5

browse

Summary

Provides an interface for selecting node(s) by browsing the node tree.

5.3.3 Modules / content 665

5

collectedinfo

Summary

Provides an interface for displaying the information that was collected.

5.3.3 Modules / content 666

5

collectinformation

Summary

Provides an interface for collecting information.

5.3.3 Modules / content 667

5

copy

Summary

Provides an interface for copying a single node.

5.3.3 Modules / content 668

5

copysubtree

Summary

Provides an interface for copying an entire subtree of nodes.

5.3.3 Modules / content 669

5

download

Summary

Provides an interface for downloading files stored by the ”File” datatype.

5.3.3 Modules / content 670

5

draft

Summary

Provides an interface for managing the current user’s drafts.

5.3.3 Modules / content 671

5

edit

Summary

Provides an interface for editing and translating the contents of objects.

5.3.3 Modules / content 672

5

hide

Summary

Provides an interface for hiding and revealing nodes.

5.3.3 Modules / content 673

5

keyword

Summary

Loads a template that can fetch objects which use keyword.

5.3.3 Modules / content 674

5

move

Summary

Provides an interface for changing the location of a node.

5.3.3 Modules / content 675

5

new

Summary

Loads a template that can be used to display new content since last visit.

5.3.3 Modules / content 676

5

pdf

Summary

Provides on-the-fly PDF generation of a node.

5.3.3 Modules / content 677

5

pendinglist

Summary

Provides an overview of the current user’s pending items.

5.3.3 Modules / content 678

5

removeassignment

Summary

Provides an interface for removing node assignments.

5.3.3 Modules / content 679

5

removeeditversion

Summary

Provides an interface for draft removal.

5.3.3 Modules / content 680

5

removenode

Summary

Provides an interface for removing nodes.

5.3.3 Modules / content 681

5

removeobject

Summary

Provides an interface for removing objects.

5.3.3 Modules / content 682

5

restore

Summary

Provides an interface for restoring objects from the trash.

5.3.3 Modules / content 683

5

search

Summary

Provides the standard search interface.

5.3.3 Modules / content 684

5

tipafriend

Summary

Provides an interface to the ”tip a friend” feature.

5.3.3 Modules / content 685

5

translate

Summary

Provides an interface for the translation of a node (DEPRECATED).

5.3.3 Modules / content 686

5

translations

Summary

Provides an interface for managing content translations.

5.3.3 Modules / content 687

5

trash

Summary

Provides an interface for managing the trash.

5.3.3 Modules / content 688

5

upload

Summary

Provides an interface for uploading a file which will become a node.

5.3.3 Modules / content 689

5

urltranslator

Summary

Provides an interface for managing virtual URLs.

5.3.3 Modules / content 690

5

versions

Summary

Provides an interface for managing the versions of an object.

5.3.3 Modules / content 691

5

versionview

Summary

Provides an interface for viewing a version of an object.

5.3.3 Modules / content 692

5

view

Summary

Provides an interface for viewing a node.

5.3.4 Modules / error 693

5

5.3.4 error

Summary

Provides an interface for error handling / reporting.

Description

This module is used internally by other modules that wish to report/display error messages.
The view(s) that hte module provides can be used when developing/creating a custom mod-
ule. It doesn’t provide any direct/usable functionality when it comes to building a site (tem-
platework only) with eZ publish.

5.3.5 Modules / ezinfo 694

5

5.3.5 ezinfo

Summary

Provides views for displaying information about eZ publish.

Description

This is a small module that makes it possible to extract some generic information about the
system. It doesn’t interface with any engines inside the kernel. What it does is that it provides
three views: ”about”, ”copyright” and ”is alive”. The ”about” view returns information about
eZ publish, the ”copyright” view returns copyright information (related to eZ publish) and the
”is alive” view checks the database connection and if everything seems to be okay, it returns
the text ”eZ publish is alive!”.

The module components are documented in the following sections:

• Views (page 695)

5.3.5 Modules / ezinfo 695

5

Views

about (page 696)
Provides information about the system (version number, etc.).

copyright (page 697)
Provides copyright information related to eZ publish.

is alive (page 698)
Provides information about the database connection.

5.3.5 Modules / ezinfo 696

5

about

Summary

Provides information about the system (version number, etc.).

5.3.5 Modules / ezinfo 697

5

copyright

Summary

Provides copyright information related to eZ publish.

5.3.5 Modules / ezinfo 698

5

is alive

Summary

Provides information about the database connection.

5.3.6 Modules / form 699

5

5.3.6 form

Summary

Provides a view that generates an E-mail containing the data that was posted.

Description

This module is one of the simplest modules in eZ publish. It only contains one view, which is
the ”process” view. This view can only be called using HTTP POST (form action). The process
view simply sends out an e-mail containing the data that was posted using the input fields.
This module does not act as an interface to an engine inside the eZ publish kernel. It only
provides a simple form processing mechanism.

Please note that the view provided by this module is insecure by design. It is possible to
specify the sender’s and the receiver’s E-mail address using certain hidden input fields. In
other words, it can be easily exploited by spammers. That’s why this module is disabled by
default. It can be enabled by setting ”Module=enabled” in the [FormProcessSettings] block
within an configuration override file for ”site.ini”. Hint: by commenting out the sender/
receiver lines within the switch statement in ”/kernel/form/process.php” it is possible to make
this module much more secure than it is by default.

The module components are documented in the following sections:

• Views (page 700)

5.3.6 Modules / form 700

5

Views

process (page 701)
Provides an interface for creating an E-mail based on form data.

5.3.6 Modules / form 701

5

process

Summary

Provides an interface for creating an E-mail based on form data.

5.3.7 Modules / infocollector 702

5

5.3.7 infocollector

Summary

Provides views for managing collected information.

Description

This module provides various interfaces that can be used to inspect/view and delete informa-
tion that was collected by content objects.

The module components are documented in the following sections:

• Views (page 703)

5.3.7 Modules / infocollector 703

5

Views

collectionlist (page 704)
Provides an interface for viewing and removing the collections of an object.

overview (page 705)
Provides an interface for viewing objects that have collected information.

view (page 706)
Provides an interface for viewing and deleting a specific collection.

5.3.7 Modules / infocollector 704

5

collectionlist

Summary

Provides an interface for viewing and removing the collections of an object.

5.3.7 Modules / infocollector 705

5

overview

Summary

Provides an interface for viewing objects that have collected information.

5.3.7 Modules / infocollector 706

5

view

Summary

Provides an interface for viewing and deleting a specific collection.

5.3.8 Modules / layout 707

5

5.3.8 layout

Summary

Provides a view that makes it possible to use alternative pagelayouts.

Description

This module has only one view, ”set”. The view can be used to force the system to make use
of a different pagelayout template than the default one (pagelayout.tpl). It simply takes care
of setting the variable that eZ publish uses when picking out the pagelayout template file.

When finished, the module that is specified (after the layout part in the URL) will be executed.
In other words, the layout module offers a prefix/prerun-mechanism that can be used to
specify which pagelayout eZ publish should use when rendering a specific page. For example,
it can be used to set the printer-friendly layout:

http://www.example.com/layout/set/print/content/view/full/45

Note that the URL actually contains two module-view pairs. The first module/view combina-
tion will make sure that the print pagelayout is used, the second module/view combination
instructs eZ publish to display a full view of node number 45. The result will be the following:
eZ publish will render the full view of node number 45, but instead of using ”pagelayout.tpl”
as the main template, it will use the pagelayout that is associated with ”print” in the configu-
ration override for ”layout.ini”.

The module components are documented in the following sections:

• Fetch functions (page 708)

• Views (page 710)

5.3.8 Modules / layout 708

5

Fetch functions

sitedesign list (page 709)
DEPRECATED (Fetches the names of the currently used designs.)

5.3.8 Modules / layout 709

5

sitedesign list

Summary

DEPRECATED (Fetches the names of the currently used designs.)

Usage

fetch(’layout’, ’sitedesign_list’)

Returns

An array of strings containing the design names.

Description

This function fetches the different designs that are used by the current siteaccess. The func-
tion returns an array of strings containing the names of the designs.

Examples

Example 1

{def $designs=fetch(’layout’, ’sitedesign_list’)}

{foreach $designs as $design}

{$design}

{/foreach}

Outputs the names of the designs that are used by the current siteaccess.

5.3.8 Modules / layout 710

5

Views

set (page 711)
Forces the system to use an alternate pagelayout.

5.3.8 Modules / layout 711

5

set

Summary

Forces the system to use an alternate pagelayout.

5.3.9 Modules / notification 712

5

5.3.9 notification

Summary

Provides an interface to the notification engine.

Description

This module provides an interface to the notification engine inside the eZ publish kernel. The
administration interface makes use the views that this module provides in order to allow the
management of notifications (add new, remove, edit, etc.). Although possible, it isn’t common
to use these views when building a website (unless there is a need to replicate the notification
management functionality of the administration interface).

The module components are documented in the following sections:

• Fetch functions (page 713)

• Views (page 720)

5.3.9 Modules / notification 713

5

Fetch functions

digest handlers (page 714)
Fetches the notification handlers for the notification items that should be sent as digest
to the current user.

digest items (page 715)
Fetches notification items that should be sent as digest to the current user.

event content (page 716)
Fetches the contents of the notification event.

handler list (page 717)
Fetches the available notification handlers.

subscribed nodes (page 718)
Fetches nodes that the current user has subscribed to.

subscribed nodes count (page 719)
Fetches the number of nodes that the current user has subscribed to.

5.3.9 Modules / notification 714

5

digest handlers

Summary

Fetches the notification handlers for the notification items that should be sent as digest to the
current user.

5.3.9 Modules / notification 715

5

digest items

Summary

Fetches notification items that should be sent as digest to the current user.

5.3.9 Modules / notification 716

5

event content

Summary

Fetches the contents of the notification event.

5.3.9 Modules / notification 717

5

handler list

Summary

Fetches the available notification handlers.

Usage

fetch(’notification’, ’handler_list’)

Returns

An array of notification handler objects.

Description

This function fetches all the available notification handlers and returns an array containing
handler objects.

Examples

Example 1

{def $handlers=fetch(’notification’, ’handler_list’)}

{foreach $handlers as $handler}

{$handler.id_string}

{/foreach}

Outputs the identification string of all the available notification handlers.

5.3.9 Modules / notification 718

5

subscribed nodes

Summary

Fetches nodes that the current user has subscribed to.

Usage

fetch(’notification’, ’subscribed_nodes’,

hash([’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
offset integer The offset to start at. No.
limit integer The number of nodes that should be

fetched.
No.

Returns

Array of ezsubtreenotificationrule (page 962) objects or FALSE.

Description

This function fetches the nodes that the current user has subsribed to. The ”offset” and
”limit” parameters are optional. The function returns an array of ezsubtreenotificationrule
(page 962) objects or FALSE if no nodes could be found.

Examples

Example 1

{def $subscriptions=fetch(’notification’, ’subscribed_nodes’)}

{foreach $subscriptions as $subscription}

{$subscription.node.name|wash}

{/foreach}

Outputs the names of the nodes that the current user has subscribed to.

5.3.9 Modules / notification 719

5

subscribed nodes count

Summary

Fetches the number of nodes that the current user has subscribed to.

Usage

fetch(’notification’, ’subscribed_nodes_count’)

Returns

The number of nodes that the current user has subscribed to (as an integer).

Description

This function fetches and returns the number of nodes that the current user has subsribed to.

Examples

Example 1

{def $node_count=fetch(’notification’, ’subscribed_node_count’)}

The current user has subscribed to {$node_count} number of nodes.

Outputs the number of nodes that the current user has subscribed to.

5.3.9 Modules / notification 720

5

Views

addtonotification (page 721)
Provides a mechanism that adds a new subtree notification.

runfilter (page 722)
Provides an interface for launching the main notification processing script and for gen-
erating a new time event.

settings (page 723)
Provides an interface for tweaking user notification settings.

5.3.9 Modules / notification 721

5

addtonotification

Summary

Provides a mechanism that adds a new subtree notification.

5.3.9 Modules / notification 722

5

runfilter

Summary

Provides an interface for launching the main notification processing script and for generating
a new time event.

5.3.9 Modules / notification 723

5

settings

Summary

Provides an interface for tweaking user notification settings.

5.3.10 Modules / package 724

5

5.3.10 package

Summary

Provides views for importing/exporting packages.

Description

This module provides an interface to the packaging system. It makes it possible to view, im-
port, export, install, uninstall, etc. eZ publish packages. The views that this module provides
are used within the setup part of the administration interface.

The module components are documented in the following sections:

• Fetch functions (page 725)

• Views (page 739)

5.3.10 Modules / package 725

5

Fetch functions

can create (page 726)
Not documented yet.

can edit (page 727)
Not documented yet.

can export (page 728)
Not documented yet.

can import (page 729)
Not documented yet.

can install (page 730)
Not documented yet.

can list (page 731)
Not documented yet.

can read (page 732)
Not documented yet.

can remove (page 733)
Not documented yet.

dependent list (page 734)
Not documented yet.

item (page 735)
Not documented yet.

list (page 736)
Not documented yet.

maintainer role list (page 737)
Not documented yet.

repository list (page 738)
Not documented yet.

5.3.10 Modules / package 726

5

can create

Summary

Not documented yet.

5.3.10 Modules / package 727

5

can edit

Summary

Not documented yet.

5.3.10 Modules / package 728

5

can export

Summary

Not documented yet.

5.3.10 Modules / package 729

5

can import

Summary

Not documented yet.

5.3.10 Modules / package 730

5

can install

Summary

Not documented yet.

5.3.10 Modules / package 731

5

can list

Summary

Not documented yet.

5.3.10 Modules / package 732

5

can read

Summary

Not documented yet.

5.3.10 Modules / package 733

5

can remove

Summary

Not documented yet.

5.3.10 Modules / package 734

5

dependent list

Summary

Not documented yet.

5.3.10 Modules / package 735

5

item

Summary

Not documented yet.

5.3.10 Modules / package 736

5

list

Summary

Not documented yet.

5.3.10 Modules / package 737

5

maintainer role list

Summary

Not documented yet.

5.3.10 Modules / package 738

5

repository list

Summary

Not documented yet.

5.3.10 Modules / package 739

5

Views

create (page 740)
Not documented yet.

export (page 741)
Not documented yet.

install (page 742)
Not documented yet.

list (page 743)
Not documented yet.

uninstall (page 744)
Not documented yet.

upload (page 745)
Not documented yet.

view (page 746)
Not documented yet.

5.3.10 Modules / package 740

5

create

Summary

Not documented yet.

5.3.10 Modules / package 741

5

export

Summary

Not documented yet.

5.3.10 Modules / package 742

5

install

Summary

Not documented yet.

5.3.10 Modules / package 743

5

list

Summary

Not documented yet.

5.3.10 Modules / package 744

5

uninstall

Summary

Not documented yet.

5.3.10 Modules / package 745

5

upload

Summary

Not documented yet.

5.3.10 Modules / package 746

5

view

Summary

Not documented yet.

5.3.11 Modules / pdf 747

5

5.3.11 pdf

Summary

Provides views for configuring PDF exports.

Description

This module provides an interface to the PDF (Portable Document Format) engine inside the
kernel. This module has a couple of views that make it possible to configure PDF exports. The
views provided by this module are used within the setup part of the administration interface.

The module components are documented in the following sections:

• Views (page 748)

5.3.11 Modules / pdf 748

5

Views

edit (page 749)
Provides an interface for editing PDF exports.

list (page 750)
Provides an interface for generating an overview of the PDF exports.

5.3.11 Modules / pdf 749

5

edit

Summary

Provides an interface for editing PDF exports.

5.3.11 Modules / pdf 750

5

list

Summary

Provides an interface for generating an overview of the PDF exports.

5.3.12 Modules / reference 751

5

5.3.12 reference

Summary

Provides a view for displaying documentation generated by Doxygen.

Description

This module provides a view for displaying documentation generated by Doxygen.

5.3.13 Modules / role 752

5

5.3.13 role

Summary

Provides views for managing roles.

Description

This module provides an interface to the permission system inside the eZ Publish kernel. It
contains views that can be used to manage roles, role assignments, policies and so on. These
views are used by the administration interface.

The module components are documented in the following sections:

• Views (page 753)

5.3.13 Modules / role 753

5

Views

assign (page 759)
Provides an interface for assigning roles to users and user groups.

copy (page 758)
Provides an interface for copying roles.

edit (page 757)
Provides an interface for editing roles.

list (page 756)
Provides an interface for generating an overview of all available roles.

policyedit (page 755)
Provides an interface for editing policies.

view (page 754)
Provides an interface for viewing a role.

5.3.13 Modules / role 754

5

view

Summary

Provides an interface for viewing a role.

5.3.13 Modules / role 755

5

policyedit

Summary

Provides an interface for editing policies.

5.3.13 Modules / role 756

5

list

Summary

Provides an interface for generating an overview of all available roles.

5.3.13 Modules / role 757

5

edit

Summary

Provides an interface for editing roles.

5.3.13 Modules / role 758

5

copy

Summary

Provides an interface for copying roles.

5.3.13 Modules / role 759

5

assign

Summary

Provides an interface for assigning roles to users and user groups.

5.3.14 Modules / rss 760

5

5.3.14 rss

Summary

Provides views for managing RSS imports and exports.

Description

This module provides an interface to the RSS (Really Simple Syndication) engine inside the eZ
Publish kernel. The views that this module provide are used by the administration interface.
These views make it possible to view and mange incoming and outgoing RSS feeds.

The module components are documented in the following sections:

• Views (page 761)

5.3.14 Modules / rss 761

5

Views

edit export (page 762)
Provides an interface for editing an RSS export.

edit import (page 763)
Provides an interface for editing an RSS import.

feed (page 764)
Not documented yet.

list (page 765)
Provides an interface for generating an overview of RSS imports and exports.

5.3.14 Modules / rss 762

5

edit export

Summary

Provides an interface for editing an RSS export.

5.3.14 Modules / rss 763

5

edit import

Summary

Provides an interface for editing an RSS import.

5.3.14 Modules / rss 764

5

feed

Summary

Not documented yet.

5.3.14 Modules / rss 765

5

list

Summary

Provides an interface for generating an overview of RSS imports and exports.

5.3.15 Modules / search 766

5

5.3.15 search

Summary

Provides a view that displays search statistics.

Description

This module provides only a single view which is the ”stats” view. The view can be used to
display and reset the search statistics. The search module itself doesn’t take care of indexing
words, etc. This is done from within the content engine when objects are published.

The module components are documented in the following sections:

• Views (page 767)

5.3.15 Modules / search 767

5

Views

stats (page 768)
Provides an interface for viewing and resetting the search statistics.

5.3.15 Modules / search 768

5

stats

Summary

Provides an interface for viewing and resetting the search statistics.

5.3.16 Modules / section 769

5

5.3.16 section

Summary

Provides views for managing sections.

Description

This module provides an interface to the content engine inside the eZ Publish kernel. The
section mechanism can be used to create groups of objects. Please refer to the ”sections”
(page 142) part of the ”Concepts and basics” chapter for more information about sections.
This module provides views that are used by the administration interface.

The module components are documented in the following sections:

• Fetch functions (page 770)

• Views (page 777)

5.3.16 Modules / section 770

5

Fetch functions

object (page 771)
Fetches a section.

object list (page 772)
Fetches objects that belong to certain section.

object list count (page 773)
Fetches the number of objects that belong to certain section.

roles (page 774)
Fetches roles that have at least one policy limited to a certain section.

user roles (page 776)
Fetches users and/or user groups with role limitations related to a certain section.

5.3.16 Modules / section 771

5

object

Summary

Fetches a section.

Usage

fetch(’section’, ’object’, hash(’section_id’, section_id))

Parameters

Name Type Description Required
section id integer The ID number of the section that

should be fetched.
Yes.

Returns

An ezsection (page 960) object or FALSE.

Description

This function fetches an object that represents a section. The ”section id” parameter must be
a valid section ID number. The function returns an ezsection (page 960) object. If an invalid
ID number is specified, the function will return FALSE.

Examples

Example 1

{def $section=fetch(’section’, ’object’, hash(’section_id’, 13))}

{$section.name|wash}

Outputs the name of section number 13.

5.3.16 Modules / section 772

5

object list

Summary

Fetches objects that belong to certain section.

Usage

fetch(’section’, ’object_list’,

hash(’section_id’, section_id,

[’offset’, offset,]

[’limit’, limit,]

[’sort_order’, sort_order]))

Parameters

Name Type Description Required
section id integer The ID number of the target section. Yes.
offset integer The offset to start at. No.
limit integer The number of objects that should be

fetched.
No.

sort order array The desired sorting order. No.

Returns

An array of ezcontentobject (page 894) objects or FALSE.

Description

This function fetches a set of objects that belong to a certain section. The section must
be specified by its ID number using the ”section id” parameter. The ”offset”, ”limit” and
”sort order” parameters work in the same way as in the list (page 602) fetch function of the
”content” module. The function returns an array of ezcontentobject (page 894) objects. If no
objects can be found, or if the provided section ID number is invalid, FALSE will be returned.

Examples

Example 1

{def $objects=fetch(’section’, ’object_list’,

hash(’section_id’, 13))}

{foreach $objects as $object}

{$object.name}

{/foreach}

Outputs the names of the objects that belong to section number 13.

5.3.16 Modules / section 773

5

object list count

Summary

Fetches the number of objects that belong to certain section.

Usage

fetch(’section’, ’object_list_count’, hash(’section_id’, section_id))

Parameters

Name Type Description Required
section id integer The ID number of the target section. Yes.

Returns

The number of objects (as an integer) that belong to the section.

Description

This function counts the number of objects that belong to a section specified by the ”section
id” parameter. The function returns the count as an integer.

Examples

Example 1

{def $count=fetch(’section’, ’object_list_count’,

hash(’section_id’, 13))}

There are {$count} number of objects in section number 13.

Outputs the number of objects that belong to section number 13.

5.3.16 Modules / section 774

5

roles

Summary

Fetches roles that have at least one policy limited to a certain section.

Usage

fetch(’section’, ’roles’, hash(’section_id’, section_id))

Parameters

Name Type Description Required
section id integer The ID number of the target section. Yes.

Returns

An array (see below) or FALSE.

Description

This function returns a structure that contains information about roles which have at least
one policy limited to a certain section. The function returns an array with two keys:

Name Description
roles Contains a list of roles with at least one pol-

icy limited to the given section.
limited policies Contains a 2D array (the role ID as the first

key) of the limited policies.

Examples

Example 1

{def $roles_array=fetch(’section’, ’roles’, hash(’section_id’, 13))

$roles=$roles_array.roles

$policies=$roles_array.limited_policies}

{foreach $roles as $role}

{$role.name}:

{foreach $limited_policies[$role.id] as $policy}

{$policy.module_name}/{$policy.function_name}

{delimiter}, {/delimiter}

{/foreach}

{/foreach}

5.3.16 Modules / section 775

5

Outputs information about roles that have limitations associated with section number 13.

5.3.16 Modules / section 776

5

user roles

Summary

Fetches users and/or user groups with role limitations related to a certain section.

Usage

fetch(’section’, ’user_roles’, hash(’section_id’, section_id))

Parameters

Name Type Description Required
section id integer The ID number of the target section. Yes.

Returns

An array (see below) or FALSE.

Description

This function fetches user and/or user groups that have role limitations associated with a
certain section. The section must be defined using a valid section ID number through the
”section id” parameter. Please refer to the example below to see how the returned information
can be used.

Examples

Example 1

{def $user_roles=fetch(’section’, ’user_roles’, hash(’section_id’, 13))}

{foreach $user_roles as $user_role}

User (or group) {$user_role.user.name} has limitation on the section 13.

The "touched" role is {$user_role.role.name}.

{/foreach}

5.3.16 Modules / section 777

5

Views

assign (page 781)
Provides an interface for assigning objects to a section.

edit (page 780)
Provides an interface for editing a section.

list (page 779)
Provides an interface for generating an overview of all the available sections.

view (page 778)
Provides an interface for viewing a section.

5.3.16 Modules / section 778

5

view

Summary

Provides an interface for viewing a section.

5.3.16 Modules / section 779

5

list

Summary

Provides an interface for generating an overview of all the available sections.

5.3.16 Modules / section 780

5

edit

Summary

Provides an interface for editing a section.

5.3.16 Modules / section 781

5

assign

Summary

Provides an interface for assigning objects to a section.

5.3.17 Modules / setup 782

5

5.3.17 setup

Summary

Provides the web based setup wizard.

Description

This module provides the views for the web based setup wizard.

5.3.18 Modules / shop 783

5

5.3.18 shop

Summary

Provides views for the webshop (basket, wish list, order list, etc.).

Description

This module provides an interface to the content and the e-commerce engine inside the eZ
Publish kernel. The views that this module offers are typically used when building a webshop
oriented site. This module also provides some views that are used by the administration
interface.

The module components are documented in the following sections:

• Fetch functions (page 784)

• Views (page 798)

5.3.18 Modules / shop 784

5

Fetch functions

basket (page 785)
Fetches the current user’s shopping basket.

best sell list (page 786)
Fetches the most popular / most sold products.

currency (page 787)
Fetches a currency object.

currency list (page 788)
Fetches the available currencies.

preferred currency code (page 790)
Fetches the current user’s preferred currency.

product category (page 791)
Fetches a product category.

product category list (page 792)
Fetches the available product categories.

related purchase (page 793)
Fetches products that were purchased together with a given product.

wish list (page 795)
Fetches the products of a given wishlist.

wish list count (page 797)
Fetches a wishlist and returns the number of items in it.

5.3.18 Modules / shop 785

5

basket

Summary

Fetches the current user’s shopping basket.

Usage

fetch(’shop’, ’basket’)

Returns

An ezbasket (page 878) object.

Description

This function fetches the shopping basket that belongs to the current user. The function
returns an ezbasket (page 878) object.

Examples

Example 1

{def $basket=fetch(’shop’, ’basket’)}

{if $basket.is_empty}

There are no products in the basket.

{else}

There are {count($basket.items)} items in the basket.

Total price (ex. VAT) : {$basket.total_ex_vat|l10n(currency)}

Total price (inc. VAT): {$basket.total_inc_vat|l10n(currency)}

{/if}

Outputs basic information about the current user’s shopping basket.

5.3.18 Modules / shop 786

5

best sell list

Summary

Fetches the most popular / most sold products.

Usage

fetch(’shop’, ’best_sell_list’,

hash(’top_parent_node_id’, id,

’limit’, limit))

Parameters

Name Type Description Required
top parent node id integer The ID number of the top node. Yes.
limit integer The number of objects that should be

returned.
Yes.

Returns

An array of ezcontentobject (page 894) objects or FALSE.

Description

This function fetches the most popular / most sold products that are located within a part of
the content node tree. The ”top parent node id” parameter must be used to tell the function
under which node it should look for popular products. The ”limit” parameter controls the
number of items that will be returned. The function returns an array of ezcontentobject
(page 894) objects. If the function is unable to find any products, FALSE will be returned.

Examples

Example 1

{def $best_sellers=fetch(’shop’, ’best_sell_list’,

hash(’top_parent_node_id’, 2,

’limit’, 5))}

{foreach $best_sellers as $product}

{$product.name}

{/foreach}

Outputs the names of the five most popular products that are located somewhere below node
number 2.

5.3.18 Modules / shop 787

5

currency

Summary

Fetches a currency object.

Usage

fetch(’shop’, ’currency’,

hash(’code’, code))

Parameters

Name Type Description Required
code string The three-character code of the target

currency.
Yes.

Returns

An ezcurrencydata (page 916) object or FALSE.

Description

This function fetches the currency specified by the ”code” parameter and returns it as an
ezcurrencydata (page 916) object. The function will return FALSE if the specified currency is
unavailable.

Examples

Example 1

{def $code = ’EUR’}

{def $currency = fetch(’shop’, ’currency’,

hash(’code’, $code))}

{if $currency}

The currency symbol for EUR is {$currency.symbol}.

{/if}

Outputs the currency symbol that is used for the ”EUR” currency if available.

5.3.18 Modules / shop 788

5

currency list

Summary

Fetches the available currencies.

Usage

fetch(’shop’, ’currency_list’ [, hash(’status’, status)])

Parameters

Name Type Description Required
status string The status of the target currencies. No.

Returns

An array of ezcurrencydata (page 916) objects or FALSE.

Description

This function fetches the available currencies and returns an array of ezcurrencydata (page
916) objects. The resulting array starts with the most recently added currency. When the
optional ”status” parameter is used then only currencies with the specified status will be
fetched.

Examples

Example 1

{def $currency_list = fetch(’shop’, ’currency_list’)}

{if count($currency_list)}

{foreach $currency_list as $Currency}

{$Currency.code}

{/foreach}

{else}

There are no currencies.

{/if}

Outputs the currency codes for all the available currencies.

Example 2

5.3.18 Modules / shop 789

5

{def $currency_list = fetch(’shop’, ’currency_list’, hash(’status’,

’active’))}

{if count($currency_list)}

The following currencies are active:

{foreach $currency_list as $Currency}

{$Currency.code}

{/foreach}

{else}

There are no active currencies.

{/if}

Outputs the currency codes for active currencies only.

5.3.18 Modules / shop 790

5

preferred currency code

Summary

Fetches the current user’s preferred currency.

Usage

fetch(’shop’, ’preferred_currency_code’)

Returns

A three-character currency code or FALSE.

Description

This function fetches the preferred currency of the current user and returns a three-character
currency code. A value for the preferred currency is taken from (sorted by priority ascending)

• shop.ini

• user’s preferences

• session variable

The function will return FALSE if the preferred currency is not specified.

Examples

Example 1

{def $currency = fetch(’shop’, ’preferred_currency_code’)}

{if $currency}

Your preferred currency is {$currency}.

{else}

You should choose the preferred currency.

{/if}

Outputs the currency code of the current user’s preferred currency.

5.3.18 Modules / shop 791

5

product category

Summary

Fetches a product category.

Usage

fetch(’shop’, ’product_category’,

hash(’category_id’, category_id))

Parameters

Name Type Description Required
category id integer The identifier of the target product cat-

egory.
Yes.

Returns

An ezproductcategory (page 955) object or FALSE.

Description

This function fetches the product category specified by the ”category id” parameter and re-
turns it as an ezproductcategory (page 955) object. The function will return FALSE if the
specified product category is unavailable.

Examples

Example 1

{def $category = fetch(’shop’, ’product_category’,

hash(’category_id’, 3))}

{if $category}

The product category called "{$category.name}" has id=3.

{/if}

Outputs the name of the product category with the specified identifier.

5.3.18 Modules / shop 792

5

product category list

Summary

Fetches the available product categories.

Usage

fetch(’shop’, ’product_category_list’)

Returns

An array of ezproductcategory (page 955) objects or FALSE.

Description

This function fetches the available product categories and returns an array of ezproductcate-
gory (page 955) objects.

Examples

Example 1

{def $product_categories = fetch(’shop’, ’product_category_list’)}

{if count($product_categories)}

{foreach $product_categories as $Category}

{$Category.name}

{/foreach}

{else}

There are no product categories.

{/if}

Outputs the category names for all the available product categories.

5.3.18 Modules / shop 793

5

related purchase

Summary

Fetches products that were purchased together with a given product.

Usage

fetch(’shop’, ’related_purchase’,

hash(’contentobject_id’, id,

’limit’, limit))

Parameters

Name Type Description Required
contentobject id integer The ID number of the object represent-

ing the source product.
Yes.

limit integer The number of objects that should be
fetched.

Yes.

Returns

An array of ezcontentobject (page 894) objects or FALSE.

Description

This function fetches a collection of products (content objects) that were purchased together
with a given product. It can be used to create a ”People who bought this product has also
bought...” list. The source product must be specified using the ”contentobject id” parameter.
This parameter must be an integer that reveals the ID number of the content object that
represents the source product. The ”limit” parameter must be used to limit the result. The
function will return an array of ezcontentobject (page 894) objects or FALSE if no objects
were found.

Examples

Example 1

{def $other_products=fetch(’shop’, ’related_purchase’,

hash(’contentobject_id’, 32,

’limit’, 5))}

{foreach $other_products as $product}

{$product.name}

{/foreach}

5.3.18 Modules / shop 794

5

Outputs the names of 5 products that were bought together with a product represented by
object number 32.

5.3.18 Modules / shop 795

5

wish list

Summary

Fetches the products of a given wishlist.

Usage

fetch(’shop’, ’wish_list’,

hash(’production_id’, production_id,

[’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
production id integer The ID of the target wishlist. Yes.
offset integer The offset to start at. No.
limit integer The number of products that should be

fetched.
No.

Returns

An array of arrays containing information about the items in the wishlist (see below) or
FALSE.

Description

This function fetches the products that belong to a certain wishlist. The system stores wishlists
using the same solution that is used to store the contents of shopping baskets, the ”product
collection” schema. The desired wishlist must be specified using the ID number of the product
collection that contains the wishlist. The optional ”offset” and ”limit” parameters can be used
to control the resulting set. The function returns an array of arrays containing information
about each item in the wishlist. The following table shows the structure that is used for each
element of the array.

Attribute Type Description
id string The ID number of the item

in the basket.
vat value string 32
item count string The quantity.
node id string The ID number of the node

that represents the item.
object name string The name of the object that

represents the item.
price ex vat double The price of the item ex-

cluding the VAT.
price inc vat string The price of the item includ-

5.3.18 Modules / shop 796

5

ing the VAT.
discount percent string The discount percentage (if

any).
total price ex vat double The total price excluding

the VAT.
total price inc vat double The total price including the

VAT.
item object object The item itself (as an ezpro-

ductcollectionitem (page
956) object).

If the system is unable to find any products, an empty wishlist / FALSE will be returned.

Examples

Example 1

{def $wishlist=fetch(’shop’, ’wish_list’, hash(’production_id’, 13))}

{foreach $wishlist as $wish}

{$wish.object_name|wash}

{/foreach}

Outputs the names of the objects that make up wishlist number 13.

5.3.18 Modules / shop 797

5

wish list count

Summary

Fetches a wishlist and returns the number of items in it.

Usage

fetch(’shop’, ’wish_list_count’, hash(’production_id’, production_id))

Parameters

Name Type Description Required
production id integer The ID number of the target wishlist. Yes.

Returns

The number of items that make up the wishlist (as an integer).

Description

This function fetches the products that belong to a certain wishlist and returns an integer. The
integer reveals the number of items that make up the wishlist. The system stores wishlists
using the same solution that is used to store the contents of shopping baskets, the ”product
collection” schema. The desired wishlist must be specified using the ID number of the product
collection that contains the target wishlist.

Examples

Example 1

{def $sum=fetch(’shop’, ’wish_list_count’, hash(’productcollection_id’,

13))}

There are {$sum} items in wishlist number 13.

Outputs the number of items that make up wishlist number 13.

5.3.18 Modules / shop 798

5

Views

basket (page 800)
Provides an interface to the shopping basket of the current user.

checkout (page 801)
Provides the checkout interface.

confirmorder (page 802)
Provides the interface that asks the user to confirm an order.

currencylist (page 803)
Provides an interface for viewing currencies and makes it possible to edit some of the
currency’s attributes for several currencies at the same time. Allows to update auto rates
for all currencies.

customerlist (page 804)
Provides an interface for generating an overview of the customers.

customerorderview (page 805)
Provides an interface for viewing information the orders of a customer.

discountgroup (page 806)
Provides an interface for generating an overview of the discount groups.

discountgroupedit (page 807)
Provides an interface for editing a discount group.

discountgroupview (page 808)
Provides an interface for viewing a discount group.

discountruleedit (page 809)
Provides an interface for editing a discount rule.

editcurrency (page 810)
Provides an interface for editing a currency.

editvatrule (page 811)
Provides an interface for editing a VAT charging rule.

orderlist (page 812)
Provides an interface for generating an overview of orders.

orderview (page 813)
Provides an interface for viewing an order.

preferredcurrency (page 814)
Provides an interface for setting the user’s preferred currency.

productcategories (page 815)
Provides an interface for viewing and managing product categories.

productsoverview (page 816)
Provides an interface for generating an overview of products and allows sorting by
product’s name or price.

5.3.18 Modules / shop 799

5

register (page 817)
Provides an interface for registering a customer.

removeorder (page 818)
Provides an interface for removing an order.

statistics (page 819)
Provides an interface for generating sales statistics.

userregister (page 820)
Provides an interface for registering a user.

vatrules (page 821)
Provides an interface for generating an overview of the VAT charging rules.

vattype (page 822)
Provides an interface for managing VATs.

wishlist (page 823)
Provides an interface for viewing and managing the current user’s wishlist.

5.3.18 Modules / shop 800

5

basket

Summary

Provides an interface to the shopping basket of the current user.

5.3.18 Modules / shop 801

5

checkout

Summary

Provides the checkout interface.

5.3.18 Modules / shop 802

5

confirmorder

Summary

Provides the interface that asks the user to confirm an order.

5.3.18 Modules / shop 803

5

currencylist

Summary

Provides an interface for viewing currencies and makes it possible to edit some of the cur-
rency’s attributes for several currencies at the same time. Allows to update auto rates for all
currencies.

5.3.18 Modules / shop 804

5

customerlist

Summary

Provides an interface for generating an overview of the customers.

5.3.18 Modules / shop 805

5

customerorderview

Summary

Provides an interface for viewing information the orders of a customer.

5.3.18 Modules / shop 806

5

discountgroup

Summary

Provides an interface for generating an overview of the discount groups.

5.3.18 Modules / shop 807

5

discountgroupedit

Summary

Provides an interface for editing a discount group.

5.3.18 Modules / shop 808

5

discountgroupview

Summary

Provides an interface for viewing a discount group.

5.3.18 Modules / shop 809

5

discountruleedit

Summary

Provides an interface for editing a discount rule.

5.3.18 Modules / shop 810

5

editcurrency

Summary

Provides an interface for editing a currency.

5.3.18 Modules / shop 811

5

editvatrule

Summary

Provides an interface for editing a VAT charging rule.

5.3.18 Modules / shop 812

5

orderlist

Summary

Provides an interface for generating an overview of orders.

5.3.18 Modules / shop 813

5

orderview

Summary

Provides an interface for viewing an order.

5.3.18 Modules / shop 814

5

preferredcurrency

Summary

Provides an interface for setting the user’s preferred currency.

5.3.18 Modules / shop 815

5

productcategories

Summary

Provides an interface for viewing and managing product categories.

5.3.18 Modules / shop 816

5

productsoverview

Summary

Provides an interface for generating an overview of products and allows sorting by product’s
name or price.

5.3.18 Modules / shop 817

5

register

Summary

Provides an interface for registering a customer.

5.3.18 Modules / shop 818

5

removeorder

Summary

Provides an interface for removing an order.

5.3.18 Modules / shop 819

5

statistics

Summary

Provides an interface for generating sales statistics.

5.3.18 Modules / shop 820

5

userregister

Summary

Provides an interface for registering a user.

5.3.18 Modules / shop 821

5

vatrules

Summary

Provides an interface for generating an overview of the VAT charging rules.

5.3.18 Modules / shop 822

5

vattype

Summary

Provides an interface for managing VATs.

5.3.18 Modules / shop 823

5

wishlist

Summary

Provides an interface for viewing and managing the current user’s wishlist.

5.3.19 Modules / trigger 824

5

5.3.19 trigger

Summary

Provides a view for managing workflow triggers.

Description

This module provides an interface to the workflow engine inside the eZ Publish kernel. It
consists of a view that can be used to list and manage the workflows that should be triggered
before or after a specific function within a specific module is executed. The administration
interface makes use of this view to allow the administrator to view and manage triggers.

The module components are documented in the following sections:

• Views (page 825)

5.3.19 Modules / trigger 825

5

Views

list (page 826)
Provides an interface for viewing and managing the workflow triggers.

5.3.19 Modules / trigger 826

5

list

Summary

Provides an interface for viewing and managing the workflow triggers.

5.3.20 Modules / url 827

5

5.3.20 url

Summary

Provides views for managing the URLs stored in the database.

Description

This module provides an interface to the content engine inside the eZ Publish kernel. Every
address that is input as a link into an attribute using the XML block (page 497) or the URL
(page 493) datatype is stored in a separate part of the database. Actual data stored using
these datatypes only contain references to entries in the separate URL table. This feature
makes it possible to inspect and edit the published URLs without having to interact with
the content objects. Please refer to the ”URL storage” (page 144) part of the ”Concepts and
basics” chapter for more information about this feature. The ”url” module provides views that
make it possible to manage the URLs. The administration interface makes use of this module
to allow the users to manage the URLs.

The module components are documented in the following sections:

• Fetch functions (page 828)

• Views (page 832)

5.3.20 Modules / url 828

5

Fetch functions

list (page 829)
Fetches the URLs that are stored in the URL table.

list count (page 831)
Fetches the number of URLs that are stored in the URL table.

5.3.20 Modules / url 829

5

list

Summary

Fetches the URLs that are stored in the URL table.

Usage

fetch(’url’, ’list’, hash([’is_valid’, is_valid,]

[’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
is valid boolean Instructs the system to only fetch valid

or invalid URLs.
No.

offset integer The offset to start at. No.
limit integer The number of URLs that should be

fetched.
No.

Returns

An array of ezurl (page 964) objects or FALSE.

Description

This function fetches URLs from the URL table.The URL table stores addresses that have been
input using the URL (page 493) or the XML block (page 497) datatype. Please refer to the
”URL storage” (page 144) section of the ”Concepts and basics” chapter for more information
about how the system handles URLs.

The ”is valid”, ”offset” and ”limit” parameters are optional. While the ”is valid” parameter
can be used to filter out only valid (TRUE) or invalid (FALSE) URLs, the ”offset” and ”limit”
parameters can narrow down the result. If the ”is valid” parameter is omitted, both valid and
invalid URLs will be fetched. The function returns an array of ezurl (page 964) objects. If no
URLs can be found, the function will return FALSE.

Examples

Example 1

{def $urls=fetch(’url’, ’list’, hash(’is_valid’, true(),

’offset’, 0,

’limit’, 10))}

{foreach $urls as $url}

5.3.20 Modules / url 830

5

{$url.url}

{/foreach}

Outputs the first ten valid URLs that are stored in the URL table.

5.3.20 Modules / url 831

5

list count

Summary

Fetches the number of URLs that are stored in the URL table.

Usage

fetch(’url’, ’list_count’, hash([’is_valid’, is_valid]))

Parameters

Name Type Description Required
is valid boolean Instructs the system to count either

valid or invalid URLs.
No.

Returns

The number of URLs (as an integer).

Description

This function fetches and counts the URLs that are stored in the URL table.The URL table
stores addresses that have been input using the URL (page 493) or the XML block (page 497)
datatype. Please refer to the ”URL storage” (page 144) section of the ”Concepts and basics”
chapter for more information about how the system handles URLs.

The ”is valid” parameter is optional and can be used to filter out only valid (TRUE) or invalid
(FALSE) URLs. If the ”is valid” parameter is omitted, both valid and invalid URLs will be
counted. The function returns the number of found URLs as an integer.

Examples

Example 1

{def $valid_urls=fetch(’url’, ’list_count’, hash(’is_valid’, true()))

Number of valid URLs: {$valid_urls}

Outputs the number of valid URLs.

5.3.20 Modules / url 832

5

Views

edit (page 835)
Provides an interface for editing a URL.

list (page 834)
Provides an interface for generating an overview of all URLs.

views (page 833)
Provides an interface for viewing an URL.

5.3.20 Modules / url 833

5

views

Summary

Provides an interface for viewing an URL.

5.3.20 Modules / url 834

5

list

Summary

Provides an interface for generating an overview of all URLs.

5.3.20 Modules / url 835

5

edit

Summary

Provides an interface for editing a URL.

5.3.21 Modules / user 836

5

5.3.21 user

Summary

Provides views for logging users in/out, password changing, etc.

Description

This module provides an interface to the permission system inside the eZ Publish kernel. It
contains views that make it possible to log users in and out, register and activate new users,
password changing, etc. A typical eZ Publish site that has login capabilities makes use the
views that this module provides.

The module components are documented in the following sections:

• Fetch functions (page 837)

• Views (page 851)

5.3.21 Modules / user 837

5

Fetch functions

anonymous count (page 838)
Fetches the number of anonymous users.

current user (page 839)
Fetches the user that is currently logged in.

has access to (page 840)
Checks if a user has access to a certain function of a module.

is logged in (page 842)
Checks if a specific user is logged in.

logged in count (page 843)
Fetches the number of users that are logged in.

logged in list (page 844)
Fetches the names of the users that are logged in.

logged in users (page 846)
Fetches the users that are logged in.

member of (page 848)
Fetches the roles that are assigned to a user.

user role (page 849)
Fetches the policies that are available for a user.

5.3.21 Modules / user 838

5

anonymous count

Summary

Fetches the number of anonymous users.

Usage

fetch(’user’, ’anonymous_count’)

Returns

The number of anonymous users as an integer.

Description

This function counts the number of anonymous users currently accessing the site and returns
that count (as an integer). An anonymous user is considered to be active if the last access time
within the range of the activity timeout. The timeout can be set using the ”ActivityTimeout”
directive in a configuration override for ”site.ini”. The default timeout is one hour.

Examples

Example 1

{def $visitors=fetch(’user’, ’anonymous_count’)}

There are {$visitors} anonymous users accessing the site.

Outputs the number of anonymous users that are currently accessing the site.

5.3.21 Modules / user 839

5

current user

Summary

Fetches the user that is currently logged in.

Usage

fetch(’user’, ’current_user’)

Returns

An ezuser (page 965) object.

Description

This function fetches the user object for the user that is currently logged in. If no user is
logged in, the anonymous user will be returned. In both cases, the function will return an
ezuser (page 965) object.

Examples

Example 1

{def $user=fetch(’user’, ’current_user’)}

User: {$user.contentobject.name}

E-mail: {$user.email}

Username: {$user.login}

Group(s): {$user.groups|implode(’, ’)}

Outputs miscellaneous information about the user that is currently logged in.

5.3.21 Modules / user 840

5

has access to

Summary

Checks if a user has access to a certain function of a module.

Usage

fetch(’user’, ’has_access_to’,

hash(’module’, module

’function’, function,

[’user_id’, user_id]))

Parameters

Name Type Description Required
module string The name of the module. Yes.
function string The name of the function. Yes.
user id integer The ID number of the user. No.

Returns

TRUE if access is allowed, FALSE otherwise.

Description

This function checks if the current user has access to a certain function of a module. The name
of the module and the function must be provided using the ”module” and the ”function”
parameters. The optional ”user id” parameter can be used to check access for other users
than the current user. The function returns TRUE if access is allowed, otherwise FALSE will
be returned.

Examples

Example 1

{def $access=fetch(’user’, ’has_access_to’,

hash(’module’, ’content’,

’function’, ’read’,

’user_id’, 128))}

{if $access}

Access is allowed.

{else}

Access is denied.

{/if}

5.3.21 Modules / user 841

5

Reveals if user number 128 has access to the read function of the content module.

5.3.21 Modules / user 842

5

is logged in

Summary

Checks if a specific user is logged in.

Usage

fetch(’user’, ’is_logged_in’, hash(’user_id’, user_id))

Parameters

Name Type Description Required
user id integer The ID number of the user that should

be checked.
Yes.

Returns

TRUE if the specified user is logged in, FALSE otherwise.

Description

This function checks if a user is logged in or not. The desired user’s ID number must be
specified using the ”user id” parameter. The ID number of a user is the same as the ID number
of the content object that represents that user. A user is considered to be active / logged in if
the last access time is within the range of the activity timeout. The timeout can be set using
the ”ActivityTimeout” directive in a configuration override for ”site.ini”. The default timeout
is one hour.

Examples

Example 1

{def $test=fetch(’user’, ’is_logged_in’, hash(’user_id’, 256))}

{if $test}

User number 256 is currently logged in.

{else}

User number 256 is not logged in.

{/if}

Outputs information that reveals whether user number 256 is logged in or not.

5.3.21 Modules / user 843

5

logged in count

Summary

Fetches the number of users that are logged in.

Usage

fetch(’user’, ’logged_in_count’)

Returns

The number of logged in users (as an integer).

Description

This function counts the number of logged in users (both anonymous and non-anonymous)
and returns that count as an integer. A user is considered to be active / logged in if the last
access time is within the range of the activity timeout. The timeout can be set using the
”ActivityTimeout” directive in a configuration override for ”site.ini”. The default timeout is
one hour.

Examples

Example 1

{def $users=fetch(’user’, ’logged_in_count’)}

There are currently {$users} active users on the system.

Outputs the number of currently active / logged in users.

5.3.21 Modules / user 844

5

logged in list

Summary

Fetches the names of the users that are logged in.

Usage

fetch(’user’, ’logged_in_list’,

hash([’sort_by’, sort_by,]

[’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
sort by mixed The field that should be used by the

sorting mechanism.
No.

offset integer The offset to start at. No.
limit integer The number of users that should be

fetched.
No.

Returns

An associative array or FALSE.

Description

This function will fetch all the logged in users and return an associative array. The keys of the
returned hash will be the user ID numbers; the values will be the users’ names. If no users are
logged in, FALSE will be returned. The ”sort by”, ”offset” and ”limit” parameters are optional.

A user is considered to be active / logged in if the last access time is within the range of the ac-
tivity timeout. The timeout can be set using the ”ActivityTimeout” directive in a configuration
override for ”site.ini”. The default timeout is one hour.

The ”sort by” parameter must be specified as an array. Each element of the array must be
another array where the first element denotes the field (as a string) that the sorting mecha-
nism should use. The second element specifies the direction of the sort (as a boolean). The
following sorting fields can be used:

• user id

• login

• activity

• email

5.3.21 Modules / user 845

5

Examples

Example 1

{def $users=fetch(’user’, ’logged_in_list’,

hash(’sort_by’, array(array(’login’, true()))))}

{foreach $users as $user}

{$user}

{/foreach}

Outputs the names of the users that are currently logged in (sorted by usernames).

5.3.21 Modules / user 846

5

logged in users

Summary

Fetches the users that are logged in.

Usage

fetch(’user’, ’logged_in_users’,

hash([’sort_by’, sort_by,]

[’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
sort by mixed The field that should be used by the

sorting mechanism.
No.

offset integer The offset to start at. No.
limit integer The number of users that should be

fetched.
No.

Returns

An array with ezuser (page 965) objects or FALSE.

Description

This function will fetch all the logged in users and return an array containing ezuser (page
965) objects. If no users are logged in, FALSE will be returned. The ”sort by”, ”offset” and
”limit” parameters are optional.

A user is considered to be active / logged in if the last access time is within the range of the ac-
tivity timeout. The timeout can be set using the ”ActivityTimeout” directive in a configuration
override for ”site.ini”. The default timeout is one hour.

The ”sort by” parameter must be specified as an array. Each element of the array must be
another array where the first element denotes the field (as a string) that the sorting mecha-
nism should use. The second element specifies the direction of the sort (as a boolean). The
following sorting fields can be used:

• user id

• login

• activity

• email

5.3.21 Modules / user 847

5

Examples

Example 1

{def $users=fetch(’user’, ’logged_in_users’,

hash(’sort_by’, array(array(’login’, true()))))}

{foreach $users as $user}

{$user.contentobject.name}

{/foreach}

Outputs the names of the users that are currently logged in (sorted by usernames).

5.3.21 Modules / user 848

5

member of

Summary

Fetches the roles that are assigned to a user.

Usage

fetch(’user’, ’member_of’, hash(’id’, id))

Parameters

Name Type Description Required
id integer The ID number of the target user. Yes.

Returns

An array with ezrole (page 959) objects or FALSE.

Description

This function will fetch the roles that are assigned to a user. The desired user’s ID number
must be specified using the ”id” parameter. The function will return an array of ezrole (page
959) objects. If no roles are associated with the user, or if an invalid user ID is provided, the
function will return FALSE.

Examples

Example 1

{def $roles=fetch(’user’, ’member_of’, hash(’id’, 42))}

{foreach $roles as $role}

{$role.name}

{/foreach}

Outputs the names of the roles that are assigned to user number 42.

5.3.21 Modules / user 849

5

user role

Summary

Fetches the policies that are available for a user.

Usage

fetch(’user’, ’user_role’, hash(’user_id’, user_id))

Parameters

Name Type Description Required
user id integer The user to fetch policies from Yes.

Returns

An array of hashes or FALSE.

Description

This function will fetch the policies that are available for a user. The desired user’s ID number
must be specified using the ”id” parameter. The function will return an array of policy struc-
tures or FALSE if no policies are available or if a non-existing user ID number is provided. The
following table shows the structure of the hashes that make up the elements of the returned
array.

Name Type Description
moduleName string The name of the module

that the user has access to
(* means all modules).

functionName string The name of the function
that the user has access to
(* means all functions).

limitation string The elements of the module
and function that the user
has access to (* means no
limitations).

Examples

Example 1

{def $policies=fetch(’user’, ’user_role’, hash(’user_id’, 42))}

{foreach $policies as $policy}

{$policy.moduleName} /

5.3.21 Modules / user 850

5

{$policy.functionName} /

{$policy.limitation}

{/foreach}

Outputs information about the policies that are available for user number 42.

5.3.21 Modules / user 851

5

Views

activate (page 852)
Provides an interface for activating a user account.

forgotpassword (page 853)
Provides an interface for situations where a user forgets his/her password.

login (page 854)
Provides an interface for logging in a user.

logout (page 855)
Provides a mechanism that logs out a user.

password (page 856)
Provides an interface for changing the password for the current user.

preferences (page 857)
Provides an interface for managing the preferences of the current user.

register (page 858)
Provides an interface for registering a new user.

setting (page 859)
Provides an interface for tweaking user account settings.

success (page 860)
Provides an interface that is called upon a successful user registration.

5.3.21 Modules / user 852

5

activate

Summary

Provides an interface for activating a user account.

5.3.21 Modules / user 853

5

forgotpassword

Summary

Provides an interface for situations where a user forgets his/her password.

5.3.21 Modules / user 854

5

login

Summary

Provides an interface for logging in a user.

5.3.21 Modules / user 855

5

logout

Summary

Provides a mechanism that logs out a user.

5.3.21 Modules / user 856

5

password

Summary

Provides an interface for changing the password for the current user.

5.3.21 Modules / user 857

5

preferences

Summary

Provides an interface for managing the preferences of the current user.

5.3.21 Modules / user 858

5

register

Summary

Provides an interface for registering a new user.

5.3.21 Modules / user 859

5

setting

Summary

Provides an interface for tweaking user account settings.

5.3.21 Modules / user 860

5

success

Summary

Provides an interface that is called upon a successful user registration.

5.3.22 Modules / workflow 861

5

5.3.22 workflow

Summary

Provides views for managing workflows, workflow groups, workflow events, etc.

Description

This module provides an interface to the workflow engine inside the eZ Publish kernel. A
workflow is a sequential list of events that is started by a trigger. This module contains views
that make it possible to manipulate workflow groups, workflows and events. The administra-
tion interface makes use of the views that this module provides in order to allow the users to
manage workflows (add new, remove, edit, etc.). Please refer to the ”Workflows” (page 171)
section of the ”Concepts an basics” chapter for more information about workflows.

The module components are documented in the following sections:

• Views (page 862)

5.3.22 Modules / workflow 862

5

Views

down (page 863)
Provides an interface for moving an event to a lower position.

edit (page 864)
Provides an interface for editing a workflow.

event (page 865)
Not documented yet.

groupedit (page 866)
Provides an interface for editing a workflow group.

grouplist (page 867)
Provides an interface for generating a list of all available workflow groups.

process (page 868)
Not documented yet.

run (page 869)
Not documented yet.

up (page 870)
Provides an interface for moving an event to a higher position.

view (page 871)
Provides an interface for viewing a workflow.

workflowlist (page 872)
Provides an interface for generating a list of workflows that belong to a group.

5.3.22 Modules / workflow 863

5

down

Summary

Provides an interface for moving an event to a lower position.

5.3.22 Modules / workflow 864

5

edit

Summary

Provides an interface for editing a workflow.

5.3.22 Modules / workflow 865

5

event

Summary

Not documented yet.

5.3.22 Modules / workflow 866

5

groupedit

Summary

Provides an interface for editing a workflow group.

5.3.22 Modules / workflow 867

5

grouplist

Summary

Provides an interface for generating a list of all available workflow groups.

5.3.22 Modules / workflow 868

5

process

Summary

Not documented yet.

5.3.22 Modules / workflow 869

5

run

Summary

Not documented yet.

5.3.22 Modules / workflow 870

5

up

Summary

Provides an interface for moving an event to a higher position.

5.3.22 Modules / workflow 871

5

view

Summary

Provides an interface for viewing a workflow.

5.3.22 Modules / workflow 872

5

workflowlist

Summary

Provides an interface for generating a list of workflows that belong to a group.

5.4 Views 873

5

5.4 Views

The views are documented in the following sections:

• class (page 541)

• collaboration (page 560)

• content (page 575)

• error (page 693)

• ezinfo (page 694)

• form (page 699)

• infocollector (page 702)

• layout (page 707)

• notification (page 712)

• package (page 724)

• pdf (page 747)

• reference (page 751)

• role (page 752)

• rss (page 760)

• search (page 766)

• section (page 769)

• setup (page 782)

• shop (page 783)

• trigger (page 824)

• url (page 827)

• user (page 836)

• workflow (page 861)

5.5 Objects 874

5

5.5 Objects

ezauthor (page 877)
Contains information about authors.

ezbasket (page 878)
Contains information about a user’s shopping basket.

ezbinaryfile (page 881)
Contains information about a file.

ezcontentbrowsebookmark (page 882)
Contains information about a bookmark.

ezcontentbrowserecent (page 883)
Contains information about a node with recently edited children.

ezcontentclass (page 884)
Contains information about a content class.

ezcontentclassattribute (page 888)
Contains information about an attribute of a content class.

ezcontentclassclassgroup (page 891)
Contains information about a class group assignment.

ezcontentclassgroup (page 892)
Contains information about a class group.

ezcontentlanguage (page 893)
Contains information about a language.

ezcontentobject (page 894)
Contains information about a content object.

ezcontentobjectattribute (page 902)
Contains information about an attribute of a content object.

ezcontentobjecttranslation (page 906)
DEPRECATED (Contains information about a translation.)

ezcontentobjecttreenode (page 907)
Contains information about a node within the content node tree.

ezcontentobjectversion (page 912)
Contains information about a version of a content object.

ezcurrencydata (page 916)
Contains information about a currency.

ezdate (page 918)
Contains information about a date.

ezdatetime (page 919)
Contains information about a date and time.

5.5 Objects 875

5

ezimagealiashandler (page 920)
Contains information about an image.

ezimagelayer (page 925)
Contains information about an image layer.

ezimageobject (page 926)
Contains information about an image.

ezinformationcollection (page 927)
Contains information about a block of collected information.

ezinformationcollectionattribute (page 929)
Contains information about an attribute of a collection.

ezkeyword (page 931)
Contains information about keywords.

ezlocale (page 932)
Contains information about a locale.

ezmatrix (page 936)
Contains information about a matrix.

ezmedia (page 939)
Contains information about a video file.

ezmultioption (page 941)
Contains information about multilpe options.

ezmultiprice (page 943)
Contains information about prices and currencies for a product.

eznodeassignment (page 945)
Contains information about a node assignment.

ezoption (page 947)
Contains information about a collection of options.

ezorder (page 948)
Contains information about an order.

ezorderstatus (page 952)
Contains information about an order status.

ezpolicy (page 953)
Contains information about a policy.

ezprice (page 954)
Contains information about a price.

ezproductcategory (page 955)
Contains information about a product category.

ezproductcollectionitem (page 956)
Contains information about an item of a product collection.

5.5 Objects 876

5

ezrangeoption (page 957)
Contains information about a range of options.

ezrole (page 959)
Contains information about a role.

ezsection (page 960)
Contains information about a section.

ezsimplifiedxmlinput (page 961)
Contains information about XML data.

ezsubtreenotificationrule (page 962)
Contains information about a subtree notification rule.

eztime (page 963)
Contains information about a time value.

ezurl (page 964)
Contains information about a URL.

ezuser (page 965)
Contains information about a user.

ezvatrule (page 967)
Contains information about a VAT charging rule.

ezvattype (page 969)
Contains information about a VAT.

ezxhtmlxmloutput (page 970)
Contains information about XML data.

ezxmlinputhandler (page 971)
Contains information about XML data.

ezxmloutputhandler (page 972)
Contains information about XML data.

ezxmltext (page 973)
Contains information about an XML block.

5.5.1 Objects / ezauthor 877

5

5.5.1 ezauthor

Summary

Contains information about authors.

Attributes

Attribute Type Static* Description
author list array Yes. Contains informa-

tion about the au-
thors. Each ele-
ment in the array
consists of a hash of
strings. The keys
are ”id”, ”name”
and ”email”.

name NULL Yes. Not used.
is empty boolean No. Returns TRUE if the

object does not con-
tain any authors (if
the ”author list” ar-
ray is empty); oth-
erwise FALSE is re-
turned.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.2 Objects / ezbasket 878

5

5.5.2 ezbasket

Summary

Contains information about a user’s shopping basket.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the shopping bas-
ket.

session id string Yes. The ID of the ses-
sion that the basket
belongs to.

productcollection string Yes. The ID number of
id the product collec-

tion that belongs to
the basket.

order id string Yes. The ID number of
the order that be-
longs to the basket.

items array No. An array of hashes
containing informa-
tion about
the items. Each ele-
ment consists of the
following data:
Attribute: id
Type: string
Description: The
ID number of the
item in the basket.

Attribute: vat
value
Type: string
Description: The
actual value of VAT
(for example, 22).

Attribute: item
count
Type: string
Description: The
quantity.

Attribute: node id
Type: string

5.5.2 Objects / ezbasket 879

5

Description:
The ID number of
the node that repre-
sents the item.

Attribute: object
name
Type: string
Description: The
name of the object
that represents the
item.

Attribute: price ex
vat
Type: double
Description: The
price of the item ex-
cluding the VAT.

Attribute: price
inc vat
Type: string
Description: The
price of the item in-
cluding the VAT.

Attribute:
discount percent
Type: string
Description: The
discount
percentage (if any).

Attribute: total
price ex vat
Type: double
Description: The
total price exclud-
ing the VAT.

Attribute: total
price inc vat
Type: double
Description: The
total price includ-
ing the VAT.

Attribute: item
object

5.5.2 Objects / ezbasket 880

5

Type: object
Description:
The item itself (as
an ezproductcollec-
tionitem (page
956) object).

total ex vat float No. The total amount to
be payed excluding
the VAT.

total inc vat float No. The total amount to
be payed including
the VAT.

is empty boolean No. Returns
TRUE if there are
no items in the bas-
ket, FALSE other-
wise.

productcollection object No. The product collec-
tion that belongs to
the basket.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.3 Objects / ezbinaryfile 881

5

5.5.3 ezbinaryfile

Summary

Contains information about a file.

Attributes

Attribute Type Static* Description
contentobject string Yes. The ID number of
attribute id the content object

attribute that the
file belongs to.

version string Yes. The version num-
ber of the object
that the file belongs
to.

filename string Yes. The internal name
of the file (gener-
ated by the sys-
tem).

original filename string Yes. The original name
of the file.

mime type string Yes. The MIME type of
the file (for exam-
ple ”audio/wav”).

download count string Yes. The num-
ber of times the
file has been down-
loaded through the
”download” (page
669) view of the
”content” module.

filesize integer No. The size of the file
(number of bytes).

filepath string No. The path to the file
(including the file-
name).

mime type category string No. The MIME type cat-
egory (for example
”audio”).

mime type part string No. The MIME type part
(for example
”wav”).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.4 Objects / ezcontentbrowsebookmark 882

5

5.5.4 ezcontentbrowsebookmark

Summary

Contains information about a bookmark.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the bookmark.
user id string Yes. The ID number of

the user that the
bookmark belongs
to.

node id string Yes. The ID number
of the bookmarked
node.

name string Yes. The name of
the bookmark (the
same as the name
of the node).

node object No. The book-
marked node (as
ezcontentob-
jecttreenode (page
907) object).

contentobject id string No. The ID number of
the object that is
referenced by the
bookmarked node.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.5 Objects / ezcontentbrowserecent 883

5

5.5.5 ezcontentbrowserecent

Summary

Contains information about a node with recently edited children.

Attributes

Attribute Type Static* Description
id string Yes. A unique ID num-

ber.
user id string Yes. The ID number of

the user that the
”browse recent” en-
try belongs to.

node id string Yes. The ID
number of the node
under which some-
thing was recently
published.

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the ”browse recent”
entry was created.

name string Yes. The name of the
node under which
something was re-
cently published.

node object No. The actual node un-
der which some-
thing was recently
published (as an ez-
contentobjecttreen-
ode (page 907) ob-
ject).

contentobject id string No. The ID of the ob-
ject which is encap-
sulated by the node
under which some-
thing was recently
published.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.6 Objects / ezcontentclass 884

5

5.5.6 ezcontentclass

Summary

Contains information about a content class.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the class.
version string Yes. The version/status

of the class (0=nor-
mal, 1=temporary,
2=modified).

name string Yes. The name of the
class (for example
”News article”).

identifier string Yes. The identifier of the
class (for example
”news article”).

contentobject name string Yes. The pattern which
controls how the
names of the in-
stances should be
generated.

creator id string Yes. The ID number of
the object that rep-
re-
sents the user who
created the class.

modifier id string Yes. The ID number of
the object that rep-
resents the user
who most modified
the class last.

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the class was cre-
ated.

remote id string Yes. A global unique ID
for the class. The
remote ID is an
MD5 hash of the
time when the class
was created plus a
random value. Re-
mote IDs are used

5.5.6 Objects / ezcontentclass 885

5

to avoid collision
of identical classes
during an import.

modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the class was last
modified.

is container string Yes. Either 1 or 0. Re-
veals
whether nodes ref-
erencing objects of
this class should be
considered as con-
tainers or not. Used
by the administra-
tion interface to al-
low or disallow the
creation of nodes
under a node which
references an object
of this class.

always available string Yes. Either 1 or 0. Con-
trols whether new
in-
stances (objects) of
this class should be
always available or
not. Used on multi-
language sites
to make it possi-
ble to fetch objects
which do not exist
in any of the site
languages. Note
that this value sim-
ply dictates the de-
fault value for the
”always
available” flag of
the objects them-
selves and thus it
only affects new in-
stances.

data map array No. The attributes (as
ezcontentclassat-
tribute (page 888)
objects) that make
up the class.

object count string No. The number of in-

5.5.6 Objects / ezcontentclass 886

5

stances (objects) of
the class.

version count string No. DEPRECATED -
Similar to the ”ver-
sion” attribute, but
will be 2 if the
”version count” is 2
or higher.

version status string No. DEPRECATED - The
version count of the
class if it has been
determined, FALSE
if not
determined.

ingroup list array No. The
class groups (as ez-
classclassgroup
(page 891) objects)
that the class is a
member of.

ingroup id list array No. The class groups
(as
ezclassgroup (page
891) objects) that
the class belongs to.

match ingroup id array No. The class groups
list (as ezclassgroup

(page 891) objects)
that the class be-
longs to. This vari-
able is connected
with a feature that
makes it possible
to create template
overrides based on
class groups.
By default the
”match ingroup id
list” always returns
a boolean FALSE
value because the
class
group override fea-
ture is turned off. It
can be turned on by
setting the ”Enable-
ClassGroupOver-
ride” directive in
the [ContentOver-
rideSettings] block

5.5.6 Objects / ezcontentclass 887

5

of a configuration
override for ”con-
tent.ini” to ”true”.

group list array No. All the class groups
(as
ezclassclassgroup
(page 891) objects)
that are present in
the database.

creator object No. The object (as ez-
contentobject (page
894) object) repre-
senting
the user who cre-
ated the class.

modifier object No. The object (as ez-
contentobject (page
894) object) rep-
resenting the user
who last modified
the class.

can instantiate array No. Not documented
languages yet.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.7 Objects / ezcontentclassattribute 888

5

5.5.7 ezcontentclassattribute

Summary

Contains information about an attribute of a content class.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the class attribute.
name string Yes. The name of the

class attribute.
version string Yes. The version num-

ber of the version
that the attribute
belongs to.

contentclass id string Yes. The ID number of
the class that the at-
tribute belongs to.

identifier string Yes. The identifier of the
class
attribute (for exam-
ple ”first name”).

placement string Yes. The location of the
class
attribute within the
list of attributes.

is searchable string Yes. Either 1 or 0. 1
means that the con-
tent stored using
this attribute will
be indexed by the
search engine, 0
means that the con-
tent will not be in-
dexed.

is required string Yes. Either 1 or 0. 1
means that input is
required, 0 means
that empty inputs
are allowed.

can translate string Yes. Either 1
or 0. 1 means that
instances
of the attribute can
be translated to dif-
ferent languages. 0
means that

5.5.7 Objects / ezcontentclassattribute 889

5

no translations (ex-
cept for the default
translation) can be
made.

is information string Yes. Either 1 or 0. 1
collector means that the at-

tribute functions as
an information col-
lector. 0 means that
the attribute is just
a normal attribute
and thus stores
data in the default/
normal way.

data type string string Yes. The identifier string
of the datatype that
is used to repre-
sent the class at-
tribute (for exam-
ple ”ezstring”).

data int1 string Yes. Integer 1.
data int2 string Yes. Integer 2.
data int3 string Yes. Integer 3.
data int4 string Yes. Integer 4.
data float1 string Yes. Float 1.
data float2 string Yes. Float 2.
data float3 string Yes. Float 3.
data float4 string Yes. Float 4.
data text1 string Yes. Text 1.
data text2 string Yes. Text 2.
data text3 string Yes. Text 3.
data text4 string Yes. Text 4.
content mixed No. Data for

the datatype which
this class attribute
is made of, the ac-
tual data
depends on the
datatype.

temporary object object No. A temporary con-
attribute tent object attribute

(as ezcontentobjec-
tattribute (page
902) object) which
does not exist in the
database.

data type object No. The datatype that
is used to represent

5.5.7 Objects / ezcontentclassattribute 890

5

the class attribute.
display info array No. Array of miscella-

neous display pa-
rame-
ters used by the sys-
tem (for example
whether the com-
ponents of the edit
interface should be
grouped or not).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.8 Objects / ezcontentclassclassgroup 891

5

5.5.8 ezcontentclassclassgroup

Summary

Contains information about a class group assignment.

Attributes

Attribute Type Static* Description
contentclass id string Yes. The ID number of

the class which be-
longs to the group.

contentclass string Yes. The version (either
version 1 or 0).
group id string Yes. The ID number of

the class.
group name string Yes. The name of the

class group (for ex-
ample ”Media”).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.9 Objects / ezcontentclassgroup 892

5

5.5.9 ezcontentclassgroup

Summary

Contains information about a class group.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the class group.
name string Yes. The name of the

class group (for ex-
ample ”Media”).

creator id string Yes. The ID number of
the object repre-
senting the
user who created
the class group.

modifier id string Yes. The ID number of
the
object representing
the user who last
modified the class
group.

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the class group was
created.

modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the class group was
last modified.

creator object No. The user who cre-
ated the class group
(as ezuser (page
965) object).

modifier object No. The user who last
modified the class
group (as ezuser
(page 965) object).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.10 Objects / ezcontentlanguage 893

5

5.5.10 ezcontentlanguage

Summary

Contains information about a language.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the language (can
be 2, 4, 8, 16, 32,
etc.)

name string Yes. The name of the
language, for exam-
ple ”English
(United Kingdom)”.

locale string Yes. The language’s lo-
cale code (for ex-
ample ”eng-GB”).

disabled string Yes. Reserved for future
use.

translation object No. Returns ref-
erence to the ezcon-
tentlanguage object
itself.

locale object object No. The locale of this
language (as ezlo-
cale (page 932) ob-
ject).

object count string No. The number of ob-
jects translated to
this language.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.11 Objects / ezcontentobject 894

5

5.5.11 ezcontentobject

Summary

Contains information about a content object.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the object.
section id string Yes. The ID number of

the section that the
object belongs to.

owner id string Yes. The ID number of
the object rep-
resenting the user
who initially cre-
ated the object.

contentclass id string Yes. The ID number of
the content class
which the object is
an instance of.

is published string Yes. Either 1 or 0. 1
means that the ob-
ject has been pub-
lished. 0 means
that the object has
not yet been pub-
lished.

published string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the object was pub-
lished for the first
time.

modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the object was last
modified.

current version string Yes. The number of the
currently published
version.

status string Yes. The status of the
object (0=Draft,
1=Published,
2=Archived).

remote id string Yes. A global unique ID

5.5.11 Objects / ezcontentobject 895

5

for the
object. The remote
ID is an MD5 hash
of the time when
the object was cre-
ated plus a random
value. Remote IDs
are used in order
to avoid collisions
of identical objects
during an import.

language mask string Yes. The sum of the ID
numbers of the lan-
guages in which the
last published ver-
sion of the object
exists. Please note
that the ID num-
bers are powers of
2. 1 (2ˆ0) is re-
served for marking
objects that should
always be available.
Objects that are al-
ways available will
be fetched even if
they do not ex-
ist in any of the
site/prioritized lan-
guages (the initial/
main language of
the object will be
used).

initial language id string Yes. The ID
number of the ini-
tial/main language.

current object No. The current version
(as ezcontento-
bjectversion (page
912)) of the object.

versions array No. The
object’s versions (as
ezcontentobjectver-
sion (page 912) ob-
jects).

author array array No. Array of ezuser
(page 965) objects
representing the
different creators of
the content object’s

5.5.11 Objects / ezcontentobject 896

5

versions.
class name string No. The name of the

class which the con-
tent object is an in-
stance of
(for example ”Con-
sumer product”).

content class object No. The content
class (as ezcontent-
class (page 884))
which the content
object is an instance
of.

contentobject array No. Array of ezcon-
attributes tentobjectattribute

(page 902) objects
representing the at-
tributes of the con-
tent object.

owner object No. An ezcontentobject
(page 894)
that represents the
user who initially
created the object.

related array No. An array of ezcon-
contentobject array tentobject

(page 894) objects
that are related to
this object. This
attribute is depre-
cated. It is rec-
ommended to use
the ” related objects
(page 631)” fetch
function instead.

related string No. The number of ob-
contentobject jects that are re-
count lated to this ob-

ject. This attribute
is deprecated. It
is recommended to
use the ” related
objects count (page
634)” fetch func-
tion instead.

reverse related array No. An array of ezcon-
contentobject array tentobject

(page 894) objects
that make use of
this object (reverse

5.5.11 Objects / ezcontentobject 897

5

relations). This
attribute is depre-
cated. It is recom-
mended to use the
” reverse related
objects (page 635)”
fetch function in-
stead.

reverse related string No. The number of ob-
contentobject jects that are using
count this object. This

attribute is depre-
cated. It is recom-
mended to use the
” reverse related
objects count (page
638)” fetch func-
tion instead.

can read boolean No. Returns
TRUE if the current
user has read access
to the object, FALSE
otherwise.

can pdf boolean No. Not documented
yet.

can diff boolean No. Not documented
yet.

can create boolean No. Not documented
yet.

can create class list array No. Not documented
yet.

can edit boolean No. Returns
TRUE if the current
user has edit access
to the object, FALSE
otherwise.

can translate boolean No. Returns TRUE if the
current user
has permissions to
translate the con-
tents of the object,
FALSE otherwise.

can remove boolean No. Returns TRUE if the
current user
has permissions to
remove the object,
FALSE otherwise.

can move boolean No. Not documented
yet.

can move from boolean No. Returns TRUE if the

5.5.11 Objects / ezcontentobject 898

5

cur-
rent user has per-
missions to move
the main node of
the object, FALSE
otherwise.

can view embed boolean No. Not documented
yet.

data map array No. Array of ezcon-
tentobjectattribute
(page 902) objects
representing the ac-
tual attributes of
the content object.

main parent node string No. The ID number of
id the main node of

the object encapsu-
lated by the parent
node.

assigned nodes array No. Array of nodes (as
ezcontentob-
jecttreenode (page
907) objects) that
encapsulate the ob-
ject.

parent nodes array No. An array of ID num-
bers of the parent
nodes (as strings).

main node id string No. The ID number of
the object’s main
node.

main node object No. The object’s
main node (as ez-
contentobjecttreen-
ode (page 907)).

default language string No. The default
language
for content objects
(see ContentObject-
Locale (page
1508)) if it is set
or the most priori-
tized language (i.e.
the first element of
the ”SiteLanguage-
List (page 1500)”
array).

content action list array No. An array of hashes
revealing informa-
tion about the con-

5.5.11 Objects / ezcontentobject 899

5

tent actions that
can be performed
on the object. The
keys ”name” and
”action” contain the
ac-
tual name (for ex-
ample ”Add to bas-
ket” - which should
be value of the
HTML input tag)
and the action itself
(for example ”Ac-
tionAddToBasket” -
which should be the
name of the HTML
input tag). The
array is generated
by a function that
examines the ob-
ject’s attributes. If
a datatype used to
represent
an attribute pro-
vides support for
content actions or if
the attribute is an
information collec-
tor, the supported
actions
will be added to
the ”content action
list” array. This ar-
ray can be used to
automatically gen-
erate action buttons
(standard
HTML buttons) for
content objects that
either make use of
special datatypes or
have attributes that
are
marked as informa-
tion collectors.

class identifier string No. The identifier of the
class which the ob-
ject is an
instance of (for ex-
ample ”consumer

5.5.11 Objects / ezcontentobject 900

5

product”).
class group id list array No. An array of ID num-

bers of the class
groups which the
class (that the ob-
ject is an instance
of) belongs to.

name string No. The actual name of
the object
in the current lan-
guage (for example
”Liver sandwich”).

match ingroup id array No. The ID numbers of
list the class groups

that the class
(which the object is
an instance of) be-
longs to. This vari-
able is connected
with a feature that
makes it possible
to create template
overrides based on
class groups.
By default the
”match ingroup id
list” always returns
a boolean FALSE
value because the
class
group override fea-
ture is turned off. It
can be turned on by
setting the ”Enable-
ClassGroupOver-
ride” directive in
the [ContentOver-
rideSettings] block
of a configuration
override for ”con-
tent.ini” to ”true”.

current language string No. Not documented
yet.

current language object No. Not documented
object yet.
initial language object No. The initial/

main language as a
ezcon-
tentlanguage (page

5.5.11 Objects / ezcontentobject 901

5

893) object.
initial language string No. The code of the ini-
code tial/main language

(for example ”eng-
GB”).

available languages array No. The lan-
guages in which the
last published ver-
sion of the object
exists (as an array
of locale codes).

language codes array No. Not documented
yet.

language js array string No. Not documented
yet.

languages array No. The list of lan-
guages the object
exists in, ordered
by their priority (as
an array of ezcon-
tentlanguage (page
893) objects).

can edit languages array No. Not documented
yet.

can create array No. Not documented
languages yet.
always available boolean No. Returns TRUE if the

object is marked as
”always available”
(i.e. the object
will be fetched even
if it does not exist
in any of the site
languages), FALSE
otherwise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.12 Objects / ezcontentobjectattribute 902

5

5.5.12 ezcontentobjectattribute

Summary

Contains information about an attribute of a content object.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the attribute.
contentobject id string Yes. The ID number of

the content object
that the attribute
belongs to.

version string Yes. The version num-
ber of the content
object that the at-
tribute belongs to.

language code string Yes. The code of the
translation that the
attribute belongs to
(for example ”eng-
GB”).

language id string Yes. The ID number of
the translation lan-
guage plus 1 if this
is the
language is initial/
main and the object
is always available.

contentclassattribute string Yes. The ID number of
id the attribute.
attribute original id string Yes. The original ID of

the attribute.
sort key int string Yes. Integer used for

sorting.
sort key string string Yes. Text used for sort-

ing.
data type string string Yes. The identifier string

of the datatype (for
example
”ezstring”).

data text string Yes. Text stored by the
attribute.

data int string Yes. Integer stored by
the attribute.

data float string Yes. Float stored by the

5.5.12 Objects / ezcontentobjectattribute 903

5

attribute.
contentclass object No. The class attribute
attribute (as an ezcontent-

classattribute (page
888) object).

contentclass string No. The identifier
attribute identifier of the content class

attribute (for exam-
ple ”first name”).

contentclass string No. The name
attribute name of the content class

attribute.
can translate string No. 1 if the attribute

is translatable, 0 if
not.

is information string No. 1 if the attribute is
collector an information col-

lector, 0 if not.
is required string No. 1 if the attribute is

required, 0 if not.
content any No. The actual content

(what is returned
when the ”.content”
notation is used).

has http value boolean No. TRUE if
the attribute has an
HTTP value, FALSE
otherwise.

value any No. The HTTP input
from the user (if
submitted) or the
contents of the ob-
ject
attribute from the
database (same as
the ”content” at-
tribute).

has content boolean No. TRUE if there
is attribute contains
content, FALSE if it
is empty.

class content any No. The
content of the class
attribute which this
object attribute is
made from (same
as ”.contentclass
attribute.content”).

object object No. The object that the
attribute belongs to

5.5.12 Objects / ezcontentobjectattribute 904

5

(as an ezcontentob-
ject (page 894) ob-
ject).

object version object No. The version that the
attribute belongs to
(as an ezcontento-
bjectversion (page
912) object).

view template string No. The
name of the tem-
plate that is used to
display the view in-
terface for the at-
tribute (for exam-
ple ”ezstring”).

edit template string No. The
name of the tem-
plate that is used to
display the edit in-
terface for the at-
tribute (for exam-
ple ”ezstring”).

result template string No. The
name of the tem-
plate that is used
to display the in-
formation that was
collected by the at-
tribute (for exam-
ple ”ezstring”).

has validation error boolean No. TRUE if a valida-
tion error was de-
tected, FALSE if ev-
erything is okay.

validation error NULL No. The valida-
tion error(s), NULL
if none.

validation log NULL No. A log of the valida-
tion error(s), NULL
if none.

language object No. The original trans-
la-
tion (as ezcontento-
bjectattribute (page
902) object) of this
content object
attribute (it may
just be the same ob-
ject).

is a string No. Returns the identi-

5.5.12 Objects / ezcontentobjectattribute 905

5

fier of the datatype
that is used to rep-
resent the attribute
(for example
”ezstring”).

display info array No. An array containing
information about
how the attribute
should be displayed
in different scenar-
ios (for example if
the information
should be grouped,
etc.).

class display info array No. An array containing
information about
how the attribute
should be displayed
on the class level.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.13 Objects / ezcontentobjecttranslation 906

5

5.5.13 ezcontentobjecttranslation

Summary

DEPRECATED (Contains information about a translation.)

Attributes

Attribute Type Static* Description
contentobject id string Yes. The ID number of

the object that the
translation belongs
to.

version string Yes. The version num-
ber that the transla-
tion belongs to.

language code string Yes. The translation’s
language code (for
example ”eng-GB”).

locale object No. The locale (as ezlo-
cale (page 932) ob-
ject) that the trans-
lation uses.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.14 Objects / ezcontentobjecttreenode 907

5

5.5.14 ezcontentobjecttreenode

Summary

Contains information about a node within the content node tree.

Attributes

Attribute Type Static* Description
node id string Yes. The ID number of

the node.
parent node id string Yes. The ID number of

the parent node.
main node id string Yes. The ID number of

the main node.
contentobject id string Yes. The ID number of

the content object.
contentobject string Yes. The number of the
version published version.
contentobject is string Yes. The published sta-
published tus of the object

(0=not published,
1=published).

depth string Yes. The depth of
the node within the
content node tree.
The depth of a top
level node is 1.

sort field string Yes. The sorting method
used to sort the
child nodes.

sort order string Yes. The sorting order
used when sorting
the node’s children.

priority string Yes. The node’s priority
(positive or nega-
tive integer).

modified subnode string Yes. A UNIX timestamp
pinpointing the ex-
act time a sub node
was changed.

path string string Yes. The node’s path
string (for example
”/1/2/44”).

path identification string Yes. The node’s path
string identification string

(for example ”com-
pany/about us”).

remote id string Yes. A unique ID for

5.5.14 Objects / ezcontentobjecttreenode 908

5

the node (avoids
crashes when im-
porting/exporting
nodes). A remote
ID is an MD5 hash
of the time when
the node was gen-
erated plus a ran-
dom value.

is hidden string Yes. The node’s hid-
den status (0=visi-
ble, 1=hidden).

is invisible string Yes. The node’s visibil-
ity status (0=visi-
ble, 1=hidden by
superior).

name string No. The name of the ob-
ject the node encap-
sulates (for exam-
ple ”My article”).

data map array No. The object’s
attributes as ezcon-
tentobjectattribute
(page 902) objects.

object object No. The actual content
object (as ez-
contentobject (page
894)) that the node
encapsulates.

subtree array No. All the nodes that
are below this node
as ezcontentobject-
treenode (page
907) objects.

children array No. Array of nodes that
are directly below
this node as ezcon-
tentobjecttreenode
(page 907) objects.

children count string No. The number
of nodes that are
directly below this
node.

view count integer No. The number of
times the node has
been viewed.

contentobject object No. The current version
version object (as ezcontento-

bjectversion (page
912)) of the object

5.5.14 Objects / ezcontentobjecttreenode 909

5

that the node en-
capsulates.

sort array array No. The node’s sort ar-
ray.

can read boolean No. Returns
TRUE if the current
user has read access
to the node (FALSE
otherwise).

can pdf boolean No. Not documented
yet.

can create boolean No. Returns TRUE if the
current user can
create nodes under
this node (FALSE
otherwise).

can edit boolean No. Returns
TRUE if the current
user has edit access
to the node (FALSE
otherwise).

can hide boolean No. Returns TRUE if the
cur-
rent user can mod-
ify the hidden state
of the node (FALSE
otherwise).

can remove boolean No. Returns TRUE if the
current user can re-
move the node
(FALSE otherwise).

can move boolean No. Returns TRUE if the
current user
can move the node
to another location
(FALSE otherwise).

can move from boolean No. Same as
”can move”, returns
TRUE if the cur-
rent user has per-
missions to move
node, FALSE other-
wise.

can add location boolean No. Not documented
yet.

can remove boolean No. Not documented
location yet.
can view embed boolean No. Not documented

yet.
is main boolean No. Not documented

5.5.14 Objects / ezcontentobjecttreenode 910

5

yet.
creator object No. The object (as ez-

contentobject (page
894)) containing
the user who cre-
ated the node.

path array No. Array contain-
ing the nodes that
make up the path
as ezcontentobject-
treenode
(page 907) objects.
The current node is
not included.

path array array No. Array of strings re-
vealing the ID num-
bers of the nodes
that make up the
path. The cur-
rent node is also in-
cluded.

parent object No. The parent node (as
ezcontentob-
jecttreenode (page
907)).

url string No. The URL of the
node either as a
virtual URL (”com-
pany/
about us”) or a sys-
tem URL (”content/
view/full/13”) de-
pending on a con-
figuration setting.

url alias string No. The virtual URL
of the node (”com-
pany/about us”).

class identifier string No. The identifier of the
class which
the object encapsu-
lated by the node is
an instance of (for
example ”product
review”).

class name string No. The name of
the class which the
object encapsulated
by the node is an
instance of (for ex-
ample ”Product re-

5.5.14 Objects / ezcontentobjecttreenode 911

5

view”).
hidden invisible string No. The visibility status
string of a node (”-/-” =

completely visible,
”H/X” = hidden by
user and thus invis-
ible, ”-/X” = hidden
by superior).

hidden status string No. The visibility status
string of the node: ”Vis-

ible”, ”Hidden” or
”Hidden by supe-
rior”.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.15 Objects / ezcontentobjectversion 912

5

5.5.15 ezcontentobjectversion

Summary

Contains information about a version of a content object.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the version.
contentobject id string Yes. The ID number of

the object that the
version belongs to.

creator id string Yes. The ID number of
the object that rep-
re-
sents the user who
created the version.

version string Yes. The actual version
number.

status string Yes. The status of the
version.

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the version was cre-
ated.

modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the version was last
modified.

workflow event pos string Yes. DEPRECATED - was
related to
workflows.

user id string Yes. DEPRECATED - was
related to
workflows.

language mask string Yes. The sum of the ID
numbers of the lan-
guages in which the
version exists plus
1.

initial language id string Yes. The ID number of
the language which
the version was
edited in (for exam-

5.5.15 Objects / ezcontentobjectversion 913

5

ple 16).
creator object No. The object (as ez-

contentobject (page
894)
object) that repre-
sents the user who
created the version.

name string No. The name
of the version (gen-
erated using the ob-
ject name pattern).

version name string No. The name
of the version (gen-
erated using the ob-
ject name pattern).

main parent node string No. The ID num-
id ber of the main par-

ent node that ref-
erences the object
which the version
belongs to.

contentobject array No. The attributes (as
attributes ezcontento-

bjectattribute (page
902) objects) that
the version consists
of. Only attributes
in the current lan-
guage (which is de-
termined according
to the list of pri-
oritized languages)
will be fetched.

related array No. An array of ez-
contentobject array contentobject (page

902) objects repre-
senting the objects
that are related to
the object that the
version belongs to.

reverse related array No. An array of ez-
object list contentobject (page

902) objects rep-
resenting the ob-
jects that are re-
lated to the object
which the version
belongs to.

parent nodes array No. The par-
ent nodes (as ezn-

5.5.15 Objects / ezcontentobjectversion 914

5

odeassignment
(page 945) objects)
of the nodes which
reference the object
that the version be-
longs to.

can read boolean No. Returns
TRUE if the current
user has read access
to the version. Oth-
erwise FALSE is re-
turned.

can remove boolean No. Not documented
yet.

data map array No. A hash containing
the attributes (as
ezcontento-
bjectattribute (page
902) objects) that
the version consists
of. The keys of
the hash are the
identifiers of the at-
tributes.

node assignments array No. An array of node as-
signments (as ezn-
odeassignment
(page 945) ob-
jects) that are con-
nected with the ob-
ject which the ver-
sion belongs to.

contentobject object No. The object (as ez-
contentobject (page
894)) that the ver-
sion belongs to.

initial language object No. The
language which the
version was
edited in (as ezcon-
tentlanguage (page
893) object).

language list array No. The translations (as
ezcontentobject-
translation
(page 906) objects)
that belong to the
version - including
the default transla-

5.5.15 Objects / ezcontentobjectversion 915

5

tion.
translation object No. DEPRECATED - was

related to old multi-
language function-
ality.

translation list array No. The translations (as
ezcontentobject-
transla-
tion (page 906) ob-
jects) that belong to
the version - the de-
fault translation is
not included.

complete array No. Same as the
translation list ”translation list” at-

tribute.
temp main node object No. A temporary node

(as ezcontentob-
jecttreenode
(page 907) object)
for the object that
the version belongs
to. The temporary
node does not exist
in the database.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.16 Objects / ezcurrencydata 916

5

5.5.16 ezcurrencydata

Summary

Contains information about a currency.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the currency.
code string Yes. The three-character

currency code (for
example ”USD”).

symbol string Yes. A string that is used
as the currency
symbol (for exam-
ple ”$”).

locale string Yes. A locale that is used
for price formatting
(for example ”eng-
US”).

status string Yes. Returns 0 if the cur-
rency is inactive, 1
otherwise.

auto rate value string Yes. The
currency rate that
is retrieved via au-
tomatic update of
the exchange rates
from the Internet.

custom rate value string Yes. The currency
rate that is specified
manually (0.00000
by default).

rate factor string Yes. The rate fac-
tor value (1.00000
by default). If the
custom
rate is 0.00000 or
not specified then
the auto rate will
be multiplied by the
rate factor.

rate value string No. The ac-
tual rate value that
will be used in cal-
culations. The rate
value will be the

5.5.16 Objects / ezcurrencydata 917

5

same as the cus-
tom rate if it is not
zero. If the custom
rate is 0.00000 or
not specified then
the auto rate will
be multiplied by the
rate factor.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.17 Objects / ezdate 918

5

5.5.17 ezdate

Summary

Contains information about a date.

Attributes

Attribute Type Static* Description
timestamp string Yes. The date as a UNIX

timestamp (for ex-
am-
ple ”567990000”) if
the date is a valid
date, NULL other-
wise.

is valid boolean Yes. Returns TRUE if the
date is a valid date,
FALSE otherwise.

year string No. The year (for exam-
ple ”1988”).

month string No. The month (for ex-
ample ”01”).

day string No. The day (for exam-
ple ”01”).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.18 Objects / ezdatetime 919

5

5.5.18 ezdatetime

Summary

Contains information about a date and time.

Attributes

Attribute Type Static* Description
timestamp string Yes. The

date/time value as
a UNIX timestamp
(for exam-
ple ”1147719660”)
if the date/time is
valid.

hour string No. The hour (for ex-
ample ”21”).

minute string No. The minute (for ex-
ample ”01”).

year string No. The year (for exam-
ple ”2006”).

month string No. The month (for ex-
ample ”05”).

day string No. The day (for exam-
ple ”15”).

is valid boolean Yes. Returns TRUE if the
date/time value is
valid, FALSE other-
wise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.19 Objects / ezimagealiashandler 920

5

5.5.19 ezimagealiashandler

Summary

Contains information about an image.

Attributes

Attribute Type Static* Description
alternative text string No. The alternative im-

age text (for exam-
ple ”Picture of an
apple.”).

original filename string No. The original name
of the image file
(for example ”ap-
ple.png”).

is valid string No. Returns either 1 or
0 (valid or invalid).

name of variation array No. Attribute: name
Type: string
Description: The
name of the vari-
ation (for example
”original”).

Attribute: width
Type: string
Description: The
width as number of
pixels (for example
”320”).

Attribute: height
Type: string
Description: The
height as number of
pixels (for example
”256”).

Attribute: mime
type
Type: string
Description: The
MIME type (for ex-
ample ”image/
png”).

Attribute: filename

5.5.19 Objects / ezimagealiashandler 921

5

Type: string
Description: The
name of the file
(for example ”my
image.png”).

Attribute: suffix
Type: string
Description: The
file suffix (for ex-
ample ”png”).

Attribute: dirpath
Type: string
Description: The
path to the image
(for example ”var/
storage/images/
test/
199-2-eng-GB”).

Attribute: base-
name
Type: string
Description: The
basename of
the image file (for
example ”apple”).

Attribute:
alternative text
Type: string
Description:
The alternative im-
age text (for exam-
ple ”Picture of an
apple.”).

Attribute: text
Type: string
Description: Con-
tains the
”alternative text” of
the original image.

Attribute: original
filename
Type: string
Description: The
name of the origi-

5.5.19 Objects / ezimagealiashandler 922

5

nal file (for exam-
ple ”apple.png”).

Attribute: url
Type: string
Description: Com-
plete path + name
of image file
(for example ”var/
storage/images/
test/199-2-eng-GB/
apple.png”).

Attribute: alias key
Type: string
Description: A in-
ternal CRC32 value
which is used when
an alias is created.
This value is based
on the filters that
were used (param-
eters included) and
is checked when an
alias is accessed. If
this values differs
from the configured
filters (in image.ini
or an override), the
system will recreate
the alias.

Attribute: times-
tamp
Type: string
Description:
A UNIX timestamp
pinpointing the ex-
act date/time when
the alias was last
modified. For the
”original” alias, the
timestamp will re-
veal the time when
the image was orig-
inally uploaded.

Attribute: full path
Type: string
Description: Com-

5.5.19 Objects / ezimagealiashandler 923

5

plete path + name
of image file
(for example ”var/
storage/images/
test/199-2-eng-GB/
apple.png”).

Attribute: is valid
Type: string
Description: TRUE
if the alias was cre-
ated properly, that
means all conver-
sion
and filters were ap-
plied without prob-
lems. It will be
FALSE if the image
manager is wrongly
configured or
if there no compat-
ible image convert-
ers could be found.

Attribute: is new
Type: boolean
Description: Will
be set to TRUE the
first time the alias
is created, the next
time (reload of the
same page) it will
be FALSE. It will
also be set to TRUE
every time the alias
is re-created due to
changes in filters
(see alias key).

Attribute: filesize
Type: integer
Description: The
number of bytes
that the image con-
sumes.

Attribute: info
Type: string
Description: Con-
tains extra informa-

5.5.19 Objects / ezimagealiashandler 924

5

tion about the im-
age, depending on
the image type. It
will typically
contain EXIF infor-
mation from digital
cameras or infor-
mation about ani-
mated GIFs. If
there is no informa-
tion, the info will be
a boolean FALSE.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.20 Objects / ezimagelayer 925

5

5.5.20 ezimagelayer

Summary

Contains information about an image layer.

Attributes

Attribute Type Static* Description
filepath string Yes. The path (for exam-

ple ”design/
example/images”).

filename string Yes. The name of the im-
age file (for exam-
ple
”delorean.png”).

width integer Yes. The width of the
image (number of
pixels).

height integer Yes. The height of the
image (number of
pixels).

alternative text string Yes. The alternative im-
age text.

imagepath string No. The internal (eZ
publish) path to the
image (for example
”design/example/
images/
delorean.png”).

has size boolean No. TRUE if ”width”
and ”height” is set,
otherwise FALSE.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.21 Objects / ezimageobject 926

5

5.5.21 ezimageobject

Summary

Contains information about an image.

Attributes

Attribute Type Static* Description
filepath string Yes. The path (for exam-

ple ”design/
example/images”).

filename string Yes. The name of the im-
age file (for exam-
ple
”delorean.png”).

width integer Yes. The width of the
image (number of
pixels).

height integer Yes. The height of the
image (number of
pixels).

alternative text string Yes. The alternative im-
age text.

imagepath string No. The internal (eZ
publish) path to the
image (for example
”design/example/
images/
delorean.png”).

has size boolean No. TRUE if ”width”
and ”height” is set,
otherwise FALSE.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.22 Objects / ezinformationcollection 927

5

5.5.22 ezinformationcollection

Summary

Contains information about a block of collected information.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the information col-
lection.

contentobject id string Yes. The ID number of
the object that col-
lected the informa-
tion.

user identifier string Yes. An unique identi-
fier of the user that
submitted the in-
formation (an MD5
hash of the user’s
ID number for reg-
istered users; ses-
sion identifier for
anonymous users).

creator id string Yes. The ID number of
the
object representing
the user who sub-
mitted the informa-
tion (for example,
14).

created string Yes. A UNIX timestamp
revealing the exact
date/time when the
information was
collected.

modified string Yes. A UNIX timestamp
revealing the exact
date/time when the
collection was last
modified.

attributes array No. An array of the
collection attributes
(as ezinformation-
collectionat-
tribute (page 929)
objects).

data map array No. A

5.5.22 Objects / ezinformationcollection 928

5

hash containing the
attributes (as ezin-
formationcollec-
tionattribute (page
929) objects) that
the collection con-
sists of. The keys
of the hash are the
identifiers of the at-
tributes.

object object No. The actual ob-
ject that collected
the information (as
an ezcontentobject
(page 894) object).

creator object No. The user who sub-
mitted the infor-
mation (as ezuser
(page 965) object).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.23 Objects / ezinformationcollectionattribute 929

5

5.5.23 ezinformationcollectionattribute

Summary

Contains information about an attribute of a collection.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the information col-
lection attribute.

informationcollection string Yes. The ID number of
id the information col-

lection itself.
contentclass string Yes. The ID number of
attribute id the class attribute.
contentobject string Yes. The ID number of
attribute id the object attribute.
contentobject id string Yes. The ID number of

the object.
data text string Yes. Collected text.
data int string Yes. Collected integer.
data float string Yes. Collected float.
contentclass string No. The name of the
attribute name attribute that col-

lected the informa-
tion.

contentclass object No. The class attribute
attribute (as an ezcontent-

classattribute (page
888) object).

contentobject object No. The object attribute
attribute (as an ezcontento-

bjectattribute (page
902) object).

contentobject object No. The content object
(as an ezcontentob-
ject (page 894) ob-
ject).

result template string No. The name of the re-
sult
template (for exam-
ple ”ezstring”).

has content boolean No. Returns TRUE if the
attribute
is not empty, FALSE
otherwise.

content string No. The actual content

5.5.23 Objects / ezinformationcollectionattribute 930

5

of the attribute.
class content any No. The

content of the class
attribute which the
collection attribute
is made from.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.24 Objects / ezkeyword 931

5

5.5.24 ezkeyword

Summary

Contains information about keywords.

Attributes

Attribute Type Static* Description
keywords array Yes. An array of strings

containing the key-
words/phrases.

keyword string string No. The actual keyword
string (comma sep-
arated keywords/
phrases).

related nodes array No. An array of nodes
(as ezcontentob-
jecttreenode (page
907) objects) that
have at least one of
the same keywords.

related objects array No. (Deprecated from
3.6.1, use related
nodes) An array of
nodes (as ezcon-
tentob-
jecttreenode (page
907) objects) that
have at least one of
the same keywords.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.25 Objects / ezlocale 932

5

5.5.25 ezlocale

Summary

Contains information about a locale.

Attributes

Attribute Type Static* Description
charset string Yes. The character set

that the locale uses
(for example ”iso-
8859-1”).

allowed charsets array Yes. An
array of strings con-
taining the allowed
character sets.

country name string Yes. The name of the
country that the lo-
cale belongs to (for
example ”United
Kingdom”).

country comment string Yes. A comment about
the country that the
locale belongs to
(usually empty).

country code string Yes. The country code
(for example ”GB”
for Great Britian).

country variation string Yes. The country varia-
tion.

language name string Yes. The native name of
the lan-
guage (for example
”Norsk”, ”Magyar”,
etc.).

intl language name string Yes. The
international name
of the language (for
example ”Norwe-
gian”, ”Hungarian”,
etc.).

language code string Yes. The lan-
guage code (for ex-
ample ”eng”).

language comment string Yes. A comment about
the language itself
(usually empty).

locale code string Yes. The ac-

5.5.25 Objects / ezlocale 933

5

tual locale code (for
example ”eng-GB”,
”nor-NO”, etc.).

locale full code string No. The full locale code
(for example ”eng-
GB”).

http locale code string No. The HTTP locale
code (for example
”eng-GB”).

decimal symbol string Yes. The decimal symbol
(for example a dot
”.”).

thousands string Yes. The character (if
separator any) that is used to

separate/split large
numbers.

decimal count string Yes. The number of dec-
imal digits
that should be dis-
played.

negative symbol string Yes. The symbol used
for displaying nega-
tive numbers (usu-
ally just a dash: ”-
”).

positive symbol string Yes. The symbol used
for displaying posi-
tive numbers (usu-
ally empty).

currency decimal string Yes. The symbol used
symbol for separating the

integer part from
the decimal part of
currency values.

currency string Yes. The thousand sepa-
thousands rator used for cur-
separator rencies.
currency decimal string Yes. The number of dec-
count imal dig-

its that should be
included when dis-
playing currencies.

currency negative string Yes. The symbol
symbol used for displaying

negative currencies
(usually just a dash:
”-”).

currency positive string Yes. The symbol
symbol used for displaying

positive currencies

5.5.25 Objects / ezlocale 934

5

(usually empty).
currency symbol string Yes. The currency sym-

bol (for example
”£”).

currency name string Yes. The name of the
currency (for exam-
ple ”British Pound”,
”Norwegian
Kroner”, etc.).

currency short string Yes. A short/
name abbreviated

name for the cur-
rency (for exam-
ple ”BSP”, ”NOK”,
etc.).

is monday first boolean Yes. Returns TRUE
if monday is consid-
ered to be the first
day of the week,
FALSE otherwise.

weekday name list array No. An array of strings
containing
the weekday names
(for
example ”Monday”,
”Tuesday”, etc.).

weekday short array No. An array of strings
name list containing abbrevi-

ated weekday
names (for example
”Mon”, ”Tue”, etc.).

weekday number array Yes. An array of strings
list containing

the weekday num-
bers (for example
”0”, ”1”, etc.).

month list array Yes. An array of strings
contain-
ing the month dig-
its (for example ”1”
for January, ”2” for
February, etc.).

month name list array Yes. An array of strings
con-
taining the name
of the months (for
example ”January”,
”February”, etc.).

is valid boolean Yes. Returns TRUE if the
locale is valid (suc-

5.5.25 Objects / ezlocale 935

5

cessfully read from
disk), FALSE other-
wise (unknown lo-
cale).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.26 Objects / ezmatrix 936

5

5.5.26 ezmatrix

Summary

Contains information about a matrix.

Attributes

Attribute Type Static* Description
name boolean Yes. Always FALSE (this

attribute is
currently not used).

rows array No. A collection of mis-
cellaneous
structures that con-
tain informa-
tion about the rows.
Currently there is
only one structure,
called ”sequential”.
It is built up of
an array of hashes.
The following table
reveals the struc-
ture of the array el-
ements.
Name: identifier
Type: string
Description: The
identifier of the col-
umn (defined at the
class level).

Name: name
Type: string
Description: The
name of the column
(defined at the class
level).

Name: columns
Type: array
Description: An
array of
strings holding the
actual contents of
the columns.

columns array No. A collection of mis-

5.5.26 Objects / ezmatrix 937

5

cellaneous
structures that con-
tain informa-
tion about the rows.
Currently there are
two types of struc-
tures: ”sequential”
and ”id”. The ”se-
quential” structure
is built up of an ar-
ray hashes. The fol-
lowing table reveals
the structure of the
array elements.
Name: identifier
Type: string
Description: The
identifier of the col-
umn (defined at the
class level).

Name: index
Type: string
Description: The
row index (”0”, ”1”,
and so on).

Name: name
Type: string
Description: The
name of the column
(defined at the class
level).

Name: rows
Type: array
Description: An
ar-
ray of strings hold-
ing the actual con-
tents of the rows.

The ”id” structure
consists
of hash where the
keys are the column
identifiers. The fol-
lowing table shows
the structure that is
available for each

5.5.26 Objects / ezmatrix 938

5

column identifier.
Name: identifier
Type: string
Description: The
identifier of the col-
umn (defined at the
class level).

Name: index
Type: string
Description: The
column index (”0”,
”1”, and so on).

Name: name
Type: string
Description: The
name of the column
(defined at the class
level).

Name: rows
Type: array
Description: An
ar-
ray of strings hold-
ing the actual con-
tents of the rows.

cells array Yes. A flat array of the
cells that make up
the matrix (from
left to right, top to
bottom).

matrix array Yes. Consists of ”rows”,
”columns” and
”cells” (see above).

rowCount integer No. The number of
rows.

columnCount integer No. The number of
columns.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.27 Objects / ezmedia 939

5

5.5.27 ezmedia

Summary

Contains information about a video file.

Attributes

Attribute Type Static* Description
contentobject string Yes. The
attribute id identification num-

ber of the content
object attribute.

version string Yes. The content object
version.

filename string Yes. The name of the
file in the eZ
publish var direc-
tory (for example
”44b963c9e8d1ffa80cbb08e84d576735.avi”).

original filename string Yes. The original file-
name (for example
”ezpublish-
mediademo.avi”).

mime type string Yes. The MIME type (for
example ”video/x-
msvideo”).

width string Yes. The playback width
- in number of
pixels (for example
”640”).

height string Yes. The playback
height - in number
of pixels (for exam-
ple ”480”).

has controller string Yes. Either 1 or 0 (show
controller or do not
show controller).

controls string Yes. Either 1 or 0 - Real
Media spe-
cific - controls the
control-bar.

is autoplay string Yes. Either 1 or 0 (auto-
matically start play-
back or not).

pluginspage string Yes. A URL that leads to
the plug-in that is
required for proper

5.5.27 Objects / ezmedia 940

5

playback.
quality string Yes. Flash specific - con-

trols the quality of
the media.

is loop string Yes. Either 1 or
0 (looped playback
or single-cycle).

filesize integer No. The number of
bytes the media file
consumes.

filepath string No. The path to the me-
dia file (for exam-
ple ”var/storage/
original/video/
44b963c9e8d1ffa80cbb08e84d576735.avi”).

mime type category string No. The MIME type cat-
egory (for example
”video”).

mime type part string No. The MIME type part
(for example
”x-msvideo”).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.28 Objects / ezmultioption 941

5

5.5.28 ezmultioption

Summary

Contains information about multilpe options.

Attributes

Attribute Type Static* Description
name string Yes. The name of the

entire multi-option
set.

multioption list array Yes. An array of hashes
where each hash
consists of the fol-
lowing elements:
Attribute: id
Type: integer
Description: The
ID number of the
option.

Attribute: name
Type: string
Description: The
name of the op-
tion (for example
”Color”).

Attribute: priority
Type: string
Description: The
option’s priority.

Attribute: default
option id
Type: string
Description: The
ID number of the
default option.

Attribute: option-
list
Type: array
Description: Array
of hashes -
the structure is de-
scribed in the docu-
mentation page for

5.5.28 Objects / ezmultioption 942

5

the ezoption (page
947) object.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.29 Objects / ezmultiprice 943

5

5.5.29 ezmultiprice

Summary

Contains information about prices and currencies for a product.

Attributes

Attribute Type Static* Description
vat type array No. The available VAT

types (as an array
of ezvattype (page
969) objects).

current user object No. The current user
(as an ezuser (page
965) object).

is vat included boolean Yes. TRUE if the VAT
is included, FALSE
otherwise.

vat percent string No. The VAT percentage
(without the per-
cent symbol).

discount percent double Yes. The discount per-
centage.

has discount boolean No. TRUE if a discount
rule affects the
price, FALSE other-
wise.

selected vat type object No. The selected VAT
type (as an ezvat-
type (page 969) ob-
ject).

price string No. The price in the
preferred currency.

inc vat price string No. The price in the
preferred currency
including the VAT.

ex vat price double No. The price in the
preferred currency
excluding the VAT.

discount price inc double No. The
vat discounted price in

the preferred cur-
rency including the
VAT.

discount price ex double No. The
vat discounted price in

the preferred cur-
rency excluding the

5.5.29 Objects / ezmultiprice 944

5

VAT.
currency string No. The code of the pre-

ferred currency.
currency list array No. The available cur-

rencies (as an ar-
ray of ezcurrency-
data (page 916) ob-
jects).

auto currency list array No. The currencies that
the auto prices are
calcu-
lated for (as an ar-
ray of ezcurrency-
data (page 916) ob-
jects).

price list array No. The prices in
all currencies (both
custom prices and
auto prices).

auto price list array No. The auto prices.
custom price list array No. The custom prices.
inc vat price list array No. The prices includ-

ing the VAT.
ex vat price list array No. The prices exclud-

ing the VAT.
discount inc vat array No. The discounted
price list prices including the

VAT.
discount ex vat array No. The discounted
price list prices excluding the

VAT.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.30 Objects / eznodeassignment 945

5

5.5.30 eznodeassignment

Summary

Contains information about a node assignment.

Attributes

Attribute Type Static* Description
id string Yes. The ID number

of the node assign-
ment.

remote id string Yes. The remote ID
of the node assign-
ment.

contentobject id string Yes. The ID number of
the
object that the node
assignment belongs
to.

contentobject string Yes. The version num-
version ber which the node

assignment belongs
to.

parent node string Yes. The ID number of
the parent node.

sort field string Yes. The ID number of
the method for sort-
ing child nodes.

sort order string Yes. Either 1 (ascend-
ing) or 0 (descend-
ing). Reveals the
order for sorting
child nodes.

is main string Yes. Either 1 or 0. 1
means that this is
the main node as-
signment for the
object.

from node id string Yes. The ID number of
the original node.
This attribute will
only have a valid
value if an exist-
ing node is moved,
in which case the
”parent node
id” will reveal the
new parent node.

5.5.30 Objects / eznodeassignment 946

5

If the attribute con-
tains ”0” or ”-1”,
it means that the
node is not meant
to be moved.

parent remote id string Yes. The remote ID of
the parent node.

op code string Yes. Not documented
yet.

parent node obj object No. The parent node (as
ezcontentob-
jecttreenode (page
907) object).

parent object No. The object (as ez-
contentobject contentobject (page

894) object) that is
referenced by the
parent node.

node object No. The actual node (as
ezcontentob-
jecttreenode (page
907)) that this as-
signment assigns to
the object.

is nop operation boolean No. Not documented
yet.

is create operation boolean No. Not documented
yet.

is move operation boolean No. Not documented
yet.

is remove boolean No. Not documented
operation yet.
is set operation boolean No. Not documented

yet.
temp node object No. A temporary node

(as ezcontentob-
jecttreenode
(page 907) object)
for the object that
the version belongs
to. The temporary
node does not exist
in the database.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.31 Objects / ezoption 947

5

5.5.31 ezoption

Summary

Contains information about a collection of options.

Attributes

Attribute Type Static* Description
name string Yes. The name of the

option (for example
”Color”).

option list array Yes. An array of hashes
where each hash
consits of the fol-
lowing elements:
Attribute: id
Type: integer
Description: The
ID number of the
option.

Attribute: value
Type: string
Description: The
option text
(for example ”Red”,
”Green”, etc.).

Attribute:
additional price
Type: string
Description: The
addition price.

Attribute: is
default
Type: boolean
Description: TRUE
if it is the default
option, FALSE oth-
erwise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.32 Objects / ezorder 948

5

5.5.32 ezorder

Summary

Contains information about an order.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the order.
order nr string Yes. The

number (count) of
the order.

is temporary string Yes. 1 if the order is
temporary, 0 other-
wise.

user id string Yes. The ID number of
the user that the or-
der belongs to.

productcollection string Yes. The ID number of
id the product collec-

tion that belongs to
the order.

data text 1 string Yes. General
purpose text block
for the shop ac-
count handler. The
default shop han-
dler uses this at-
tribute to store an
XML structure with
the customer infor-
mation (name, ad-
dress, etc.). Exam-
ple:

5.5.32 Objects / ezorder 949

5

<xml

version="1.0"

encoding="UTF-8"?>

<shop_account>

<first-name>Marty</

first-name>

<last-name>McFly</

last-name>

<email>marty@ez.no</

email>

<street1>7

Lyon Estates</

street1>

<street2>Outside

Hill Valley</

street2>

<zip>55532</

zip>

<place>Hill

Valley</

place>

<state>California</

state>

<country>USA</

country>

<comment>No

comment.</

comment>

</shop_account>

data text 2 string Yes. General
purpose text block
#2 for the shop ac-
count handler. Sim-
ilar to ”data text 1”.

account identifier string Yes. The account iden-
tifier (for example
”ez”).

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the order was cre-
ated.

ignore vat string Yes. 1 if the VAT should
be ignored, 0 other-

5.5.32 Objects / ezorder 950

5

wise.
email string Yes. The E-mail address

of the buyer.
status id string Yes. The global ID num-

ber of the order’s
current status.

status modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the status was or-
der’s status was last
modified.

status modifier id string Yes. The ID number of
the
user who last mod-
ified the order’s sta-
tus.

is archived string Yes. Not documented
yet.

status name string No. The name of the or-
der’s current status
(for example ”Pend-
ing”).

status object No. The actual
order status (as an
ezorderstatus (page
952) object).

status modification array No. The status log as an
list array of ezordersta-

tus (page 952) ob-
jects.

product items array No. Not documented
yet.

order items array No. Not documented
yet.

product total inc double No. Not documented
vat yet.
product total ex vat double No. Not documented

yet.
total inc vat double No. Not documented

yet.
total ex vat double No. Not documented

yet.
user object No. Not documented

yet.
account view string No. Not documented
template yet.
account array No. Not documented

5.5.32 Objects / ezorder 951

5

information yet.
account name string No. Not documented

yet.
account email string No. Not documented

yet.
productcollection object No. Not documented

yet.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.33 Objects / ezorderstatus 952

5

5.5.33 ezorderstatus

Summary

Contains information about an order status.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the status.
status id string Yes. The global ID num-

ber of the status.
name string Yes. The name of the

status (for example
”Delivered”).

is active string Yes. 1 if the status is ac-
tive, 0 otherwise.

is internal boolean No. TRUE if the status is
one of the built-in/
internal sta-
tuses, FALSE if it is
a custom status.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.34 Objects / ezpolicy 953

5

5.5.34 ezpolicy

Summary

Contains information about a policy.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the policy.
role id string Yes. The ID number of

the role the policy
belongs to.

module name string Yes. The name
of the module that
the policy grants ac-
cess to (for example
”content”).

function name string Yes. The name
of the function that
the policy grants ac-
cess to (for example
”read”).

limitations array No. The limitations (if
any) of the policy.

role object No. The role (as ezrole
(page 959) object)
that the policy be-
longs to.

limit identifier string No. Not documented
yet.

limit value string No. Not documented
yet.

user role id string No. Not documented
yet.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.35 Objects / ezprice 954

5

5.5.35 ezprice

Summary

Contains information about a price.

Attributes

Attribute Type Static* Description
vat type array No. The available VAT

types (as an array
of ezvattype (page
969) objects).

current user object No. The current user
(as an ezuser (page
965) object).

is vat included boolean Yes. TRUE if the VAT
is included, FALSE
otherwise.

vat percent string No. The VAT percentage
(without the per-
cent symbol).

discount percent double Yes. The discount per-
centage.

has discount boolean No. TRUE if a discount
rule affects the
price, FALSE other-
wise.

selected vat type object No. The selected VAT
type (as an ezvat-
type (page 969) ob-
ject).

price string Yes. The entered price.
inc vat price string No. The price including

the VAT.
ex vat price double No. The price excluding

the VAT.
discount price inc double No. The
vat discounted price in-

cluding the VAT.
discount price ex double No. The discounted
vat price excluding the

VAT.
currency string Yes. An empty string.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.36 Objects / ezproductcategory 955

5

5.5.36 ezproductcategory

Summary

Contains information about a product category.

Attributes

Attribute Type Static* Description
id integer Yes. The ID number of

the product cate-
gory.

name string Yes. The name of the
product category.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.37 Objects / ezproductcollectionitem 956

5

5.5.37 ezproductcollectionitem

Summary

Contains information about an item of a product collection.

Attributes

Attribute Type Static* Description
id string Yes. Auto-incremented

ID number (used on
the database level).

productcollection string Yes. The ID number of
id the product collec-

tion.
contentobject id string Yes. The ID number of

the content object.
item count string Yes. The quantity.
price string Yes. The price

of the product (the
object).

is vat inc string Yes. 1 if the price in-
cludes the VAT, 0 if
not.

vat value string Yes. The VAT value.
discount string Yes. Discount

percentage.
name string Yes. The name

of the product (the
object).

contentobject object No. The actual content
object (as an ez-
contentobject (page
894) object).

option list array No. An array repre-
senting the selected
product options.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.38 Objects / ezrangeoption 957

5

5.5.38 ezrangeoption

Summary

Contains information about a range of options.

Attributes

Attribute Type Static* Description
name string Yes. The name

of the range option
(for example ”Shoe
size”).

start value string Yes. The start value (for
example ”32”).

stop value string Yes. The stop value (for
example ”40”).

step value string Yes. The step value (for
example ”1”).

option list array Yes. The generated op-
tions as an array of
hashes where each
hash consists of the
following elements:
Attribute: id
Type: integer
Description: The
ID of the option.

Attribute: value
Type: string
Description: The
option value.

Attribute:
additional price
Type: integer
Description: The
additional price
(will always be 0).

Attribute: is
default
Type: boolean
Description: TRUE
if it is the default
option, FALSE oth-
erwise.

5.5.38 Objects / ezrangeoption 958

5

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.39 Objects / ezrole 959

5

5.5.39 ezrole

Summary

Contains information about a role.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the role.
version integer Yes. The current version

of the role, 0 is
the currently active
role while any other
values are tempo-
rary versions.

name string Yes. The name of the
role (for example
”Anonymous”).

is new integer Yes. The creation state
of the role, will
be 1 if the role
just got created but
have not been acti-
vated yet, 0 other-
wise.

policies array No. The policies (as
ezpolicy (page 953)
objects) that make
up the role.

limit identifier string No. The identifier of the
limited assignment
for the currently
logged in user. Will
be FALSE if the lim-
ited assignment is
not used.

limit value string No. The value for the
”limit identifier” at-
tribute (when the
limitation feature is
in use).

user role id string No. Not documented
yet.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.40 Objects / ezsection 960

5

5.5.40 ezsection

Summary

Contains information about a section.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the section.
name string Yes. The name of the

section (for exam-
ple ”Standard”).

navigation part string Yes. The identifier of the
identifier navigation part that

the section belongs
to (for example ”ez-
contentnavigation-
part”).

locale string Yes. Not in use.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.41 Objects / ezsimplifiedxmlinput 961

5

5.5.41 ezsimplifiedxmlinput

Summary

Contains information about XML data.

Attributes

Attribute Type Static* Description
input xml string No. The text that the

end-user has input
to the system.

edit template name string No. The name of
the template that is
used when the ob-
ject attribute is be-
ing edited. The de-
fault is ”ezxmltext”,
but can be overrid-
den for a custom
handler (for exam-
ple the Online Edi-
tor).

information string No. The name of the
template name template that will

be used when the
object attribute is
collecting informa-
tion. The default
is ”ezxmltext”, but
can be overridden
for a custom han-
dler (for example
the Online Editor).

aliased type string Yes. Returns the name
of the original han-
dler. This will nor-
mally be FALSE (no
alias) - the Online
Editor takes control
of the XML field us-
ing an alias.

alias handler string No. Returns the origi-
nal handler if the
”aliased type” at-
tribute is non-false.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.42 Objects / ezsubtreenotificationrule 962

5

5.5.42 ezsubtreenotificationrule

Summary

Contains information about a subtree notification rule.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the subtree notifica-
tion rule.

user id string Yes. The ID number of
the user that the
rule belongs to.

use digest string Yes. When this attribute
is ”0”, the system
will check if the
user has digest set-
tings set; otherwise
the digest settings
are ignored and the
notification is sent
immediately.

node id string Yes. The ID
number of the sub-
scribed node.

node object No. The actual node (as
an ezcontentobject-
treenode (page
907) object).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.43 Objects / eztime 963

5

5.5.43 eztime

Summary

Contains information about a time value.

Attributes

Attribute Type Static* Description
timestamp integer No. The time as a

UNIX timestamp or
NULL.

time of day integer Yes. Not documented
yet.

hour integer No. The hour.
minute integer No. The minute.
is valid boolean Yes. TRUE if the time is

valid, FALSE other-
wise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.44 Objects / ezurl 964

5

5.5.44 ezurl

Summary

Contains information about a URL.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the URL.
url string Yes. The actual ad-

dress (for ex-
ample ”http://
www.slashdot.org”).

original url md5 string Yes. The MD5 sum of
the URL.

is valid string Yes. Either 1 (valid) or 0
(invalid). Reveals if
the URL is valid or
not.

last checked string Yes. A UNIX timestamp
revealing when the
URL was validated
by the system.

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the URL was cre-
ated.

modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the URL last modi-
fied.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.45 Objects / ezuser 965

5

5.5.45 ezuser

Summary

Contains information about a user.

Attributes

Attribute Type Static* Description
contentobject id string Yes. The ID number of

the object that rep-
resents the user.

login string Yes. The username of
the user.

email string Yes. The E-mail address
of the user (for ex-
ample
”marty@ez.no”).

password hash string Yes. The encrypted ver-
sion of the user’s
password.

password hash type string Yes. The type of encryp-
tion that
was used to obfus-
cate the user’s pass-
word.

contentobject object No. The actual object
(as ezcontentobject
(page 894)) that
represents the user.

groups array No. The object ID num-
bers of the user
groups that the user
is a member of.

has stored login boolean No. Returns TRUE if the
user has a non-
empty
username stored in
the database; oth-
erwise FALSE will
be returned.

original password string No. The password input
by the user from the
last page (from ”/
user/register” or
”/content/edit”). It
is only used for val-
idation of the pass-
word. It will be

5.5.45 Objects / ezuser 966

5

FALSE if empty in-
put was provided.

original password string No. The con-
confirm firmation password

for the ”original
password” attribute
(FALSE if empty).

roles array No. The roles (as ezrole
(page 959) objects)
that are assigned to
the user.

role id list array No. The ID numbers of
the roles that
are assigned to the
user.

limited assignment array No. Not documented
value list yet.
is logged in boolean No. Returns TRUE if the

user is logged in,
FALSE otherwise.

is enabled boolean No. Returns TRUE if
the user is enabled,
FALSE otherwise.

last visit string No. Not documented
yet.

has manage boolean No. Not documented
locations yet.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.46 Objects / ezvatrule 967

5

5.5.46 ezvatrule

Summary

Contains information about a VAT charging rule.

Attributes

Attribute Type Static* Description
id integer Yes. The ID number of

the VAT charging
rule.

country string Yes. The name of the
country.

vat type integer Yes. The ID number of
the VAT type.

product categories array No. The product cate-
gories affected by
this VAT rule as
an array of hashes
where each hash
consists of the fol-
lowing elements:
Attribute: id
Type: integer
Description: The
ID number of the
product category.

Attribute: name
Type: string
Description: The
name of the prod-
uct category.

product categories string No. The names of the
string product categories

affected by this VAT
rule (separated by
commas).

product categories array No. The ID numbers of
ids the product cate-

gories affected by
this VAT rule.

product categories array No. The names of the
names product categories

affected by this VAT
rule.

vat type object object No. The VAT type

5.5.46 Objects / ezvatrule 968

5

(as ezvattype (page
969) object).

vat type name string No. The name of the
VAT type.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.47 Objects / ezvattype 969

5

5.5.47 ezvattype

Summary

Contains information about a VAT.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the VAT type.
name string Yes. The name of the

VAT type (for exam-
ple ”Standard”).

percentage string Yes. The actual VAT per-
centage
value (without the
percent symbol).

is dynamic boolean No. Returns TRUE if the
VAT type is dy-
namic, FALSE oth-
erwise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.48 Objects / ezxhtmlxmloutput 970

5

5.5.48 ezxhtmlxmloutput

Summary

Contains information about XML data.

Attributes

Attribute Type Static* Description
output text string No. The resulting text

which is suitable
for the given out-
put format, for ex-
ample the rendered
XHTML text.

view template string No. The name of the
name template that will

be used when the
object attribute is
viewed. The de-
fault is ”ezxmltext”,
but can be over-
ridden for a han-
dler (for example
the Online Editor).

aliased type string Yes. Returns the name
of the original han-
dler. This will nor-
mally be FALSE (no
alias) - the Online
Editor takes control
of the XML field us-
ing an alias.

aliased handler string No. Returns the origi-
nal handler if the
”aliased type” at-
tribute is non-false.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.49 Objects / ezxmlinputhandler 971

5

5.5.49 ezxmlinputhandler

Summary

Contains information about XML data.

Attributes

Attribute Type Static* Description
input xml string Yes. The text that the

end-user has input
to the system.

edit template name string No. The name of
the template that is
used when the ob-
ject attribute is be-
ing edited. The de-
fault is ”ezxmltext”,
but can be overrid-
den for a custom
handler (for exam-
ple the Online Edi-
tor).

information string No. The name of the
template name template that will

be used when the
object attribute is
collecting informa-
tion. The default
is ”ezxmltext”, but
can be overridden
for a custom han-
dler (for example
the Online Editor).

aliased type string Yes. Returns the name
of the original han-
dler. This will nor-
mally be FALSE (no
alias) - the Online
Editor takes control
of the XML field us-
ing an alias.

alias handler string No. Returns the origi-
nal handler if the
”aliased type” at-
tribute is non-false.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.50 Objects / ezxmloutputhandler 972

5

5.5.50 ezxmloutputhandler

Summary

Contains information about XML data.

Attributes

Attribute Type Static* Description
output text string Yes. The resulting text

which is suitable
for the given out-
put format, for ex-
ample the rendered
XHTML text.

view template string No. The name of the
name template that will

be used when the
object attribute is
viewed. The de-
fault is ”ezxmltext”,
but can be over-
ridden for a han-
dler (for example
the Online Editor).

aliased type string Yes. Returns the name
of the original han-
dler. This will nor-
mally be FALSE (no
alias) - the Online
Editor takes control
of the XML field us-
ing an alias.

aliased handler string No. Returns the origi-
nal handler if the
”aliased type” at-
tribute is non-false.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.5.51 Objects / ezxmltext 973

5

5.5.51 ezxmltext

Summary

Contains information about an XML block.

Attributes

Attribute Type Static* Description
input object No. Returns the current

input
handler, which will
be an object of type
ezxmlinputhandler
(page 971), default
is ezsimplifiedxm-
linput (page 961).

output object No. Returns the current
out-
put handler, which
will be an object
of type ezxmlout-
puthandler (page
972), default is ezx-
htmlxmloutput
(page 970).

pdf output object No. Returns the PDF
output handler.

xml data string Yes. Returns the inter-
nal XML structure
as text.

is empty boolean No. Returns TRUE
if there is no XML
data, FALSE other-
wise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed
upon request.

5.6 Workflow events 974

5

5.6 Workflow events

Approve (page 975)
Makes it possible to have the contents of objects be approved by an editor.

Multiplexer (page 977)
Starts other workflows from within a workflow.

Payment gateway (page 978)
Generic solution for handling payment redirections.

Simple shipping (page 980)
Adds shipping costs to orders.

Wait until date (page 981)
Makes it possible to delay the publishing of objects.

5.6.1 Workflow events / Approve 975

5

5.6.1 Approve

Summary

Makes it possible to have the contents of objects be approved by an editor.

Description

This event makes it possible to have the contents of objects be approved by an editor before
they are actually published. A workflow using this event must be connected to the ”content/
publish/before” trigger. The following screenshot shows the edit interface for this event.

(see figure 5.70)

Figure 5.70: Edit interface for the ”Approve” event.

Affected sections

The ”Affected sections” menu shows the sections (page 142) that are available on the system.
It allows the administrator to filter objects that belong to specific sections. Only objects that
belong to the selected sections will be affected by the event.

User who approves content

The ”User who approves content” menu shows a list of the user accounts on the system. It
allows the administrator to select which user(s) that should function as editors and thus have
the power to approve or deny content.

Excluded users and groups

The ”Excluded users and groups” menu allows the administrator to select users and user
groups that should not be affected by the event. In other words, if one of the selected users
or a user who is a member of a selected group publishes an object that normally would be
affected by this event, it will not be affected.

This event makes use of the collaboration feature of eZ publish. A user’s pending items (items
waiting for approval) will be displayed under ”Pending items” within the ”My account” part
of the administration interface. The ”Collaboration” interface under ”My account” provides
the review/approve/reject interface for the editors.

5.6.1 Workflow events / Approve 976

5

Please note that the ”cronjobs/workflow.php” cronjob must be run periodically for this to
work.

5.6.2 Workflow events / Multiplexer 977

5

5.6.2 Multiplexer

Summary

Starts other workflows from within a workflow.

Description

This event makes it possible to spawn other workflows from within a workflow. It is compat-
ible with all of the predefined triggers. The following screenshot shows the edit interface of
this event.

(see figure 5.71)

Figure 5.71: Edit interface for the ”Multiplexer” event.

The ”Affected sections” menu makes it possible to isolate the workflow so that it only affects
content objects that belongs to the selected section(s). The ”Classes to run workflow” allows
a similar isolation on the class basis. In other words, only instances of the selected classes
will be affected. The ”Users without workflow IDs” makes it possible to select user groups
that should not be affected by the multiplexer. In other words, if the current user (who
initiated the workflow) is within one of the selected groups, the multiplexer event will simply
be skipped by the system. The ”Workflow to run” menu shows a list of the available workflows
and thus allows the selection of the workflow that should be spawned by this event.

5.6.3 Workflow events / Payment gateway 978

5

5.6.3 Payment gateway

Summary

Generic solution for handling payment redirections.

Description

This event is a general solution that is capable of handling different kinds of payment redirec-
tions. It allows several payment gateway mechanisms to be plugged into the system through
a workflow. The workflow must be assigned to the ”shop/checkout/before” trigger. The fol-
lowing screenshot shows the edit interface for this event.

(see figure 5.72)

Figure 5.72: Edit interface for the ”Payment gateway” event.

Type

The ”Type” menu shows the payment gateway solutions that are available (installed and
activated) as eZ publish extensions. It allows the administrator to select which payment
gateway(s) that should be used. If several gateways are selected, the system will allow the
customer to choose between the available gateways during the checkout process. The se-
lection interface is presented using ”/templates/workflow/selectgateway.tpl” located in the
current or one of the fallback designs.

Execution

The following list shows the flow of execution when a payment gateway is used through the
interface that this workflow event provides.

1. The customer initiates the checkout process.

2. The browser is redirected to the target payment server (PayPal, PayNet, etc.).

3. The customer attempts to pay for the products using the payment gateway.

4. The browser is sent back to eZ publish, the order will be either approved or rejected.

5.6.3 Workflow events / Payment gateway 979

5

Between steps 3 and 4, the selected payment server will notify eZ publish about the purchase.
The system will validate the authenticity (identity) of the message, and based on the reply it
will either approve or reject the order. In case of no reply, the validation process will time-out
and the customer will be asked to contact the shop owner.

This event provides a development framework which simplifies the implementation of pay-
ment solutions.

5.6.4 Workflow events / Simple shipping 980

5

5.6.4 Simple shipping

Summary

Adds shipping costs to orders.

Description

This event adds shipping costs to an order (the order that is being processed for the cur-
rent user). A workflow using this event must be assigned to the ”shop/confirmorder/before”
trigger. The following screenshot shows the edit interface for this event.

(see figure 5.73)

Figure 5.73: Edit interface for the ”Simple shipping” event.

The cost and the description can be set using the ”ShippingCost” and ”ShippingDescrip-
tion” directives within the ”[SimpleShippingWorkflow]” group of a configuration override
for ”workflow.ini”.

5.6.5 Workflow events / Wait until date 981

5

5.6.5 Wait until date

Summary

Makes it possible to delay the publishing of objects.

Description

This event makes it possible to delay the publishing of certain objects. It can be connected
to either the ”content/publish/before” trigger or the ”content/publish/after” trigger. The
following screenshot shows the edit interface for this event.

(see figure 5.74)

Figure 5.74: Edit interface for the ”Wait until date” event.

Parameters and usage

The ”Class” menu makes it possible to select a class that should be affected by the event. When
a class is selected, the ”Update attributes” button must be used to update the contents of the
”Attribute” menu. It will allow the selection of the attribute which is used to enter the date and
time when the object should be published. This attribute must be represented by the ”Date
and time” (page 443) datatype. Once the correct attribute it selected, the ”Select attribute”
button must be used to add it to the list below (labeled ”Class / attribute combinations”). All
objects that are instances of the classes added to this list will be affected by the event. The
objects will be published automatically (by the way of the cronjob script) when the given date
/ time is reached.

If the ”Modify the objects’ publishing dates” checkbox is checked, the system will update the
modification time of the objects when they are published by the system. If unchecked, the
date / time when the objects were published by the users will be used.

5.7 Template operators 982

5

5.7 Template operators

The template operators are documented in the following sections:

• Arrays (page 983)

• Data and information extraction (page 1005)

• Formatting and internationalization (page 1015)

• Images (page 1027)

• Logical operations (page 1037)

• Mathematics (page 1064)

• Miscellaneous (page 1091)

• Strings (page 1117)

• URLs (page 1160)

• Variable and type handling (page 1168)

5.7.1 Template operators / Arrays 983

5

5.7.1 Arrays

append (page 985)
Returns the input array with appended elements.

array (page 986)
Creates and returns a new array.

array sum (page 987)
Returns the sum of all elements in an array.

begins with (page 988)
Checks if an array starts with a specific element/sequence.

compare (page 989)
Compares the contents of two arrays.

contains (page 990)
Checks if an array contains a specific element.

ends with (page 991)
Checks if an array ends with a specific element or sequence.

explode (page 992)
Splits the input array and returns it as an array of sub-arrays.

extract (page 993)
Returns a portion of the input array.

extract left (page 994)
Returns a portion of the start of the input array.

extract right (page 995)
Returns a portion of the end of the input array.

hash (page 996)
Creates and returns a new associative array (a hash).

implode (page 997)
Joins array elements with strings.

insert (page 998)
Inserts an element/sequence at specified position in an array.

merge (page 999)
Merges input and passed arrays into one array.

prepend (page 1000)
Returns the input array prepended with specified elements.

remove (page 1001)
Returns the input array without some of the original elements.

repeat (page 1002)
Returns a repeated version of the input array.

5.7.1 Template operators / Arrays 984

5

reverse (page 1003)
Returns a reversed version of the input array.

unique (page 1004)
Returns the input array without duplicate elements.

5.7.1 Template operators / Arrays 985

5

append

Summary

Returns the input array with appended elements.

Usage

input|append(element1 [, element2 [, ...]])

Parameters

Name Type Description Required
element1 any Element to be appended to the input array. Yes.
element2 any Another element to be appended to the input

array.
No.

Returns

An array consisting of the input array and the parameters.

Description

This operator appends the parameter value(s) at the end of the input array and returns the
resulting array.

Examples

Example 1

{array(1, 2, 3)|append(4, 5, 6)}

The following array will be returned: (1, 2, 3, 4, 5, 6).

Example 2

{array(1, 2, 3)|append(array(4, 5, 6)}

The following array will be returned: (1, 2, 3, (4, 5, 6)).

5.7.1 Template operators / Arrays 986

5

array

Summary

Creates and returns a new array.

Usage

array(element1 [, element2 [, ...]])

Parameters

Name Type Description Required
element1 any Element / value of any kind. Yes.
element2 any Another element / value of any kind. No.

Returns

An array containing the specified elements.

Description

This operator builds an array using the specified elements. The elements must be passed as
parameters. The operator returns the resulting array.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)}

The following array will be returned: (1, 2, 3, 4, 5, 6, 7).

Example 2

{array(1, 2, 3, array(4, 5, 6))}

The following array will be returned: (1, 2, 3, (4, 5, 6)).

5.7.1 Template operators / Arrays 987

5

array sum

Summary

Returns the sum of all elements in an array.

Usage

input|array_sum()

Returns

An integer representing the sum of the elements.

Description

This operator attempts to calculate and return the sum of the input array’s elements.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|array_sum}

The following output will be produced: ”28” - which is the sum of 1, 2, 3, 4, 5, 6, 7.

5.7.1 Template operators / Arrays 988

5

begins with

Summary

Checks if an array starts with a specific element/sequence.

Usage

input|begins_with(element1 [, element2 [, ...]])

Parameters

Name Type Description Required
element1 any An element that should be matched. Yes.
element2 any Another element that should be matched. No.

Returns

TRUE or FALSE.

Description

This operator checks if the input array starts with a specified sequence of elements. If yes, the
operator returns TRUE, otherwise FALSE will be returned.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|begins_with(1, 2, 3)}

Returns TRUE.

Example 2

{array(1, 2, 3, 4, 5, 6, 7)|begins_with(2, 3, 4)}

Returns FALSE.

5.7.1 Template operators / Arrays 989

5

compare

Summary

Compares the contents of two arrays.

Usage

input|compare(array)

Parameters

Name Type Description Required
array array The array that should be compared with the

input array.
Yes.

Returns

TRUE if arrays are equal, FALSE if not.

Description

This operator compares the contents of two arrays, the input array and an array that is pro-
vided as the first (and only) parameter. If the arrays are equal, the operator returns TRUE,
otherwise FALSE will be returned.

Examples

Example 1

{array(1, 2, 3, 4, 5)|compare(arrray(1, 2, 3, 4, 5))}

Returns TRUE.

Example 2

{array(1, 2, 3, 4, 5)|compare(arrray(5, 4, 3, 2, 1))}

Returns TRUE.

Example 3

{array(1, 2, 3, 4, 5)|compare(arrray(1, 2, 4, 3, 3))}

Returns FALSE.

5.7.1 Template operators / Arrays 990

5

contains

Summary

Checks if an array contains a specific element.

Usage

input|contains(element)

Parameters

Name Type Description Required
element any The element that should be matched. Yes.

Returns

TRUE if the element is found, FALSE if not.

Description

This operator checks if the input array contains a specific element (specified using the first
parameter). If it does, the operator will return TRUE, otherwise FALSE will be returned.

Examples

Example 1

{array(1, 2, 3, 4, 5)|contains(3)}

Returns TRUE.

Example 2

{array(1, array(3, 4), 5)|contains(array(3, 4))}

Returns TRUE.

Example 3

{array(1, array(3, 4), 5)|contains(3)}

Returns FALSE.

5.7.1 Template operators / Arrays 991

5

ends with

Summary

Checks if an array ends with a specific element or sequence.

Usage

input|ends_with(element1 [, element2 [, ...]])

Parameters

Name Type Description Required
element1 any An element that should be matched. Yes.
element2 any Another element that should be matched. No.

Returns

TRUE or FALSE.

Description

This operator checks if the input array ends with a specified sequence of elements. If yes, the
operator returns TRUE, otherwise FALSE will be returned.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|ends_with(5, 6, 7)}

Returns TRUE.

Example 2

{array(1, 2, 3, 4, 5, 6, 7)|ends_with(4, 5, 6)}

Returns FALSE.

5.7.1 Template operators / Arrays 992

5

explode

Summary

Splits the input array and returns it as an array of sub-arrays.

Usage

input|explode(offset)

Parameters

Name Type Description Required
offset integer The offset where the array should be split. Yes.

Returns

An array containing the original array as two arrays.

Description

This operator splits the input array at an offset specified by the ”offset” parameter. The
operator will return an array containing the two arrays.

Examples

Example 1

{array(1, 2, 3, 4, 5)|explode(3)}

The following array will be returned: ((1, 2, 3), (4, 5)).

5.7.1 Template operators / Arrays 993

5

extract

Summary

Returns a portion of the input array.

Usage

input|extract(offset [, length])

Parameters

Name Type Description Required
offset integer The offset to start at. Yes.
length integer The number of elements that should be ex-

tracted.
No.

Returns

An array containing the extracted elements.

Description

This operator will return a portion of the input array. The desired portion must be defined
by the ”offset” and ”length” parameters. If the ”length” parameter is omitted, the rest of the
array (from offset) will be returned.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|extract(2)}

The following array will be returned: (3, 4, 5, 6, 7).

Example 2

{array(1, 2, 3, 4, 5, 6, 7)|extract(3, 3)}

The following array will be returned: (4, 5, 6).

5.7.1 Template operators / Arrays 994

5

extract left

Summary

Returns a portion of the start of the input array.

Usage

input|extract_left(length)

Parameters

Name Type Description Required
length integer The number of elements that should be ex-

tracted.
Yes.

Returns

An array containig the extracted elements.

Description

This operator extracts a portion from the start of the input array. The ”length” parameter
must be used to specify the number of elements that should be extracted.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|extract_left(3)}

The following array will be returned: (1, 2, 3).

5.7.1 Template operators / Arrays 995

5

extract right

Summary

Returns a portion of the end of the input array.

Usage

input|extract_right(length)

Parameters

Name Type Description Required
length integer The number of elements that should be ex-

tracted.
Yes.

Returns

An array containing the extracted elements.

Description

This operator extracts a portion from the end of the input array. The ”length” parameter must
be used to specify the number of elements that should be extracted.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|extract_right(3)}

The following array will be returned: (5, 6, 7).

5.7.1 Template operators / Arrays 996

5

hash

Summary

Creates and returns a new associative array (a hash).

Usage

hash(key1, value1 [, key2, value2 [, ...]])

Parameters

Name Type Description Required
key1 string The key of value1. Yes.
value1 any The value associated with key1. Yes.
key2 string The key of value2. No.
value2 any The value associated with key2. No.

Returns

An associative array (a hash).

Description

This operator builds an associative array using the specified key/value pairs. Odd parameters
are considered to be keys, even parameters will be values. The operator returns the generated
hash.

Examples

Example 1

{hash(1, ’Red Eyes’, 2, ’Green Gremlins’, 3, ’Blue Thunder’)}

The following hash will be returned:

Key Value
1 Red Eyes
2 Green Gremlins
3 Blue Thunder

5.7.1 Template operators / Arrays 997

5

implode

Summary

Joins array elements with strings.

Usage

input|implode(separator)

Parameters

Name Type Description Required
separator string The string that should be inserted between

the elements.
Yes.

Returns

String containing array elements separated a string.

Description

This operator returns a string representation of the elements of the input array. Each element
will be separated by the string specified using the ”separator” parameter.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|implode(’, ’)}

The following string will be returned: ”1, 2, 3, 4, 5, 6, 7”.

Example 2

{array(1, 2, 3, 4, 5, 6, 7)|implode(’_-_’)}

The following string will be returned: ”1 - 2 - 3 - 4 - 5 - 6 - 7”.

5.7.1 Template operators / Arrays 998

5

insert

Summary

Inserts an element/sequence at specified position in an array.

Usage

input|insert(offset, element1 [, element2 [, ...]])

Parameters

Name Type Description Required
offset integer The offset where the element(s) should be

inserted at.
Yes.

element1 any An element that should be inserted into the
existing array.

Yes.

element2 any Another element that should be inserted into
the existing array.

No.

Returns

An array containing a combination of the original array and the inserted elements.

Description

This operator inserts an element or a sequence of elements at a specified position within the
input. The resulting array will be returned (original array with the inserted values).

Examples

Example 1

{array(1, 2, 5)|insert(2, 3, 4)}

The following array will be returned: (1, 2, 3, 4, 5).

5.7.1 Template operators / Arrays 999

5

merge

Summary

Merges input and passed arrays into one array.

Usage

input|merge(array1 [, array2 [, ...]])

Parameters

Name Type Description Required
array1 array Array to be merged with the input array. Yes.
array2 array Another array to be merge with the input ar-

ray.
No.

Returns

New array containing all arrays merged.

Description

This operator will merge the input array with all arrays passed as parameters. The resulting
array will be returned.

Examples

Example 1

{array(1, 2)|merge(array(3, 4), array(5, 6, 7))}

The following array will be returned: (1, 2, 3, 4, 5, 6, 7).

5.7.1 Template operators / Arrays 1000

5

prepend

Summary

Returns the input array prepended with specified elements.

Usage

input|prepend(element1 [, element2 [, ...]])

Parameters

Name Type Description Required
element1 any Element to be prepended to the input array. Yes.
element2 any Another element to be prepended to the in-

put array.
No.

Returns

An array consisting of the parameters and the input array.

Description

This operator adds the parameter value(s) to the start of the input array and returns the
resulting array.

Examples

Example 1

{array(4, 5)|prepend(1, 2, 3)}

The following array will be returned: (1, 2, 3, 4, 5).

5.7.1 Template operators / Arrays 1001

5

remove

Summary

Returns the input array without some of the original elements.

Usage

input|remove(offset [, length])

Parameters

Name Type Description Required
offset integer The offset to start removing elements. Yes.
length integer The number of elements that should be re-

moved.
No.

Returns

A cut-down version of the input array.

Description

This operator removes element(s) from the input array and thus a chopped/cut-down version
of the input array will be returned. The ”offset” parameter must be used to define the start
of the portion that should be removed. The ”length” parameter can be used to define the
number of elements that should be removed. If the ”length” parameter is omitted, only one
elemen (specified by offset will be removed).

Examples

Example 1

{array(1, 2, 3, 4, 5)|remove(2, 2)}

The following array will be returned: (1, 2, 5).

Example 2

{array(1, 2, 3, 4, 5)|remove(2)}

The following array will be returned: (1, 2, 4, 5).

5.7.1 Template operators / Arrays 1002

5

repeat

Summary

Returns a repeated version of the input array.

Usage

input|repeat(times)

Parameters

Name Type Description Required
times integer The number of times the array should be re-

peated.
Yes.

Returns

An array containing the elements of the input array repeated n times.

Description

This operator returns a repeated version of the input array. The ”times” parameter must be
used to define the number of times the array should be repeated.

Examples

Example 1

{array(1, 2, 3, 4)|repeat(3)}

The following array will be returned: (1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4).

5.7.1 Template operators / Arrays 1003

5

reverse

Summary

Returns a reversed version of the input array.

Usage

input|reverse()

Returns

A reversed version of the input array.

Description

This operator returns a reversed version (elements in reverse order) of the input array.

Examples

Example 1

{array(1, 2, 3, 4)|reverse}

The following array will be returned: (4, 3, 2, 1).

5.7.1 Template operators / Arrays 1004

5

unique

Summary

Returns the input array without duplicate elements.

Usage

input|unique()

Returns

The input array containing only one occurance of every element.

Description

This operator removes duplicate elements from the input array.

Examples

Example 1

{array(1, 2, 2, 3, 4, 4, 5)|unique}

The following array will be returned: (1, 2, 3, 4, 5).

5.7.2 Template operators / Data and information extraction 1005

5

5.7.2 Data and information extraction

currentdate (page 1006)
Returns the timestamp of the current date/time.

ezhttp (page 1007)
Returns GET, POST and session variables.

ezini (page 1009)
Provides read access to settings in the configuration files.

ezpreference (page 1010)
Provides access to a user’s preference values.

ezsys (page 1011)
Returns misc values such as wwwdir, sitedir, etc.

fetch (page 1013)
Provides access to the fetch functions of a module.

module params (page 1014)
Extracts parameters from the module that was run.

5.7.2 Template operators / Data and information extraction 1006

5

currentdate

Summary

Returns the timestamp of the current date/time.

Usage

currentdate()

Returns

The current date/time as a UNIX timestamp.

Description

This operator returns the UNIX timestamp for the current date/time.

Examples

Example 1

{def $timestamp=currentdate()}

Current timestamp: {$timestamp}

Outputs the current timestamp.

Example 2

{def $timestamp=currentdate()}

Current date/time: {$timestamp|l10n(’shortdatetime’)}

Outputs the current date/time in a user friendly format.

5.7.2 Template operators / Data and information extraction 1007

5

ezhttp

Summary

Returns GET, POST and session variables.

Usage

ezhttp(name [, type])

Parameters

Name Type Description Required
name string The HTTP variable that should be fetched. Yes.
type string Source of variable. Default is is HTTP POST. No.

Returns

Variable value

Description

This operator makes it possible to inspect the contents of HTTP variables (POST, GET or
session variables). The ”type” parameter can be used to specify which type of variable that
should be extracted. The following options are available:

• post (POST variable)

• get (GET variable)

• session (session variable)

Examples

Example 1

{ezhttp(’search’)}

Returns the ”search” POST variable.

Example 2

{ezhttp(’image’, ’get’)}

Returns the ”image” GET variable.

5.7.2 Template operators / Data and information extraction 1008

5

Example 3

{ezhttp(’user_id’, ’session’)}

Returns the ”user id” session variable.

5.7.2 Template operators / Data and information extraction 1009

5

ezini

Summary

Provides read access to settings in the configuration files.

Usage

ezini(section, variable [, ini file])

Parameters

Name Type Description Required
section string Section to read value from. Yes.
variable string The name of the directive that should be ac-

cessed.
Yes.

ini file string The target configuration file (default is
”site.ini”).

No.

Returns

A string containing the value of a configuration setting.

Description

This operator makes it possible to access the settings in the configuration (”*.ini”) files.

Examples

Example 1

{if eq(ezini(’SomeSettings’, ’Test’, ’example.ini’), ’hello’)}

[...display something...]

{else}

[...display something else...]

{/if}

Conditional branching based on an configuration setting.

5.7.2 Template operators / Data and information extraction 1010

5

ezpreference

Summary

Provides access to a user’s preference values.

Usage

ezpreference(preference)

Parameters

Name Type Description Required
preference string The name of the preference that should be

extracted.
Yes.

Returns

A string containing the contents/value of the specified preference.

Description

This operator makes it possible to extract the preference values of the current user. The name
of the desired preference must be provided as a parameter. The function returns the value/
contents of the specified preference. The current user can set a preference by requesting a
URL of the following type:

/user/preferences/set/[name_of_preference]/[value]

Examples

Example 1

{ezpreference(’bookmark_menu’)}

Returns the value/contents of the ”bookmark menu” preference for the current user.

5.7.2 Template operators / Data and information extraction 1011

5

ezsys

Summary

Returns misc values such as wwwdir, sitedir, etc.

Usage

ezsys(system_variable)

Parameters

Name Type Description Required
system variable string The name of the desired variable. Yes.

Returns

A string containing the requested variable.

Description

This operator gives read access to certain eZ Publish system variables. The ”system variable”
parameter must be used to specify the name of the variable that should be returned. The
following names can be used:

• indexfile - name of index file

• indexdir - relative path and index file

• sitedir - local path of eZ Publish installation

• wwwdir - relative directory path of eZ Publish installation

• hostname - hostname of eZ Publish server

Examples

Example 1

Example: news theme installed on server ”ez.no”, by user ”tom” in ”/home/tom/public html/
local/ez publish”

wwwdir - {ezsys(’wwwdir’)}

sitedir - {ezsys(’sitedir’)}

indexfile - {ezsys(’indexfile’)}

indexdir - {ezsys(’indexdir’)}

magicQuotes - {ezsys(’magicQuotes’)}

hostname - {ezsys(’hostname’)}

5.7.2 Template operators / Data and information extraction 1012

5

The following output will be produced:

wwwdir - /˜tom/local/ez publish
sitedir - /home/tom/public html/local/ez publish/
indexfile - /index.php/news
indexdir - /˜tom/local/ez publish/index.php/news
magicQuotes -
hostname - ez.no

5.7.2 Template operators / Data and information extraction 1013

5

fetch

Summary

Provides access to the fetch functions of a module.

Usage

fetch(...)

Parameters

Name Type Description Required
any any Please refer to the links below. Yes.

Returns

The returned result depends on the actual fetch operation.

Description

The fetch operator provides access to the fetch functions of an eZ Publish module. Please
refer to the ”Information extraction” (page 224) section of the ”Templates” chapter for more
information about the operator itself. The actual fetch functions are documented under the
”Template fetch functions” (page 1289) section of the ”Reference” chapter.

5.7.2 Template operators / Data and information extraction 1014

5

module params

Summary

Extracts parameters from the module that was run.

Usage

module_params()

Returns

An array containing module information.

Description

This operator extracts some generic information from the module that was run. It seems that
it can only be called inside ”pagelayout.tpl”. Please refer to the example below. The operator
does not take any parameters.

Examples

Example 1

{module_params()|attribute(show)}

If the requested URL is ”/content/view/full/65” (or using URL alias that points to ”/content/
view/full/65”), the following output will be produced:

Attribute Type Value
module name string ’content’
function name string ’view’
parameters array Array(2)
-ViewMode string ’full’
-NodeID string 65

Please note that this operator can only be called in ”pagelayout.tpl”.

5.7.3 Template operators / Formatting and internationalization 1015

5

5.7.3 Formatting and internationalization

datetime (page 1016)
Formats dates/times according to settings in ”datetime.ini”.

i18n (page 1019)
Marks a string for translation.

l10n (page 1021)
Formats misc. numbers (times, dates, currencies, numbers, etc.).

si (page 1023)
Handles unit display of values (output formatting).

5.7.3 Template operators / Formatting and internationalization 1016

5

datetime

Summary

Formats dates/times according to settings in ”datetime.ini”.

Usage

{input|datetime(preset_format [, format])}

Parameters

Name Type Description Required
preset format string Preset datetime format set in ”datetime.ini”. Yes.
format string Custom format (when preset format is set to

”custom”).
No.

Returns

A string representation of the input parameter.

Description

This operator takes care of formatting dates and times according to the setting defined in
”datetime.ini” (or a configuration override). In addition, the operator also allows custom
formats when the ”preset format” parameter is set to ”custom”. A custom format must be
specified using the ”format” parameter. The following table reveals the different elements
that can be used in a custom format.

Element Output Description
%a am Lowercase Ante meridiem

and Post meridiem.
%A AM Uppercase Ante meridiem

and Post meridiem.
%d 08 Day of the month, 2 digits

with leading zeros.
%D Wed A short textual represen-

tation of a day, in accor-
dance with the ”[ShortDay-
Names]” section of the lan-
guage .INI file located in the
”share/locale” directory.

%F October A full textual representation
of a month, such as January
or March.

%g 12 12-hour format of an hour
without leading zeros.

%G 0 24-hour format of an hour

5.7.3 Template operators / Formatting and internationalization 1017

5

without leading zeros.
%h 12 12-hour format of an hour

with leading zeros.
%H 00 24-hour format of an hour

with leading zeros.
%i 00 Minutes with leading zeros
%j 8 Day of the month without

leading zeros
%l Wednesday A full textual representation

of the day of the week.
%m 10 Numeric representation of a

month, with leading zeros.
%M Oct A short textual representa-

tion of a month, in accor-
dance with the ”[ShortMon-
thNames]” section of the
language .INI file located in
the ”share/locale” directory.

%n 10 Numeric representation of a
month, without leading ze-
ros.

%O -0500 Difference to Greenwich
time (GMT) in hours.

%s 00 Seconds, with leading ze-
ros.

%T CDT Timezone setting of this ma-
chine.

%U 1065589200 Seconds since the Unix
Epoch (January 1 1970
00:00:00 GMT).

%w 3 Numeric representation of
the day of the week.

%W 41 ISO-8601 week number of
year, weeks starting on
Monday.

%Y 2003 A full numeric representa-
tion of a year, 4 digits.

%y 03 A two digit representation
of a year.

%z 280 The day of the year.
%Z -18000 Timezone offset in seconds.

The offset for timezones
west of UTC is always neg-
ative, and for those east of
UTC is always positive.

The date used to generate the contents of this table was ”12:00 AM (Midnight) CDT on
October 8, 2003”.

5.7.3 Template operators / Formatting and internationalization 1018

5

Examples

Example 1

{currentdate()|datetime(’mydate’)}

The following output will be produced: ”13:15 6 Feb 2004” (according to the configuration
settings).

Example 2

{currentdate()|datetime(’custom’, ’%h:%i %a %d %F %Y’)}

The following output will be produced: ”01:15 pm 06 February 2004” (custom format).

5.7.3 Template operators / Formatting and internationalization 1019

5

i18n

Summary

Marks a string for translation.

Usage

input|i18n([context [, comment [, arguments]]])

Parameters

Name Type Description Required
context string The context to which the string belongs. No.
comment string A comment describing the text. No.
arguments hash An associative array of arguments in the in-

put parameter.
No.

Returns

A string containing a translated version of the input parameter.

Description

This operator makes it possible to translate static strings that are defined in various templates.
It is typically useful to ensure that the HTML interface is available in several languages in a
multilanguage scenario.

The operator takes three optional parameters: ”context”, ”comment” and ”arguments”. The
”context” parameter can be used to specify a group to which the input parameter should be
related. This is typically useful when there are a lot of strings that need to be structured/
grouped. The ”comment” parameter makes it possible to add additional comment which can
help the person responsible for doing the actual translation. A comment could for example be
”Button label” - revealing what that mysterious string actually is. The ”arguments” parameter
makes it possible to mix dynamic text into the translations. Please refer to ”Example 2” for a
demonstration of this feature.

Examples

Example 1

{"This is a test"|i18n}

Outputs ”This is a test” translated to the current language.

5.7.3 Template operators / Formatting and internationalization 1020

5

Example 2

{def $number=5}

{"Please enter %number characters."|i18n(’’, ’’, hash(’%number’, $number)

)}

Outputs ”Please enter 5 characters.”, the %number will be dynamically replaced by the vari-
able.

Example 3

{"Are you sure you want to remove these items?"|i18n(’design/standard/node’)}

Outputs ”Are you sure you want to remove these items?” translated to the current language.
The translation is taken from the context block named ”design/standard/node” located in the
appropriate translation file.

For example, let’s say that the ”translation.ts” file located in the ”share/translations/ita-IT/”
directory of your eZ Publish installation contains the following lines:

<context>

<name>design/standard/node</name>

...

<message>

<source>Are you sure you want to remove these items?</source>

<translation>Sei sicuro di voler rimuovere questi elementi?</translation>

</message>

...

</context>

If your current system locale is ”ita-IT” (as specified in the ” Locale (page 1511)” setting
located in the ”[RegionalSettings]” section of the ”settings/site.ini” configuration file or its
override) then the following output is produced: ”Sei sicuro di voler rimuovere questi ele-
menti?”

5.7.3 Template operators / Formatting and internationalization 1021

5

l10n

Summary

Formats misc. numbers (times, dates, currencies, numbers, etc.).

Usage

input|l10n(type [, locale [, symbol]])

Parameters

Name Type Description Required
type string The format that should be used. Yes.
locale string The locale that should be used (when type is

set to ”currency”).
No.

symbol string The currency symbol that should be used
(when type is set to ”currency”).

No.

Returns

A string containing a formatted version of the input parameter.

Description

This operator formats/localizes miscellaneous numeric values according to the current locale
settings. The value that should be formatted must be input using the input parameter. The
”type” parameter must be used to select the desired format. The following list reveals the
available formats/types.

• time

• shorttime

• date

• shortdate

• datetime

• shortdatetime

• currency

• clean currency

• number

In addition, the operator also formats numeric values according to the specified ”locale” and
”symbol” parameters when the ”type” parameter is set to ”currency”.

5.7.3 Template operators / Formatting and internationalization 1022

5

Examples

Example 1

{def $number=1234.567

$timestamp=currentdate()}

time: {$timestamp|l10n(’time’)}

shorttime: {$timestamp|l10n(’shorttime’)}

date: {$timestamp|l10n(’date’)}

shortdate: {$timestamp|l10n(’shortdate’)}

datetime: {$timestamp|l10n(’datetime’)}

shortdatetime: {$timestamp|l10n(’shortdatetime’)}

currency: {$number|l10n(’currency’)}

clean_currency: {$number|l10n(’clean_currency’)}

number: {$number|l10n(’number’)}

If the current locale is ”eng-GB”, the following output will be produced:

time : 1:46:05 pm
shorttime : 1:46 pm
date : Friday 06 February 2004
shortdate : 06/02/2004
datetime : Friday 06 February 2004 1:46:05 pm
shortdatetime : 06/02/2004 1:46 pm
currency : £ 1,234.57
clean currency : 1,234.57
number : 1,234.57

Example 2

{def $price=1234.57}

The price in local currency : {$price|l10n(’currency’)}

The price in Norwegian Krone : {$price|l10n(’currency’, ’nor-NO’)}

The price in Norwegian Krone with specified symbol : {$price|l10n(

’currency’, ’nor-NO’, ’nok’)}

If the current locale is ”eng-GB”, the following output will be produced:

The price in local currency : £ 1,234.57
The price in Norwegian Krone : kr 1.234,57
The price in Norwegian Krone with specified symbol : nok 1.234,57

5.7.3 Template operators / Formatting and internationalization 1023

5

si

Summary

Handles unit display of values (output formatting).

Usage

input|si(unit [, prefix] [, decimals] [, symbol] [, separator])

Parameters

Name Type Description Required
unit string The unit that the input value should be con-

verted to.
Yes.

prefix string The prefix used to represent the input value. No.
decimals integer The number of decimal digits that should be

shown.
No.

symbol string The symbol that should be used as the deci-
mal separator.

No.

separator string The symbol that should be used as the thou-
sand separator.

No.

Returns

The input value formatted according to the given parameters.

Description

This operator handles formatting of different kind of values (file sizes, lengths, weights, etc.).
The value that should be formatted must be provided as the input parameter. The first pa-
rameter must reveal the type of the input value. The following list shows the types that can
be used.

• meter

• gram

• second

• ampere

• kelvin

• mole

• candela

• byte

5.7.3 Template operators / Formatting and internationalization 1024

5

• bit

The second parameter is optional and can be used to specify a desired prefix. The rest of
the parameters determine how the value should be formatted when it comes to decimals,
separators, etc. If these parameters are omitted, the operator will use the settings of the
current locale.

Custom units

Custom units can be configured by extending the entries of the ”Base” group in a configuration
override for ”units.ini”.

Prefix tables

The prefix is either the name of the size like kilo or one of these

Prefix Description
binary Calculate using 2 as base, e.g. 2ˆ8
decimal Calculate using 10 as base, e.g. 10ˆ6
none Show value as it is with just the unit ap-

pended
auto Determine base from the type of unit (con-

trolled by the ”BinaryUnits” setting, default
is ”bit” and ”byte”).

The following table shows the proper binary prefixes.

Prefix Power of 2 Symbol
kibi 2ˆ10 Ki
mebi 2ˆ20 Mi
gibi 2ˆ30 Gi
tebi 2ˆ40 Ti
pebi 2ˆ50 Pi
exbi 2ˆ60 Ei

The following table shows the commonly used binary prefixes (please note that they may be
inaccurate).

Prefix Power of 2 Symbol
kilo 2ˆ10 k
mega 2ˆ20 M
giga 2ˆ30 G
tera 2ˆ40 T
peta 2ˆ50 P
exa 2ˆ60 E

The following table shows the decimal prefixes.

5.7.3 Template operators / Formatting and internationalization 1025

5

Prefix Power of 10 Symbol
yotta 10ˆ24 Y
zetta 10ˆ21 Z
exa 10ˆ18 E
peta 10ˆ15 P
tera 10ˆ12 T
giga 10ˆ9 G
mega 10ˆ6 M
kilo 10ˆ3 k
hecto 10ˆ2 h
deca 10ˆ1 da
deci 10ˆ-1 d
centi 10ˆ-2 c
milli 10ˆ-3 m
micro 10ˆ-6
nano 10ˆ-9 n
pico 10ˆ-12 p
femto 10ˆ-15 f
atto 10ˆ-18 a
zepto 10ˆ-21 z
yocto 10ˆ-24 y

All of these values are defined in the ”units.ini” configuration file.

Examples

Example 1

{1025|si(byte)}

{1025|si(byte, binary)}

{1025|si(byte, decimal)}

{1025|si(byte, none)}

{1025|si(byte, auto)}

{1025|si(byte, kibi)}

{1025|si(byte, kilo)}

If the ”UseSIUnits” directive in a configuration override for ”site.ini” is set to ”false” (the
default value), the following output will be produced:

1.00 kB
1.00 kB
1.02 kB
1025 B
1.00 kB
1.00 KiB
1.02 kB

5.7.3 Template operators / Formatting and internationalization 1026

5

If the ”UseSIUnits” directive in a configuration override for ”site.ini” is set to ”true”, the fol-
lowing output will be produced:

1.00 KiB
1.00 KiB
1.02 kB
1025 B
1.00 KiB
1.00 KiB
1.02 kB

5.7.4 Template operators / Images 1027

5

5.7.4 Images

image (page 1028)
Creates and returns an image object.

imagefile (page 1031)
Loads an image from a file.

texttoimage (page 1032)
Renders a string as an image using a truetype font.

5.7.4 Template operators / Images 1028

5

image

Summary

Creates and returns an image object.

Usage

image(value [,...])

Parameters

Name Type Description Required
value mixed Please refer to the description below. Yes.

Returns

An ezimage object.

Description

This operator makes it possible to merge/flatten several images into one image. It returns the
final image as an ”ezimage” (page 926) object. Please note that this operator only works if
”ImageGD” is installed and enabled. It takes several parameters where each parameter can
be a different type. The following types can be used:

• String

• Image layer (an ”ezimagelayer” (page 925) object).

• Array

String

If a parameter is a string, the contents of the string will be used as the alternative image text
for the image object that is returned by the operator.

Image layer

If a parameter is an image layer (an ”ezimagelayer” (page 925) object), it will be merged with
the other layers and thus become a part of the final result. An image layer may be generated
by making use of the ”imagefile” (page 1031) or the ”texttoimage” (page 1032) operator.

5.7.4 Template operators / Images 1029

5

Array

If a parameter is an array, the operator will assume that the first element (element number
zero) is an image layer and that the second element is an associative array containing param-
eters that the system will use when the image layer is processed. The following table shows
the parameters that can be used.

Name / key Description
transparency The image transparency as float value rang-

ing from 0.0 (0% transparency) to 1.0
(100% transparency).

halign Horizontal alignment as a string: ”left”,
”right or ”center”.

valign Vertical alignment as a string: ”top”, ”bot-
tom” or ”center”.

x Absolute horizontal placement as an inte-
ger (works with ”left” and ”right” horizontal
alignment.)

y Absolute vertical placement as an integer
(works with ”top” and ”bottom” vertical
alignment.)

xrel Relative horizontal placement as a float
value ranging from 0.0 to 1.0 (works with
”left” and ”right” horizontal alignment.)

xrel Relative vertical placement as a float value
ranging from 0.0 to 1.0 (works with ”top”
and ”bottom” vertical alignment.)

Please note that the ”x” and ”xrel” parameters can not be used at the same time. The same
goes for the ”y” and the ”yrel” parameters. When ”right” or ”bottom” alignment is used,
the coordinate system will shift to accommodate the alignment. This is useful for doing
alignment and placement since the placement is relative to the current coordinate system.
Right alignment will start the axis at the right (0) and go on to the left (width). Bottom
alignment will start the axis at the bottom (0) and go on to the top (height).

Template

If the operator is called directly, eZ Publish will display the resulting image using the ”layer/
imageobject.tpl” template located in the ”templates” directory of the current design or one
of the fallback designs. It is possible to override this template using the template override
system (page 229).

Examples

Example 1

{image(imagefile(’design/example/images/test1.png’),

imagefile(’design/example/images/test2.png’),

’My alternative image text...’)}

5.7.4 Template operators / Images 1030

5

The ”imagefile” (page 1031) operator loads the images from the filesystem and returns them
as ”ezimagelayer” (page 925) objects. The ”image” operator takes care of merging the images
(layers) together into one single image. When the ”image” operator is used directly (as in the
example above), eZ Publish will insert the ”imageobject.tpl” template (or an override) which
in turn takes care of displaying the image. The last parameter is a string, which will be used
as the alternative image text for the final image.

Example 2

{image("It’s A Kind Of Magic"|texttoimage(’arial’))}

This example will render the string ”It’s A Kind Of Magic” using a truetype font specified
within the ”arial” style. The image layer produced by the ”texttoimage” operator is wrapped
inside an image object and displayed using the ”imageobject.tpl” template (or an override).

Example 3

{image("It’s A Kind Of Magic",

imagefile(’design/example/images/test1.png’),

array("It’s A Kind Of Magic"|texttoimage(’smartie’),

hash(’transparency’, 0.64,

’halign’, ’right’,

’valign’, ’top’)))}

This example will generate an image with 64% transparent text using the ”smartie” style. The
text will be aligned to the upper right corner of the ”example1.png” image. The alternative
image text will be ”It’s A Kind Of Magic” - which is the same as the merged in transparent
text.

5.7.4 Template operators / Images 1031

5

imagefile

Summary

Loads an image from a file.

Usage

imagefile(filename)

Parameters

Name Type Description Required
filename string The image file that should be loaded. Yes.

Returns

An ezimagelayer object.

Description

This operator loads an image from the filesystem and returns it as an ”ezimagelayer” (page
925) object. The location and the name of the file must be specified in the same way as it
is shown in the example below (the whole path must be specified without a starting slash).
Please note that this operator will only work if ”ImageGD” is installed and enabled.

If this operator is called directly, eZ Publish will display the specified image using the ”im-
age.tpl” template located in the ”templates/image/” directory of the current design or one
of the fallback designs. It is possible to override this template using the template override
system (page 229). An image layer can be provided as a parameter to the ”image” (page
1028) operator.

Examples

Example 1

{imagefile(’design/example/images/test.png’)}

This will load ”test.png” from the specified directory and display it using the image layer
template.

5.7.4 Template operators / Images 1032

5

texttoimage

Summary

Renders a string as an image using a truetype font.

Usage

input|texttoimage(style)

Parameters

Name Type Description Required
style string The name of the style that should be used. Yes.

Returns

Image layer.

Description

This operator creates an image that contains the input text rendered using a truetype font.
The style parameter must be used to specify the desired style. If the style parameter is omit-
ted, the default style will be used. The operator returns an ”ezimagelayer” (page 925) object
which can be used as a parameter to the ”image” (page 1028) operator. If this operator is
called directly, eZ Publish will display the specified image using the ”layer/image.tpl” tem-
plate located in the ”templates” directory of the current design or one of the fallback designs.
It is possible to override this template using the template override system (page 229). Please
note that this operator will only work if ”ImageGD” is installed and enabled.

An eZ Publish distribution comes with a small collection of truetype fonts that are used by the
default styles. These fonts are located in the ”/design/standard/fonts” directory. The fonts
included in this directory are free when it comes to costs and distribution. Information about
the author of a font is placed in a directory with the same name as the font itself.

Default styles

The default styles are defined in the ”texttoimage.ini” configuration file. The following list
reveals the names of the default styles.

• 1942

• a d mono

• archtura

• arial

• gallery

5.7.4 Template operators / Images 1033

5

• object text

• sketchy

• smartie

Please refer to the examples below to see the default styles in action.

Custom styles

It is possible to create custom styles and to make use of custom fonts. For each style, it is
possible to configure the following settings:

• The name of the style

• Font family

• Point size

• Background color

• Text color

• Angle/rotation

• X adjustment

• Y adjustment

• Width adjustment

• Height adjustment

• Absolute width

• Absolute height

When using fonts that are located outside the ”/design/standard/fonts” directory, for example
”/design/example/fonts”, the FontDir[] array in a configuration override for ”texttoimage.ini”
has to include an additional FontDir[] line that specifies the secondary font directory.

Examples

Example 1

{’Another World’|texttoimage(’1942’)}

The following output will be produced:

(see figure 5.75)

Example 2

5.7.4 Template operators / Images 1034

5

Figure 5.75: Text rendered as image using the 1942 font.

{’Another World’|texttoimage(’a_d_mono’)}

The following output will be produced:

(see figure 5.83)

Figure 5.76: Text rendered as image using the a d mono font.

Example 3

{’Another World’|texttoimage(’archtura’)}

The following output will be produced:

(see figure 5.77)

Figure 5.77: Text rendered as image using the archtura font.

Example 4

{’Another World’|texttoimage(’arial’)}

The following output will be produced:

(see figure 5.78)

Figure 5.78: Text rendered as image using the arial font.

5.7.4 Template operators / Images 1035

5

Example 5

{’Another World’|texttoimage(’gallery’)}

The following output will be produced:

(see figure 5.79)

Figure 5.79: Text rendered as image using the gallery font.

Example 6

{’Another World’|texttoimage(’object_text’)}

The following output will be produced:

(see figure 5.80)

Figure 5.80: Text rendered as image using the object text font.

Example 7

{’Another World’|texttoimage(’sketchy’)}

The following output will be produced:

(see figure 5.81)

Figure 5.81: Text rendered as image using the sketchy font.

Example 8

{’Another World’|texttoimage(’smartie’)}

The following output will be produced:

(see figure 5.82)

5.7.4 Template operators / Images 1036

5

Figure 5.82: Text rendered as image using the smartie font.

Example 9

{’Another World’|texttoimage()}

The following output will be produced (the default font will be used):

(see figure 5.83)

Figure 5.83: Text rendered as image using the a d mono font.

5.7.5 Template operators / Logical operations 1037

5

5.7.5 Logical operations

and (page 1038)
Evaluates all parameters to check if any are evaluated as FALSE.

choose (page 1040)
Returns one of the parameters (pinpointed by the input parameter).

cond (page 1041)
Returns the value of the first clause who’s condition is TRUE.

eq (page 1043)
Returns TRUE if the input equals the first parameter or if all parameters are equal.

false (page 1046)
Creates and returns a boolean FALSE.

first set (page 1047)
Returns the first parameter that is set (or FALSE).

ge (page 1048)
Returns TRUE if a parameter is greater than or equal to another parameter.

gt (page 1050)
Returns TRUE if a parameter is greater than another parameter.

le (page 1052)
Returns TRUE if a parameter is less than or equal to another parameter.

lt (page 1054)
Returns TRUE if a parameter is less than another parameter.

ne (page 1056)
Returns TRUE if one or more of the parameters do not match.

not (page 1058)
Returns the opposite of the input or the first parameter (TRUE/FALSE).

null (page 1060)
Returns TRUE if the input value is NULL (not the same as 0).

or (page 1061)
Evaluates all parameters until one is found to be TRUE, returns that value.

true (page 1063)
Creates and returns a boolean TRUE.

5.7.5 Template operators / Logical operations 1038

5

and

Summary

Evaluates all parameters to check if any are evaluated as FALSE.

Usage

and(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 any A variable/value to be evaluated. Yes.
value2 any Another variable/value to be evaluated. No.

Returns

One of the parameters or TRUE (see below).

Description

This operator evaluates all parameters. When one of them is found to be FALSE, the operator
will then return that parameter. Under some circumstances shortcutting is then applied,
which means that once a parameter in found to be FALSE, the evaluation of the rest of the
parameters stops. However this is not always the case, and depends on personal settings.
If none of the parameters are found to be FALSE, the operator will return TRUE.

The following table shows how the different types are evaluated by this operator.

Type Evaluation
Number TRUE if the value is non-zero, FALSE other-

wise.
String TRUE if the string consists of at least one

character, FALSE otherwise.
Boolean TRUE if the boolean is a TRUE value, FALSE

is otherwise.
Array TRUE if the array has one or more elements,

FALSE otherwise.
Object TRUE if the object provides the ”attributes”

and the ”attribute” methods, FALSE other-
wise.

NULL Always FALSE.
Other Other types will be evaluated in the same

way as PHP would do.

5.7.5 Template operators / Logical operations 1039

5

Examples

Example 1

{if and(false(), true(), false())}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still.”.

Example 2

{def $a=array()

$b=array(1, 2, 3)

$c=array(4, 5, 6)}

{and($a, $b, $c)}

The code above will return the empty array that is represented by $a.

5.7.5 Template operators / Logical operations 1040

5

choose

Summary

Returns one of the parameters (pinpointed by the input parameter).

Usage

input|choose(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 any A variable/value of any kind. Yes.
value2 any Another variable/value of any kind. No.

Returns

One of the parameters.

Description

This operator returns one of the parameters. The input parameter must be an integer that
pinpoints exactly which parameter that should be returned. If the input parameter is zero,
the operator will return the first parameter. If the input parameter is one, the operator will
return the second parameter, and so on. If the offset is wrong, the operator will return FALSE.

Examples

Example 1

{0|choose(’apples’, ’bananas’, ’coconuts’)}

The following output will be produced: ”apples”.

Example 2

{2|choose(’apples’, ’bananas’, ’coconuts’)}

The following output will be produced: ”coconuts”.

5.7.5 Template operators / Logical operations 1041

5

cond

Summary

Returns the value of the first clause who’s condition is TRUE.

Usage

cond(cond1, value1 [, cond2, value2 [, ...]])

Parameters

Name Type Description Required
cond1 boolean Match condition 1. Yes.
value1 any Return value for condition 1. Yes.
cond2 boolean Match condition 2. No.
value2 any Return value for condition 2. No.

Returns

One of the provided values or FALSE.

Description

This operator evaluates the provided conditions (odd numbered parameters). If one of the
conditions evaluates to TRUE then the value which is associated with that condition is re-
turned. If none of the conditions are TRUE, the operator will return FALSE. If an odd number
of parameters are provided, the operator will return the last parameter if all conditions fail.

Examples

Example 1

{cond(true(), ’apples’, true(), ’bananas’)}

The following output will be produced: ”apples”.

Example 2

{cond(false(), ’apples’, true(), ’bananas’)}

The following output will be produced: ”bananas”.

Example 3

5.7.5 Template operators / Logical operations 1042

5

{cond(false(), ’apples’, false(), ’bananas’)}

No output will be produced, the operator will return FALSE.

Example 4

{cond(false(), ’apples’, ’bananas’)}

The following output will be produced: ”bananas”.

5.7.5 Template operators / Logical operations 1043

5

eq

Summary

Returns TRUE if the input equals the first parameter or if all parameters are equal.

Usage

input|eq(value1 [, value2])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared. Yes.
value2 any Another variable/value that should be cop-

mared.
No.

Returns

TRUE or FALSE (see below).

Description

This operator compares the contents of two or more variables and/or values. If the input
parameter is used, the operator will compare it with the first parameter. If the provided
variables/values match, the operator will return TRUE, otherwise FALSE will be returned.
If more than one parameter is provided, the operator will compare all parameters. If all
parameters are found to be equal, the operator will return TRUE, otherwise FALSE will be
returned. If more than one parameter is provided, the operator will simply ignore the input
parameter.

Note that ”eq” compares the values in the same way as the ’==’ operator in PHP programming
language (for example, 0.1 and 0.10 will be equal). Refer to the PHP reference documenta-
tion for more information. It is recommended to use the Ccompare (page 1124)C template
operator for string comparision.

Examples

Example 1

{if 1|eq(1)}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there”.

http://www.php.net/manual/en/language.operators.comparison.php
http://www.php.net/manual/en/language.operators.comparison.php

5.7.5 Template operators / Logical operations 1044

5

Example 2

{if 1|eq(2)}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still”.

Example 3

{if eq(1, 1)}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there”.

Example 4

{if eq(1, 2)}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still”.

Example 5

{if 1|eq(1, 1)}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there”.

Example 6

{if 2|eq(1, 1)}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there.”.

5.7.5 Template operators / Logical operations 1045

5

Example 7

{if 1|eq(1, 2)}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still”.

5.7.5 Template operators / Logical operations 1046

5

false

Summary

Creates and returns a boolean FALSE.

Usage

false()

Returns

FALSE.

Description

This operator creates and returns a boolean FALSE. It can be used to define a boolean variable
and in logical comparisons.

Examples

Example 1

{def $my_boolean=false()}

{if $my_boolean}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still.”.

5.7.5 Template operators / Logical operations 1047

5

first set

Summary

Returns the first parameter that is set (or FALSE).

Usage

first_set(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 any A variable/value that should be evaluated. Yes.
value2 any Another variable/value that should be evalu-

ated.
No.

Returns

The first value that is set or FALSE.

Description

This operator evaluates all parameters until one of them is found to be set. The parameter
that is found to be set will be returned. If none of the parameters are set, the operator will
return FALSE.

Examples

Example 1

{if first_set($a, $b, $c)}

The truth is out there.

{else}

The day the earth stood still.

{/if}

As long as $a, $b and $c are undeclared/unset, the following output will be produced: ”The
day the earth stood still”.

Example 2

{first_set($a, 256, $b)}

As long as $a is undeclared/unset, the following output will be produced: ”256”.

5.7.5 Template operators / Logical operations 1048

5

ge

Summary

Returns TRUE if a parameter is greater than or equal to another parameter.

Usage

input|ge(value1 [, value2])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared. Yes.
value2 any Another variable/value that should be com-

pared.
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE (see below).

Description

This operator compares two parameters. It returns TRUE if the first parameter is greater than
or equal to the second parameter; otherwise FALSE will be returned. If the input parameter
is provided, the operator will compare it with the first parameter; otherwise it is the first and
the second parameter that will be compared. The following table shows how the different
types are treated.

Type Value
Number The value of the number is used.
String The number of characters is used.
Boolean FALSE means 0 and TRUE means 1.
Array The number of elements is used.
Object The number of object attributes is used.
Other Always 0.

Examples

Example 1

{256|ge(128)}

5.7.5 Template operators / Logical operations 1049

5

or

{ge(256, 128)}

Returns TRUE.

Example 2

{128|ge(256)}

or

{ge(128, 256)}

Returns FALSE.

Example 3

{256|ge(256)}

or

{ge(256, 256)}

Returns TRUE.

Example 4

{128|ge(256, 64)}

Returns FALSE.

5.7.5 Template operators / Logical operations 1050

5

gt

Summary

Returns TRUE if a parameter is greater than another parameter.

Usage

input|gt(value1 [, value2])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared. Yes.
value2 any Another variable/value that should be com-

pared.
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE (see below).

Description

This operator compares two parameters. It returns TRUE if the first parameter is greater than
the second parameter; otherwise FALSE will be returned. If the input parameter is provided,
the operator will compare it with the first parameter; otherwise it is the first and the second
parameter that will be compared. The following table shows how the different types are
treated.

Type Value
Number The value of the number is used.
String The number of characters is used.
Boolean FALSE means 0 and TRUE means 1.
Array The number of elements is used.
Object The number of object attributes is used.
Other Always 0.

Examples

Example 1

{256|gt(128)}

5.7.5 Template operators / Logical operations 1051

5

or

{gt(256, 128)}

Returns TRUE.

Example 2

{128|gt(256)}

or

{gt(128, 256)}

Returns FALSE.

Example 3

{256|gt(256)}

or

{gt(256, 256)}

Returns FALSE.

Example 4

{128|gt(64, 256)}

Returns TRUE.

5.7.5 Template operators / Logical operations 1052

5

le

Summary

Returns TRUE if a parameter is less than or equal to another parameter.

Usage

input|le(value1 [, value2])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared. Yes.
value2 any Another variable/value that should be com-

pared.
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE (see below).

Description

This operator compares two parameters. It returns TRUE if the first parameter is less than or
equal to the second parameter; otherwise FALSE will be returned. If the input parameter is
provided, the operator will compare it with the first parameter; otherwise it is the first and
the second parameter that will be compared. The following table shows how the different
types are treated.

Type Value
Number The value of the number is used.
String The number of characters is used.
Boolean FALSE means 0 and TRUE means 1.
Array The number of elements is used.
Object The number of object attributes is used.
Other Always 0.

Examples

Example 1

{256|le(128)}

5.7.5 Template operators / Logical operations 1053

5

or

{le(256, 128)}

Returns FALSE.

Example 2

{128|le(256)}

or

{le(128, 256)}

Returns TRUE.

Example 3

{256|le(256)}

or

{le(256, 256)}

Returns TRUE.

Example 4

{128|le(256, 64)}

Returns TRUE.

5.7.5 Template operators / Logical operations 1054

5

lt

Summary

Returns TRUE if a parameter is less than another parameter.

Usage

input|lt(value1 [, value2])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared. Yes.
value2 any Another variable/value that should be com-

pared.
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE (see below).

Description

This operator compares two parameters. It returns TRUE if the first parameter is less than
the second parameter; otherwise FALSE will be returned. If the input parameter is provided,
the operator will compare it with the first parameter; otherwise it is the first and the second
parameter that will be compared. The following table shows how the different types are
treated.

Type Value
Number The value of the number is used.
String The number of characters is used.
Boolean FALSE means 0 and TRUE means 1.
Array The number of elements is used.
Object The number of object attributes is used.
Other Always 0.

Examples

Example 1

{256|lt(128)}

5.7.5 Template operators / Logical operations 1055

5

or

{lt(256, 128)}

Returns FALSE.

Example 2

{128|lt(256)}

or

{lt(128, 256)}

Returns TRUE.

Example 3

{256|lt(256)}

or

{lt(256, 256)}

Returns FALSE.

Example 4

{128|lt(256, 64)}

Returns TRUE.

5.7.5 Template operators / Logical operations 1056

5

ne

Summary

Returns TRUE if one or more of the parameters do not match.

Usage

input|ne(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared.. Yes.
value2 any Another variable/value that should be com-

pared.
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE (see below).

Description

This operator compares all the provided parameters. If the parameters are not equal, the
operator will return TRUE, otherwise FALSE will be returned. If more than one parameter is
provided, the operator will ignore the input parameter.

Note that ”ne” compares the values in the same way as the ’!=’ operator in PHP programming
language (refer to the PHP reference documentation for more information). It is recom-
mended to use the Ccompare (page 1124)C template operator for string comparision.

Examples

Example 1

{128|ne(128)}

or

{ne(128, 128)}

Returns FALSE.

http://www.php.net/manual/en/language.operators.comparison.php

5.7.5 Template operators / Logical operations 1057

5

Example 2

{128|ne(256)}

or

{ne(128, 256)}

Returns TRUE.

Example 3

{256|ne(256, 128)}

Returns TRUE.

Example 4

{ne(128, 128, 256)}

Returns TRUE.

Example 5

{ne(128, 128, 128)}

Returns FALSE.

5.7.5 Template operators / Logical operations 1058

5

not

Summary

Returns the opposite of the input or the first parameter (TRUE/FALSE).

Usage

input|not(test)

Parameters

Name Type Description Required
test any The variable/value that should be tested. No.

Returns

TRUE or FALSE

Description

This operator returns TRUE if the input value is FALSE and vice versa. It is also possible to
use the optional ”test” parameter for evaluation. If both the input parameter and the ”test”
parameter are used, it is the input parameter that will be evaluated.

Examples

Example 1

{if false()|not()}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there.”.

Example 2

{if true()|not()}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still.”.

5.7.5 Template operators / Logical operations 1059

5

Example 3

{if not(false())}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there.”.

Example 4

{if not(true())}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still.”.

5.7.5 Template operators / Logical operations 1060

5

null

Summary

Returns TRUE if the input value is NULL (not the same as 0).

Usage

input|null()

Returns

TRUE or FALSE.

Description

This operator returns TRUE if the input value is NULL, otherwise FALSE will be returned.
Please note that NULL is not the same as a numeric zero (0).

Examples

Example 1

{if 0|null()}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still”.

5.7.5 Template operators / Logical operations 1061

5

or

Summary

Evaluates all parameters until one is found to be TRUE, returns that value.

Usage

or(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 any A variable/value to be evaluated. Yes.
value2 any Another variable/value to be evaluated. No.

Returns

One of the parameters or FALSE (see below).

Description

This operator evaluates all parameters until one of them is found to be TRUE. The operator
will then return that parameter and thus stop evaluating the rest of the parameters. If none
of the parameters are found to be TRUE, the operator will return FALSE. The following table
shows how the different types are evaluated by this operator.

Type Evaluation
Number TRUE if the value is non-zero, FALSE other-

wise.
String TRUE if the string consists of at least one

character, FALSE otherwise.
Boolean TRUE if the boolean is a TRUE value, FALSE

is otherwise.
Array TRUE if the array has one or more elements,

FALSE otherwise.
Object TRUE if the object provides the ”attributes”

and the ”attribute” methods, FALSE other-
wise.

NULL Always FALSE.
Other Other types will be evaluated in the same

way as PHP would do.

5.7.5 Template operators / Logical operations 1062

5

Examples

Example 1

{if or(false(), true(), false())}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there.”.

Example 2

{def $a=array()

$b=array(1, 2, 3)

$c=array(4, 5, 6)}

{or($a, $b, $c)}

The code above will return the following array: (1, 2, 3).

5.7.5 Template operators / Logical operations 1063

5

true

Summary

Creates and returns a boolean TRUE.

Usage

true()

Returns

TRUE.

Description

This operator creates and returns a boolean TRUE. It can be used to define a boolean variable
and in logical comparisons.

Examples

Example 1

{def $my_boolean=true()}

{if $my_boolean}

The truth is out there.

{else}

The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there.”.

5.7.6 Template operators / Mathematics 1064

5

5.7.6 Mathematics

abs (page 1065)
Returns a positive value of either the input or the first parameter.

ceil (page 1067)
Returns the next highest integer value of input or parameter.

dec (page 1069)
Returns input or parameter decremented by one.

div (page 1071)
Divides input or first parameter by the remaining parameters.

floor (page 1073)
Returns the next lowest integer value of input or parameter.

inc (page 1075)
Increments either the input or the first parameter with one.

max (page 1077)
Returns the largest value of all parameters.

min (page 1078)
Returns the smallest value of all parameters.

mod (page 1079)
Returns the modulo of two parameters.

mul (page 1081)
Multiplies all parameters and returns the result.

rand (page 1083)
Returns a random integer.

round (page 1085)
Returns a rounded version of the input or a parameter value.

sub (page 1087)
Subtracts all remaining parameters from the first parameter.

sum (page 1089)
Returns the sum of all parameters.

5.7.6 Template operators / Mathematics 1065

5

abs

Summary

Returns a positive value of either the input or the first parameter.

Usage

input|abs(value)

Parameters

Name Type Description Required
value number Value to calculate absolute of. Only

if the
input
param-
eter is
omitted.

Returns

Absolute value of input or parameter.

Description

Returns a positive value of either the input or the ”value” parameter. If both are provided, it
is the ”value” parameter that will be used.

Examples

Example 1

{-16|abs}

or

{abs(-16)}

The following output will be produced: ”16”.

Example 2

5.7.6 Template operators / Mathematics 1066

5

{abs(256)}

The following output will be produced: ”256”.

Example 3

{-64|abs(-128)}

The following output will be produced: ”128”.

5.7.6 Template operators / Mathematics 1067

5

ceil

Summary

Returns the next highest integer value of input or parameter.

Usage

input|ceil(value)

Parameters

Name Type Description Required
value number Value to be rounded up. Only

if the
input
param-
eter is
omitted.

Returns

Integer (rounded up version of input/parameter).

Description

This operator returns the next highest integer value by rounding up either the input or the
”value” parameter. If both are provided, it is the ”value” parameter that will be used.

Examples

Example 1

{1.5|ceil}

or

{ceil(1.5)}

The following output will be produced: ”2”.

Example 2

5.7.6 Template operators / Mathematics 1068

5

{5.5|ceil(8.2)}

The following output will be produced: ”9”.

5.7.6 Template operators / Mathematics 1069

5

dec

Summary

Returns input or parameter decremented by one.

Usage

input|dec(value)

Parameters

Name Type Description Required
value number The value that should be decremented. Only

if the
input
param-
eter is
omitted.

Returns

input/parameter decremented with one.

Description

This operator decrements either the input or the ”value” parameter with one and returns the
result as an integer. If both are provided, it is the ”value” parameter that will be used. Please
note that this operator can not be used directly to decrement the value of a variable (please
refer to the last example).

Examples

Example 1

{256|dec}

or

{dec(256)}

The following output will be produced: 255.

5.7.6 Template operators / Mathematics 1070

5

Example 2

{200|dec(250)}

The following output will be produced: 249.

Example 3

{def $i=256}

{set $i=dec($i)}

{$i}

This example demonstrates how the value of a variable can be decremented using the ”set”
and the ”dec” operators. The following output will be produced: ”255”.

5.7.6 Template operators / Mathematics 1071

5

div

Summary

Divides input or first parameter by the remaining parameters.

Usage

input|div(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 number Dividend or divisor. Yes.
value2 number Dividend. Only

if the
input
param-
eter is
omitted.

Returns

The result of the division.

Description

This operator divides a the first parameter (can be the input parameter) by the rest of the
parameters.

Examples

Example 1

{10|div(5)}

or

{div(10, 5)}

The following output will be produced: ”2”.

Example 2

5.7.6 Template operators / Mathematics 1072

5

{12|div(3, 2)}

or

{div(12, 3, 2)}

The following output will be produced: ”2”.

5.7.6 Template operators / Mathematics 1073

5

floor

Summary

Returns the next lowest integer value of input or parameter.

Usage

input|floor(value)

Parameters

Name Type Description Required
value number Value to be rounded down. Only

if the
input
param-
eter is
omitted.

Returns

Integer (rounded down version of input/parameter).

Description

This operator returns the next lowest integer by rounding down either the input or the ”value”
parameter. If both are provided, it is the ”value” parameter that will be used.

Examples

Example 1

{256.7|floor}

or

{floor(256.7)}

The following output will be produced: ”256”.

Example 2

5.7.6 Template operators / Mathematics 1074

5

{999.2|floor(256.7)}

The following output will be produced: ”256”.

5.7.6 Template operators / Mathematics 1075

5

inc

Summary

Increments either the input or the first parameter with one.

Usage

input|inc(value)

Parameters

Name Type Description Required
value number The value that should be incremented. Only

if the
input
param-
eter is
omitted.

Returns

Number (input/parameter incremented with one).

Description

This operator increments either the input or the ”value” parameter with one and returns the
result as an integer. If both are provided, it is the ”value” parameter that will be used. Please
note that this operator can not be used directly to increment the value of a variable (please
refer to the last example).

Examples

Example 1

{255|inc}

or

{inc(255)}

The following output will be produced: ”256”.

Example 2

5.7.6 Template operators / Mathematics 1076

5

{def $i=255}

{set $i=inc($i)}

{$i}

The following output will be produced: ”256”.

5.7.6 Template operators / Mathematics 1077

5

max

Summary

Returns the largest value of all parameters.

Usage

max(value1, value2 [,...])

Parameters

Name Type Description Required
value1 any A value that should be evaluated. Yes.
value2 any Another value that should be evaluated. Yes.

Returns

The largest value of all parameters.

Description

This operator returns the largest value of all parameters. The input parameter is ignored.

Examples

Example 1

{max(2, 3, 1)}

The following output will be produced: ”3”.

Example 2

{max(array(1, 2), array(1, 2, 3))}

The following array will be returned: (1, 2, 3).

5.7.6 Template operators / Mathematics 1078

5

min

Summary

Returns the smallest value of all parameters.

Usage

min(value1, value2 [,...])

Parameters

Name Type Description Required
value1 any A value that should be evaluated. Yes.
value2 any Another value that should be evaluated. Yes.

Returns

The smallest value of all parameters.

Description

This operator returns the largest value of all parameters. The input parameter is ignored.

Examples

Example 1

{min(10, 20, 6, 40, 50)}

The following output will be produced: ”6”.

Example 2

{min(array(1, 2), array(1, 2, 3))}

The following array will be returned: (1, 2).

5.7.6 Template operators / Mathematics 1079

5

mod

Summary

Returns the modulo of two parameters.

Usage

input|mod(value1 [,value2])

Parameters

Name Type Description Required
value1 number Divisor or dividend. Yes.
value2 number Divisor or dividend. Only

if the
input
param-
eter is
omitted.

Returns

Integer (the modulo of the supplied parameters).

Description

This operator returns the modulo (rest after division) of the first parameter divided by the
second. The operator can also take an input parameter. If the input parameter is used, then
it will be divided by the first parameter (and thus the second parameter will be ignored).

Examples

Example 1

{5|mod(3)}

or

{mod(5, 3)}

The following output will be produced: ”2”.

5.7.6 Template operators / Mathematics 1080

5

Example 2

{6|mod(3, 7)}

The following output will be produced: ”0”.

5.7.6 Template operators / Mathematics 1081

5

mul

Summary

Multiplies all parameters and returns the result.

Usage

input|mul(value1 [, value2] [, ...])

Parameters

Name Type Description Required
value1 number Multiplicand. Yes.
value2 number Multiplicand. Only

if the
input
param-
eter is
omitted.

Returns

The result of the multiplication (integer or float).

Description

This operator multiplies all parameters and returns the result. If an input parameter is pro-
vided, it will be included in the multiplication.

Examples

Example 1

{2|mul(3)}

or

{mul(2, 3)}

The following output will be produced: ”6”.

Example 2

5.7.6 Template operators / Mathematics 1082

5

{2|mul(3, 4)}

The following output will be produced: ”24”.

5.7.6 Template operators / Mathematics 1083

5

rand

Summary

Returns a random integer.

Usage

rand([min_val, max_val])

Parameters

Name Type Description Required
min val integer Lower limit (inclusive). No.
max val integer Upper limit (inclusive). No.

Returns

Integer.

Description

This operator returns a random integer. The optional parameters ”min val” and ”max val” can
be used to control the range from which the random number is picked. If you want a random
integer between 3 and 13 (inclusive), use (3, 13) as parameters.

Examples

Example 1

rand()

Returns a random integer.

Example 2

rand(5)

Returns a random integer that is greater than 4.

Example 3

5.7.6 Template operators / Mathematics 1084

5

rand(3, 13)

Returns a random integer that is greater than 2 and less than 14.

5.7.6 Template operators / Mathematics 1085

5

round

Summary

Returns a rounded version of the input or a parameter value.

Usage

input|round(value)

Parameters

Name Type Description Required
value number The number that should be rounded off. Only

if the
input
param-
eter is
omitted.

Returns

A rounded off version of the provided value (an integer or float).

Description

This operator rounds off the value that was specified using either the input or the ”value”
parameter. If both are provided, it is the ”value” parameter that will be used. The operator
returns the rounded off value.

Examples

Example 1

{15.7|round}

or

{round(15.7)}

The following output will be produced: ”16”.

Example 2

5.7.6 Template operators / Mathematics 1086

5

{8.4|round(9.7)}

The following output will be produced: ”10”.

5.7.6 Template operators / Mathematics 1087

5

sub

Summary

Subtracts all remaining parameters from the first parameter.

Usage

input|sub(value [, ...])

Parameters

Name Type Description Required
value number A number that should be included in the sub-

traction.
Yes.

Returns

Number (result of subtraction).

Description

This operator subtracts all remaining parameters from the first parameter and returns the
result. If an input parameter is provided, all other parameters will subtracted from it.

Examples

Example 1

{10|sub(2)}

or

{sub(10, 2)}

The following output will be produced: ”8”.

Example 2

{sub(10, 2, 3)}

The following output will be produced: ”5”.

5.7.6 Template operators / Mathematics 1088

5

Example 3

{10|sub(10, 2, 3)}

The following output will be produced: ”-5”.

5.7.6 Template operators / Mathematics 1089

5

sum

Summary

Returns the sum of all parameters.

Usage

input|sum(value [,...])

Parameters

Name Type Description Required
value number A value that should be added to the result. Only

if the
input
param-
eter is
omitted.

Returns

Number (sum of all parameters + input).

Description

This operator adds up all the parameters (including the input parameter) and returns the
result.

Examples

Example 1

{1|sum(2)}

or

{sum(1, 2)}

The following output will be produced: ”3”.

Example 2

5.7.6 Template operators / Mathematics 1090

5

{1|sum(2, -3, 4)}

The following output will be produced: ”4”.

5.7.7 Template operators / Miscellaneous 1091

5

5.7.7 Miscellaneous

action icon (page 1092)
Not documented yet.

attribute (page 1093)
Makes it possible to inspect the contents of arrays, hashes and objects.

classgroup icon (page 1095)
Outputs an image tag referencing a class group icon.

class icon (page 1096)
Outputs an image tag referencing a class icon.

content structure tree (page 1097)
Not documented yet.

ezpackage (page 1098)
Not documented yet.

flag icon (page 1099)
Outputs an image tag referencing a flag icon.

gettime (page 1100)
Converts a UNIX timestamp to a human friendly structure.

icon info (page 1102)
Not documented yet.

makedate (page 1103)
Generates the UNIX timestamp of a given date.

maketime (page 1104)
Generates the UNIX timestamp of a given date/time.

mimetype icon (page 1105)
Outputs an image tag referencing a MIME type icon.

month overview (page 1106)
Generates a structure that can be used to build a calendar.

pdf (page 1108)
Provides access to the PDF functions.

roman (page 1109)
Generates a roman representation of a number.

topmenu (page 1110)
Not documented yet.

treemenu (page 1111)
Fetches a subtree of nodes for the purpose of menu generation.

5.7.7 Template operators / Miscellaneous 1092

5

action icon

Summary

Not documented yet.

5.7.7 Template operators / Miscellaneous 1093

5

attribute

Summary

Makes it possible to inspect the contents of arrays, hashes and objects.

Usage

input|attribute([show_values [, level [, table]]])

Parameters

Name Type Description Required
show values string Sets whether to extract values in addition to

keys, names, etc. If ”show” is passed, the val-
ues will be returned. Otherwise, the operator
will not return any values.

No.

level integer The number of levels that should be pro-
cessed (default is 2).

No.

table boolean Return result as HTML table (default) or not. No.

Returns

A string revealing information about the target.

Description

This operator extracts all available keys, attribute names and/or methods that belong to the
input parameter (must be either an object, an array or a hash). By default, the array keys,
object attribute names and their types will be revealed. By passing ”show” as the first param-
eter, the operator will also return the values. The second parameter can be used to control
the number of levels/children that should be expanded and included in the result (the de-
fault setting is 2). A large level value may cause the system to be trapped in a recursive/
infinite loop. The returned result is an HTML table containing the retrieved information. If
”false()” is passed as the third parameter, the output will be a plain string instead of an HTML
table. Please refer to the ”Array and object inspection” (page 208)section of the ”Templates”
chapter for more information about the use of this operator.

Examples

Example 1

{def $example=hash(’Name’, ’John Doe’,

’Age’, 24,

’Phone’, ’555-3212’)}

{$example|attribute()}

5.7.7 Template operators / Miscellaneous 1094

5

The following output will be produced:

Attribute Type
Name string
Age integer
Phone string

Example 2

{def $example=hash(’Name’, ’Jane Doe’,

’Age’, 23,

’Phone’, ’555-3213’)}

{$example|attribute(’show’)}

The following output will be produced:

Attribute Type Value
Name string ’Jane Doe’
Age integer 23
Phone string ’555-3213’

Example 3

{def $example=hash(’Name’, ’Jane Doe’,

’Age’, 25,

’Phone’, ’555-3213’)}

{$example|attribute(’something’)}

The following output will be produced:

Attribute Type
Name string
Age integer
Phone string

5.7.7 Template operators / Miscellaneous 1095

5

classgroup icon

Summary

Outputs an image tag referencing a class group icon.

Usage

input|classgroup_icon([size [, alt_text [, return_uri]]])

Parameters

Name Type Description Required
size string The preferred icon size (small, medium,

large, etc.).
No.

alt text string The alternative image text. No.
return uri boolean The return format (image tag or just the ad-

dress).
No.

Returns

A string containing an image tag.

Description

This operator generates an image tag that references a class group icon. The name of the icon
must be provided using the input parameter. The ”size”, ”alt text” and ”return url” parameters
are optional (see the description above). The operator uses the settings provided by the
”icon.ini” configuration file (or an override).

Examples

Example 1

{’content’|classgroup_icon(’small’, ’Alternative image text’)}

The following output will be produced:

<img src="/share/icons/crystal-admin/16x16_indexed/filesystems/

folder_txt.png" width="16" height="16" alt="Content" title="Content" />

5.7.7 Template operators / Miscellaneous 1096

5

class icon

Summary

Outputs an image tag referencing a class icon.

Usage

input|class_icon([size, [, alt_text]])

Returns

A string containing an image tag.

Description

This operator generates an image tag that references a class icon. The name of the icon must
be provided using the input parameter. The ”size” and ”alt text” parameters are optional (see
the description above). The operator uses the settings provided by the ”icon.ini” configuration
file (or an override).

Examples

Example 1

{’folder’|class_icon(’small’, ’Alternative image text’)}

The following output will be produced:

5.7.7 Template operators / Miscellaneous 1097

5

content structure tree

Summary

Not documented yet.

5.7.7 Template operators / Miscellaneous 1098

5

ezpackage

Summary

Not documented yet.

5.7.7 Template operators / Miscellaneous 1099

5

flag icon

Summary

Outputs an image tag referencing a flag icon.

Usage

input|flag_icon()

Returns

A string containing an image tag.

Description

This operator generates an image tag that references a flag icon. The country code must be
provided using the input parameter. This operator is frequently used by the administration
interface.

Examples

Example 1

{’eng-GB’|class_icon()}

The following output will be produced:

5.7.7 Template operators / Miscellaneous 1100

5

gettime

Summary

Converts a UNIX timestamp to a human friendly structure.

Usage

gettime(timestamp)

Parameters

Name Type Description Required
timestamp integer A UNIX timestamp. Yes.

Returns

An associative array (see below).

Description

This operator takes a UNIX timestamp as a parameter and returns an associative array that
contains a human friendly representation of the provided timestamp. The following table
shows the keys of the returned hash.

Key Type Description
seconds integer Number of seconds.
minutes integer Number of minutes.
hours integer Number of hours.
day integer The day of the month (1-

31).
month integer The month number (1 is

January).
year integer A four digit representation

of the year (for example
”1978”).

weekday integer The day of the week (1-7).
weeknumber string The week of the year (1-

52).
yearday integer The day of the year (1-365).
epoch integer The UNIX timestamp that

was provided.

5.7.7 Template operators / Miscellaneous 1101

5

Examples

Example 1

{gettime(currentdate())|attribute(show)}

The ”currentdate” (page 1006) operator is used to generate the UNIX timestamp for the
current date/time. This value is then fed to the ”gettime” operator, which converts it to a
human friendly structure. The array is viewed using the ”attribute” (page 1093) operator.
The following output will be produced:

Attribute Type Value
seconds integer 11
minutes integer 5
hours integer 15
day integer 13
month integer 4
year integer 2005
weekday integer 4
weeknumber string 15
yearday integer 102
epoch integer 1113397511

5.7.7 Template operators / Miscellaneous 1102

5

icon info

Summary

Not documented yet.

5.7.7 Template operators / Miscellaneous 1103

5

makedate

Summary

Generates the UNIX timestamp of a given date.

Usage

makedate([month [, day [, year [, dst]]]])

Parameters

Name Type Description Required
month integer The month of the year. No.
day integer The day of the month. No.
year integer The year. No.
dst integer Daylight savings (on/off). No.

Returns

A UNIX timestamp (an integer).

Description

This operator returns the UNIX timestamp corresponding to the provided parameters. The
parameters may be left out in order from right to left. Parameters that are omitted will be
set to the current value according to the local date and time. The ”dst” parameter can be set
to 1 if the time is during daylight savings time (DST), 0 if it is not, or -1 (the default) if it is
unknown whether the time is within daylight savings time or not (the system will try to figure
it out). If no parameters are given, the operator will return the timestamp for the current day.

Examples

Example 1

{makedate(1, 2, 2005)}

The following output will be produced: ”1104620400” - which is the UNIX timestamp for
”00:00:00, 2nd of January, 2005”.

5.7.7 Template operators / Miscellaneous 1104

5

maketime

Summary

Generates the UNIX timestamp of a given date/time.

Usage

maketime([hour [, minute [, second [, month [, day [, year [, dst]]]]]

]])

Parameters

Name Type Description Required
hour integer Hour of the day. No.
minute integer Minute of the hour. No.
second integer Second of the minute. No.
month integer Month of the year. No.
day integer Day of the month. No.
year integer The year. No.
dst integer Daylight savings (on/off). No.

Returns

A UNIX timestamp (an integer).

Description

This operator returns the UNIX timestamp corresponding to the provided parameters. The
parameters may be left out in order from right to left. Parameters that are omitted will be
set to the current value according to the local date and time. The ”dst” parameter can be set
to 1 if the time is during daylight savings time (DST), 0 if it is not, or -1 (the default) if it is
unknown whether the time is within daylight savings time or not (the system will try to figure
it out). If no parameters are given, the operator will return the current timestamp.

Examples

Example 1

{maketime(1, 2, 3, 4, 5, 2004)}

The following output will be produced: ”1081119723” - which is the UNIX timestamp for
”01:02:03, 5th of April, 2004”.

5.7.7 Template operators / Miscellaneous 1105

5

mimetype icon

Summary

Outputs an image tag referencing a MIME type icon.

Usage

input|mimetype_icon([size, [, alt_text [, return_type]]])

Parameters

Name Type Description Required
size integer The size of the icon (small, normal, large,

etc.).
No.

alt text string The alternative image text. No.
return url boolean The return type (FALSE=image tag,

TRUE=address only).
No.

Returns

A string containing an image tag.

Description

This operator generates an image tag that references a MIME type icon. The name of the
icon must be provided using the input parameter. The ”size” and ”alt text” parameters are
optional (see the description above). The operator uses the settings provided by the ”icon.ini”
configuration file (or an override).

Examples

Example 1

{’application/pdf’|mimetype_icon(’small’, ’Alternative image text’)}

This will output the MIME type icon that is associated with the ”.pdf” file extension (defined
in ”icon.ini” or an override).

5.7.7 Template operators / Miscellaneous 1106

5

month overview

Summary

Generates a structure that can be used to build a calendar.

Usage

input|month_overview(field,

today_timestamp,

hash(’current’, current_timestamp,

’day_class’, day_class

’current_class’, current_class,

’link’, link,

’month_link’, month_link,

’year_link’, year_link,

’day_link’, day_link,

’next’, hash(’link’, next_link),

’previous’, hash(’link’, previous_link))

)

Parameters

Name Type Description Required
field string The way the objects should be grouped. Yes.
today timestamp integer The UNIX timestamp for the day being

searched.
Yes.

current
timestamp

integer The UNIX timestamp of the current date/
time.

No.

day class string The CSS class that should be used for a nor-
mal day.

No.

current class string The CSS class that should be used for the cur-
rent day.

No.

link string Link to days containing objects (”content/
view/full/node id”).

No.

month link string Append ”/month/MON” to links or not. No.
year link string Append ”/year/YEAR” to links or not. No.
day link string Append ”/day/DAY” to links or not. No.
next link string Link to the next month. No.
previous link string Link to the previous month. No.

Returns

A complex structure (see below).

5.7.7 Template operators / Miscellaneous 1107

5

Description

This operator takes an array of content objects as input and analyzes and distributes them
in a given month. It returns a complex structure (see below) that can be used by the ”mon-
thview.tpl” template, which will highlight days when at least one object has been published
(see ”design/standard/templates/navigator/monthview.tpl”). The following structure will be
returned:

.

|-- year

|-- month

|-- weekdays[]

| |-- day

| |-- class

|

|-- weeks[][]

| |--day

| |--link

| |--class

| |--highlight

|

|-- next

| |--month

| |--link

|

|-- previous

|--month

|--link

5.7.7 Template operators / Miscellaneous 1108

5

pdf

Summary

Provides access to the PDF functions.

Usage

{pdf(...)}

Returns

The returned result depends on the actual PDF function.

Description

This operator provides access to the PDF functions that may be used to generate PDF data in
a template. The actual PDF functions are documented in the ”Template PDF functions” (page
1290) section of the ”Reference” chapter.

5.7.7 Template operators / Miscellaneous 1109

5

roman

Summary

Generates a roman representation of a number.

Usage

input|roman(value)

Parameters

Name Type Description Required
value integer A number that should be converted. Only

if the
input
param-
eter is
omitted.

Returns

A string containing a roman number.

Description

This operator will convert either the input or the ”value” parameter to a roman number. If
both are provided, it is the ”value” parameter that will be used.

Examples

Example 1

{8|roman()}

or

{roman(8)}

The following output will be produced: ”VIII”.

5.7.7 Template operators / Miscellaneous 1110

5

topmenu

Summary

Not documented yet.

5.7.7 Template operators / Miscellaneous 1111

5

treemenu

Summary

Fetches a subtree of nodes for the purpose of menu generation.

Usage

treemenu(path,

node_id

[, class_filter]

[, depth_skip]

[, max_level]

[, is_selected_method]

[, indentation_level]

[, language])

Parameters

Name Type Description Required
path array An array of the path ($module result.path). Yes.
node id integer The node ID number (the root of the sub-

tree).
Yes.

class filter array An array of classes that should be filtered. No.
depth skip integer Number of levels that should be skipped. No.
max level integer The max depth that should be explored. (2

by default)
No.

is selected
method

string Sets whether ”is selected=TRUE” should be
assigned to the parents of the current node
as well.

No.

indentation level integer The size of increment to use when calculat-
ing the indentation of the menu entries (15
by default).

No.

language string/
array

The language(s) to use when fetching the
nodes. Use either a string, e.g. ’nor-NO’, or
an array of strings, e.g. array(’nor-NO’, ’eng-
GB’).

No.

Returns

A complex structure that can be used to build a menu (see below).

Description

This operator fetches a subtree of nodes and returns a complex structure (an array of hashes)
that can be used to generate a menu. Please note that the ”node id” parameter is no longer
used and its value is ignored by the system (starting from version 3.8.4). This required
parameter will become optional in 3.8.5 and deprecated in 3.9. The root of the subtree is

5.7.7 Template operators / Miscellaneous 1112

5

now determined by the ”path” parameter. If the provided path array points to a node, then a
subtree of this node will be fetched. (Use ”$module result.path” to pass the path which leads
to the page that is currently being viewed.) If the ”path” parameter does not point to a node
in the content tree, then a subtree of the ”Content” top level node (page 136) will be fetched.

If the optional ”class filter” parameter is omitted, all nodes will be fetched without filtering.
If an empty array is passed, then only folder nodes (class ID = 1) will be fetched.

The optional ”language” parameter makes it possible to specify which languages to use when
fetching the nodes. The languages will be prioritized according to the array (this overrides
the language settings of the siteaccess).

The default value of the ”is selected method” parameter is ”tree”. This value determines that
the current node and its parent nodes will be considered as selected (is selected=TRUE). If
this parameter is set to ”node”, only the current node will be considered as selected.

The following table shows the hash-structure for each element in the array that will be re-
turned.

Key Type Description
id integer The ID of the node.
level integer The depth of the node.
url alias string The URL alias of the node.
url string The system URL of the

node.
text string The name of the node.
is selected boolean TRUE

if the node is currently be-
ing viewed/selected, FALSE
otherwise.

If the ”path” parameter points to a node in the content tree, then the following additional
keys will be included in the hash structure:

Key Type Description
data map array The

attributes (as ezcontentob-
jectattribute (page 902) ob-
jects) of the actual content
object encapsulated by the
node.

class name string The name of the class which
the object encapsulated by
the node is an instance of,
for example ”Folder”.

is main node boolean TRUE if the node is a main
node, FALSE otherwise.

has children boolean TRUE if the node has chil-
dren, FALSE otherwise.

indent integer The inden-
tation of the menu entries.
This value is calculated ac-
cording to the depth of the

5.7.7 Template operators / Miscellaneous 1113

5

node using ”indentation
level” as increment. A
menu item of the level
N will have indent=(N-
1)*indentation level.

Examples

Example 1 (explanatory)

Let’s use a small site with the following content structure (see the screenshot) for the purpose
of demonstration

(see figure 5.84)

Figure 5.84: The content tree

and insert the following code into ”pagelayout.tpl”:

{def $mainMenu=treemenu($module_result.path, $module_result.node_id) }

{foreach $mainMenu as $menu}

{$menu.level} - {$menu.text}

{/foreach}

{undef $mainMenu}

If the ”Weblog” node is being viewed, then the following output will be produced:

0 - Weblog

1 - July, 29

1 - July, 14

1 - June, 25

0 - Galleries

0 - Products

If the ”Blue flower” node is being viewed, then the following output will be produced:

0 - Weblog

0 - Galleries

5.7.7 Template operators / Miscellaneous 1114

5

1 - Misc flowers

1 - Landscape

0 - Products

Since the ”max level” parameter is omitted, only two levels are explored. To set the ”max
level” parameter to 3, change the first line of the previous code fragment in the following
way:

{def $mainMenu=treemenu($module_result.path, $module_result.node_id, , , 3

) }

This will produce the following output for the ”Blue flower” node:

0 - Weblog

0 - Galleries

1 - Misc flowers

2 - Red flower

2 - Blue flower

1 - Landscape

0 - Products

To skip the first level, set the ”depth skip” parameter to 1 by changing the first line of the code
fragment as shown below:

{def $mainMenu=treemenu($module_result.path, $module_result.node_id, , 1, 3

) }

If the ”Blue flower” node is being viewed, then the following output will be produced:

0 - Misc flowers

1 - Red flower

1 - Blue flower

0 - Landscape

Now, let’s use another code fragment in order to see which items are selected:

{def $mainMenu=treemenu($module_result.path, $module_result.node_id, , , 3

)}

{foreach $mainMenu as $menu}

{if $menu.is_selected}

{$menu.level} - {$menu.text} (selected)

{else}

{$menu.level} - {$menu.text}

{/if}

{/foreach}

{undef $mainMenu}

Since the ”is selected method” parameter is omitted, the ”tree” mode will be used and the
following output will be produced for the ”Blue flower” node:

5.7.7 Template operators / Miscellaneous 1115

5

0 - Weblog

0 - Galleries (selected)

1 - Misc flowers (selected)

2 - Red flower

2 - Blue flower (selected)

1 - Landscape

0 - Products

To set the ”is selected method” parameter to ”node”, replace the first line of the last code
fragment by the following line:

{def $mainMenu=treemenu($module_result.path, $module_result.node_id, , , 3,

’node’)}

If the ”Blue flower” node is being viewed, then the following output will be produced:

0 - Weblog

0 - Galleries

1 - Misc flowers

2 - Red flower

2 - Blue flower (selected)

1 - Landscape

0 - Products

Example 2

These examples are from pagelayout.tpl.

Make a menu of folder and info page classes. Skip the first level and maximum go to depth
6.

{def $mainMenu=treemenu($module_result.path,

$module_result.node_id,

array(’folder’,’info_page’), 1, 6)}

{foreach $mainMenu as $menu}

<li class="level_{$menu.level}">

{if $menu.is_selected}

<div class="selected">

{$menu.text}

</div>

{else}

{$menu.text}

{/if}

{/foreach}

5.7.7 Template operators / Miscellaneous 1116

5

Make a menu which shows the sub menu items when clicked on the parent menu item. Notice
that only the objectclass ids: 1, 9, and 17 are visible.

{def $docs=treemenu($module_result.path, $module_result.node_id,

array(1, 9, 17), 0, 4)}

{def $depth=1 $last=0}

{foreach $docs as $menu}

{if and($last | ne(0), $last.level|gt($menu.level))}

{/if}

{if and($last | ne(0), $last.level| lt($menu.level))}

{/if}

<a {$menu.is_selected|choose(’’,’class="selected"’)}

href={$menu.url_alias|ezurl}>{$menu.text|shorten(25)}

{set last=$menu}

{/foreach}

{while $depth |gt(1)}

{set depth=$depth|sub(1)}

{/while}

5.7.8 Template operators / Strings 1117

5

5.7.8 Strings

\begin{description} \item[append]\refer{label5e04b4b239da6c723654161a465b3fea}\
\\ Returns the input string with a custom sequence appended to
it. \item[autolink]\refer{labele892a78a3adaa46e855473cff04d7f84}\
\\ Returns the input string with the addresses replaced by link
tags. \item[begins\ with]\refer{label6dbfb9a50ce3bc53e454c4b23b31ce99}\
\\ Checks if a string starts with a specific character/sequence.
\item[break]\refer{labelfc7b496018945059d992447eee030db7}\ \\ Re-
turns the input string with all newlines converted to HTML breaks.
\item[chr]\refer{labelbfbb0f4fae245bc8f420a0a9e54115f9}\ \\ Gener-
ates a string based on the input array of ASCII/UNICODE values.
\item[compare]\refer{label533863db4b0631d2157a4ce9dccb4060}\ \\ Compares the
contents of two strings. \item[concat]\refer{labelb2399404c8c592fe6efbcff33817990b}\ \\
Merges several strings into one string. \item[contains]\refer{label82a9f4480d763f6734a5ab57cbb22f0c}\
\\ Checks if a string contains a specific element. \item[count\
chars]\refer{label7ecc149f2e6d21af89674deafb3cef18}\ \\ Returns the length of the
input string. \item[count\ words]\refer{labele356c5639d48b1131b71869438f44717}\
\\ Returns the number of words that make up the input
string. \item[crc32]\refer{label0d3707fd22e82e2c4d95490f7007e6f6}\
\\ Returns the CRC32 polynomial of the input string.
\item[downcase]\refer{label7129434c28c01a4dbded2b5d03e20f7b}\
\\ Returns a lowercased version of the input string.
\item[ends\ with]\refer{labelcce00bc4d2386ce1b8bbb0cdcbb8de62}\
\\ Checks if a string ends with a specific character/sequence.
\item[explode]\refer{label86e8bbe9ab49725daec9eadd5ac813a0}\ \\
Splits the input string and returns it as an array of strings.
\item[extract]\refer{label9020aa31e76cbfeb2e6ef623a8df2f36}\ \\ Returns a portion of
the input string. \item[extract\ left]\refer{labelf974fd8491cbf05855cb723ffd355f6d}\
\\ Returns a portion of the start of the input string. \item[extract\
right]\refer{label836e6a6a3a87a697f8c7dc2d489dec87}\ \\ Returns a portion of the
end of the input string. \item[indent]\refer{labelbe14a0a7c0c778a6ea498a2dcdbf6b39}\
\\ Returns an indented version of the input string.
\item[insert]\refer{label4758a353292dedc8987c5dabe322c716}\ \\ Returns
the input string with additional text inserted at a specified position.
\item[md5]\refer{label47833d7893118170211164627b6dd6d2}\ \\ Returns the MD5
hash of the input string. \item[nl2br]\refer{labeldee7588d822fc5a274e2d264acb4a2ce}\
\\ Returns the input string with all newlines converted to HTML
breaks. \item[ord]\refer{label13bd7f1445fd586330662c0e446f6a81}\ \\
Returns an array containing the ASCII/UNICODE values of the in-
put string. \item[pad]\refer{label69c1fbee552360b29f8be903d6d2fd28}\
\\ Returns a lengthened version of the input string.
\item[prepend]\refer{label94d76e5b4ca4a140b6ee4897725c492b}\ \\
Returns the input string prepended with a custom sequence.
\item[remove]\refer{labeld66a835f7c1cb6e8f910ae3d24330efe}\ \\ Returns a pruned ver-
sion of the input string. \item[repeat]\refer{labelae3eb7cda8791803bdfd103e9e758bd4}\
\\ Returns a repeated version of the input string. \item[reverse]\refer{labeld5242da9b93cb93cc0d179ef1331983c}\
\\ Returns a reversed version of the input string. \item[rot13]\refer{label234e7989d188c1f3e7c414240d287d22}\
\\ Returns a ROT13 transformation of the input string.
\item[shorten]\refer{labela4f836b63a74532410baa461b950d5f0}\

5.7.8 Template operators / Strings 1118

5

\\ Returns a shortened version of the input string.
\item[simpletags]\refer{label0d2237486b1ccff8379a6291f634c4d6}\
\\ Returns a partially marked up version of the input string.
\item[simplify]\refer{label3c80c5815388866c191ee8cf4625189d}\
\\ Returns a simplified version of the input string.
\item[trim]\refer{label61ed99e4090274b865df684a764ca8b3}\ \\ Returns a stripped ver-
sion of the input string. \item[upcase]\refer{labelb078e323f03e883fdb435e57fe9c59fb}\
\\ Returns a capitalized version of the input string.
\item[upfirst]\refer{label952380b3fc38213d8c011effd35cf56c}\ \\
Returns the input string with a capitalized initial let-
ter. \item[upword]\refer{label49259b88e75273dbc3f8f3e70d0f631f}\
\\ Returns the input string with capitalized initial let-
ters. \item[wash]\refer{labele22d4d94296351568d9c6685f406ecda}\
\\ Returns an HTML-safe version of the input string.
\item[wordtoimage]\refer{label43098614ff68d00c8b29f5521f12a220}\
\\ Returns the input string with embedded image tags.
\item[wrap]\refer{labela3de40d45b3ba7b1cee1613328ab0761}\ \\ Returns a wrapped
version of the input string.

\end{description}

5.7.8 Template operators / Strings 1119

5

append

Summary

Returns the input string with a custom sequence appended to it.

Usage

input|append(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 mixed Text to be appended. Yes.
value2 mixed More text that should be appended. No.

Returns

A string consisting of the input string and the parameters.

Description

This operator appends the parameter value(s) at the end of the input string and returns the
resulting string.

Examples

Example 1

{’The ’|append(’Last ’, ’Crusade ’)}

The following output will be produced: ”The Last Crusade”.

5.7.8 Template operators / Strings 1120

5

autolink

Summary

Returns the input string with the addresses replaced by link tags.

Usage

input|autolink()

Returns

A string with marked up links.

Description

This operator takes a string as an input. It will convert links and E-mail addresses to clickable
entities using HTML markup. The resulting string (containing markup here and there) will
be returned.

Examples

Example 1

{’Blah blah http://www.example.com blah hello@example.com blah.’|autolink()}

The following output will be produced:

Blah blah http://www.example.com</

a> blah hello@example.com blah.

5.7.8 Template operators / Strings 1121

5

begins with

Summary

Checks if a string starts with a specific character/sequence.

Usage

input|begins_with(sequence)

Parameters

Name Type Description Required
sequence string The string that should be matched. Yes.

Returns

TRUE if there is a match, FALSE otherwise.

Description

This operator checks if the input string starts with a specified sequence of characters. If yes,
the operator returns TRUE, otherwise FALSE will be returned.

Examples

Example 1

{’My cat is green.’|begins_with(’My cat’)}

Returns TRUE.

Example 2

{’My cat is green.’|begins_with(’My dog’)}

Returns FALSE.

5.7.8 Template operators / Strings 1122

5

break

Summary

Returns the input string with all newlines converted to HTML breaks.

Usage

input|break()

Returns

A string with HTML breaks.

Description

This operator takes a string as input. It does not replace newline characters/sequences, but it
does insert HTML break tags (
) before all newlines in a string and returns a modified
version of the input.

Examples

Example 1

{’The lazy

cat

jumps over

the quick rat.’|break()}

The following output will be produced:

The lazy
cat
jumps over
the quick rat.

5.7.8 Template operators / Strings 1123

5

chr

Summary

Generates a string based on the input array of ASCII/UNICODE values.

Usage

input|chr()

Returns

A string containing the requested characters.

Description

This operator creates and returns a string. The contents of the returned string is determined
by the input parameter which must be an array of ASCII/UNICODE values (as integers).

Examples

Example 1

{array(97, 98, 99)|chr()}

The following output will be produced: ”abc”.

5.7.8 Template operators / Strings 1124

5

compare

Summary

Compares the contents of two strings.

Usage

input|compare(compare_with)

Returns

TRUE if the strings match, FALSE otherwise.

Description

This operator compares the contents of two strings and returns TRUE if they’re identical,
FALSE if they differ.

Examples

Example 1

{’Hello world’|compare(’Hello world’)}

Returns TRUE.

Example 2

{’Hello world’|compare(’Goodbye world’)}

Returns FALSE.

5.7.8 Template operators / Strings 1125

5

concat

Summary

Merges several strings into one string.

Usage

concat(value1, value2 [,...])

Parameters

Name Type Description Required
value1 mixed A string that should be added. Yes.
value2 mixed Another string that should be added. Yes.

Returns

A string consisting of all the parameters.

Description

This operator merges several strings into one and returns the resulting string.

Examples

Example 1

{concat(’what’, ’ever’)}

The following output will be produced: ”whatever”.

Example 2

{def $number=256}

{concat(’The number is: ’, $number, ’!’)}

The following output will be produced: ”The number is: 256!”

5.7.8 Template operators / Strings 1126

5

contains

Summary

Checks if a string contains a specific element.

Usage

input|contains(sequence)

Parameters

Name Type Description Required
sequence string The string that should be matched. Yes.

Returns

TRUE if there is a match, FALSE otherwise.

Description

This operator checks if the input string contains a specific sequence of characters. If a match
is found, the operator will return TRUE, otherwise FALSE will be returned.

Examples

Example 1

{’Welcome to my homepage!’|contains(’my’)}

Returns TRUE.

Example 2

{’Welcome to my homepage!’|contains(’your’)}

Returns FALSE.

5.7.8 Template operators / Strings 1127

5

count chars

Summary

Returns the length of the input string.

Usage

input|count_chars()

Returns

An integer revealing the string length.

Description

This operator counts and returns the number of characters (all of them, whitespaces included)
that make up the input string.

Examples

Example 1

{’Testing 1 2 3’|count_chars()}

The following output will be returned: ”13”.

Example 2

{’Testing’|count_chars()}

The following output will be returned: ”7”.

5.7.8 Template operators / Strings 1128

5

count words

Summary

Returns the number of words that make up the input string.

Usage

input|count_words()

Returns

An integer revealing the number of words that make up a string.

Description

This operator counts and returns the number of words that are found within the input string.

Examples

Example 1

{’Where do you want to publish today?’|count_words()}

The following output will be returned: ”7”.

5.7.8 Template operators / Strings 1129

5

crc32

Summary

Returns the CRC32 polynomial of the input string.

Usage

input|crc32()

Returns

The CRC32 polynomial of the input string.

Description

This operator calculates and returns the CRC32 polynomial of the input string.

Examples

Example 1

{’filename.txt’|crc32()}

The following output will be produced: ”-460339180”.

5.7.8 Template operators / Strings 1130

5

downcase

Summary

Returns a lowercased version of the input string.

Usage

input|downcase()

Returns

A lowercase version of the input string.

Description

This operator returns a lowercased version of the input string.

Examples

Example 1

{"My StriNG Is CoOl!"|downcase()}

The following output will be produced: ”my string is cool!”.

5.7.8 Template operators / Strings 1131

5

ends with

Summary

Checks if a string ends with a specific character/sequence.

Usage

input|ends_with(sequence)

Parameters

Name Type Description Required
sequence string The string that should be matched. Yes.

Returns

TRUE if there is a match, FALSE otherwise.

Description

This operator checks if the input string ends with a specified sequence of characters. If yes,
the operator returns TRUE, otherwise FALSE will be returned.

Examples

Example 1

{’Linux is great!’|ends_with(’great!’)}

Returns TRUE.

Example 2

{’Linux is great!’|begins_with(’great’)}

Returns FALSE.

5.7.8 Template operators / Strings 1132

5

explode

Summary

Splits the input string and returns it as an array of strings.

Usage

input|explode(separator)

Parameters

Name Type Description Required
separator string Split sequence. Yes.

Returns

An array of strings.

Description

This operator takes a string as input and returns an array of strings. Each element in the
array will be a part of the input string extracted on the basis of the specified sequence of split
characters.

Examples

Example 1

{’All-your-base-are-belong-to-us!’|explode(’-’)}

The following array will be returned: (’All’, ’your’, ’base’, ’are’, ’belong’, ’to’, ’us!’).

5.7.8 Template operators / Strings 1133

5

extract

Summary

Returns a portion of the input string.

Usage

input|extract(offset [, length])

Parameters

Name Type Description Required
offset integer The offset to start at. Yes.
length integer The number of characters that should be ex-

tracted.
No.

Returns

A string containing a portion of the input string.

Description

This operator will return a portion of the input string. The returned portion must be defined
by the ”offset” and ”length” parameters. If the ”length” parameter is omitted, the rest of the
string (from offset) will be returned.

Examples

Example 1

{’I love monday mornings!’|extract(7)}

The following output will be produced: ”monday mornings!”.

Example 2

{’Big apples.’|extract(4, 5)}

The following output will be produced: ”apple”.

5.7.8 Template operators / Strings 1134

5

extract left

Summary

Returns a portion of the start of the input string.

Usage

$input_string|extract_left(length)

Parameters

Name Type Description Required
length integer The number of characters that should be ex-

tracted.
Yes.

Returns

A string containing a chunk of the input string.

Description

This operator extracts a portion from the start of the input string. The ”length” parameter
must be used to define the length (number of characters) of the portion.

Examples

Example 1

{’Gooooood morning Vietnam!’|extract_left(8)}

The following output will be produced: ”Gooooood”.

5.7.8 Template operators / Strings 1135

5

extract right

Summary

Returns a portion of the end of the input string.

Usage

input|extract_right(length)

Parameters

Name Type Description Required
length integer The number of characters that should be ex-

tracted.
Yes.

Returns

A string containing a chunk of the input string.

Description

This operator extracts a portion from the end of the input string. The ”length” parameter
must be used to define the length (number of characters) of the portion.

Examples

Example 1

{"Gooooood morning Vietnam!"|extract_right(8)}

The following output will be produced: ”Vietnam!”.

5.7.8 Template operators / Strings 1136

5

indent

Summary

Returns an indented version of the input string.

Usage

input|indent(count [, type [, filler]])

Parameters

Name Type Description Required
count integer Number of indentations. Yes.
type string Type of indentation (”space”, ”tab” or ”cus-

tom”).
No.

filler string Custom indentation. No.

Returns

An indented version of the input string.

Description

This operator indents the input string and returns it. The indentation type can be set to
”space”, ”tab” or ”custom”. The default indentation is ”space”. If the indentation type is set
to ”custom”, the ”filler” parameter must be set to the desired indentation string.

Examples

Example 1

{’This is my text’|indent(1)}

The following string will be returned: ” This is my text”.

Example 2

{’This is my second line’|indent(3, ’custom’, ’.’)}

The following string will be returned: ”...This is my second line”.

5.7.8 Template operators / Strings 1137

5

insert

Summary

Returns the input string with additional text inserted at a specified position.

Usage

input|insert(offset, sequence)

Parameters

Name Type Description Required
offset integer The position where the sequence should be

inserted.
Yes.

sequence string The string that should be inserted. Yes.

Returns

A string consisting of the input and the inserted sequence.

Description

This operator inserts a sequence of characters at a specified position of the input string. The
resulting string will be returned.

Examples

Example 1

{’My string is simple.’|insert(3, ’static ’)}

The following output will be produced: ”My static string is simple.”.

5.7.8 Template operators / Strings 1138

5

md5

Summary

Returns the MD5 hash of the input string.

Usage

input|md5()

Returns

The MD5 hash of the input string.

Description

This operator calculates and returns the MD5 hash of the input string.

Examples

Example 1

{’Desktop computer’|md5()}

The following output will be produced: ”8cae7108f44d1958b9febc65e44cbbc8”.

5.7.8 Template operators / Strings 1139

5

nl2br

Summary

Returns the input string with all newlines converted to HTML breaks.

Usage

input|nl2br()

Returns

A string with HTML breaks.

Description

This operator takes a string as input. It replaces newline characters/sequences with HTML
break tags and returns a modified version of the input.

Examples

Example 1

{’The lazy

cat

jumps over

the quick rat.’|break()}

The following output will be produced:

The lazy
cat
jumps over
the quick rat.

5.7.8 Template operators / Strings 1140

5

ord

Summary

Returns an array containing the ASCII/UNICODE values of the input string.

Usage

input|ord()

Returns

An array with ASCII/UNICODE values.

Description

This operator returns an array containing the ASCII/UNICODE values of the characters that
make up the input string.

Examples

Example 1

{’abcdef’|ord()}

The following array will be returned: (97, 98, 99, 100, 101, 102).

5.7.8 Template operators / Strings 1141

5

pad

Summary

Returns a lengthened version of the input string.

Usage

input|pad(length [, padding])

Parameters

Name Type Description Required
length integer The desired length of the string. Yes.
padding character Custom character to be used for padding. No.

Returns

A padded version of the input string.

Description

This operator makes sure that the input string is at least ”length” characters long by inserting
extra characters at the end. It is possible to specify a custom character using the ”padding”
parameter (default is space). The operator returns a padded version of the input string.

Examples

Example 1

{’Too short!’|pad(15)}

The following string will be produced: ”Too short! ”.

Example 2

{’Too short!’|pad(16, ’-’)}

The following string will be produced: ”Too short!-––-”.

5.7.8 Template operators / Strings 1142

5

prepend

Summary

Returns the input string prepended with a custom sequence.

Usage

input|prepend(sequence)

Parameters

Name Type Description Required
sequence string The string that should be prepended. Yes.

Returns

A string consisting of the first parameter and the input string.

Description

This operator puts the ”sequence” parameter at the start of the input string and returns the
resulting string.

Examples

Example 1

{’Weaver’|prepend(’Sigourney ’)}

The following string will be produced: ”Sigourney Weaver”.

5.7.8 Template operators / Strings 1143

5

remove

Summary

Returns a pruned version of the input string.

Usage

input|remove(offset, length)

Parameters

Name Type Description Required
offset integer The offset to start at. Yes.
length integer The number of characters that should be re-

moved.
Yes.

Returns

A pruned version of the input string.

Description

This remove operator removes characters from the input string and returns the pruned ver-
sion. The ”offset” and ”length” parameters must be used to define the start and length of the
portion that should be removed.

Examples

Example 1

’My string is simple.’|remove(3, 2)

The following string will be produced: ”My ring is simple.”.

5.7.8 Template operators / Strings 1144

5

repeat

Summary

Returns a repeated version of the input string.

Usage

input|repeat(count)

Parameters

Name Type Description Required
count integer The number of repeats. Yes.

Returns

A repeated version of the input string.

Description

This operator returns a repeated version of the input string. The ”count” parameter must be
used to define the desired number of repetitions.

Examples

Example 1

{’*DJ Cat Show*’|repeat(2)}

The following string will be produced: ”*DJ Cat Show* *DJ Cat Show* ”.

5.7.8 Template operators / Strings 1145

5

reverse

Summary

Returns a reversed version of the input string.

Usage

input|reverse()

Returns

A reversed version of the input string.

Description

This operator returns a reversed version of an input string.

Examples

Example

{"Hello World"|reverse}

The following output will be produced: ”dlroW olleH”.

5.7.8 Template operators / Strings 1146

5

rot13

Summary

Returns a ROT13 transformation of the input string.

Usage

input|rot13()

Returns

A rotated version of the input string.

Description

Returns a ROT13 transformation of the input string.

Examples

Example 1

{’Hello World’|rot13()}

The following output will be produced: ”Uryyb Jbeyq”.

Example 2

{’Uryyb Jbeyq’|rot13()}

The following output will be produced: ”Hello world”.

5.7.8 Template operators / Strings 1147

5

shorten

Summary

Returns a shortened version of the input string.

Usage

input|shorten([length [, sequence [, trim_type]]])

Parameters

Name Type Description Required
length integer The desired length of the returned string. No.
sequence string Custom trailing/end-sequence. No.
trim type string Controls the type of trimming: ”right” (de-

fault) or ”middle”.
No.

Returns

A shortened version of the input string.

Description

This operator shortens the input string to ”length” characters and adds a trailing sequence.
Please note that the ”length” parameter also includes the length of the trailing sequence. If
the input string is shorter than ”length”, it will not be shortened. The default length is 80,
the default trailing sequence is three dots: ”...”. The third parameter controls the type of
trimming, it can be set to either ”right” (default) or ”middle”.

Examples

Example 1

{’Led Zeppelin rocks!’|shorten(15)}

The following output will be produced: ”Led Zeppelin...”.

Example 2

{"eZ Systems"|shorten(7, ’...’ , ’middle’)}

The following output will be produced: ”eZ...ms”.

5.7.8 Template operators / Strings 1148

5

simpletags

Summary

Returns a partially marked up version of the input string.

Usage

input|simpletags([taglist])

Parameters

Name Type Description Required
taglist string The name of the custom tag group that

should be used.
No.

Returns

A partially marked up version of the input string.

Description

This operator returns a partially marked up version of the input string. It can be used to allow
the usage/pass-through of a small subset of HTML/custom tags (other/disallowed tags will be
removed). This operator is typically useful when it comes to allowing some kind of formatting
in for example comments (instances of a class that does not support formatting through the
XML block datatype). The optional ”taglist” parameter can be used to select the list of allowed
tags (the default is ”TagList”). The tags/groups must be defined in a configuration override
for ”template.ini”. The following table shows the tags that are allowed by default.

Custom tag HTML replacement
literal

<pre>...</pre>

code
<pre class="code">...</pre>

strong
...

emphasize
<i>...</i>

Examples

Example 1

5.7.8 Template operators / Strings 1149

5

{’Back To The Future’|simpletags()}

The following output will be produced:

Back To The Future

5.7.8 Template operators / Strings 1150

5

simplify

Summary

Returns a simplified version of the input string.

Usage

input|simplify([char])

Parameters

Name Type Description Required
char character The character that should be simplified. No.

Returns

A simplified version of the input string.

Description

This operator takes a string as the input parameter. It transforms multiple consecutive char-
acters into one. The operator can be used to remove the duplicates as it leaves only a single
copy of each character. It is possible to specify only one character that should be simplified,
this can be done using the optional ”char” parameter. By default, the operator removes mul-
tiple spaces. Special characters must be specified using regular expression style, please refer
to the table below.

Character Description
\t Tab (HT, TAB)
\n Newline (LF, NL)
\r Return (CR)
\f Form feed (FF)
\a Alarm / bell (BEL)
\e Escape / think troff (ESC)

Examples

Example 1

{’We don’t need no whitespaces!’|simplify()}

The following output will be produced: ”We don’t need no whitespaces!”.

5.7.8 Template operators / Strings 1151

5

Example 2

{’This____string__is___annoying.’|simplify(’_’)}

The following output will be produced: ”This string is annoying.”.

5.7.8 Template operators / Strings 1152

5

trim

Summary

Returns a stripped version of the input string.

Usage

input|trim([char_list])

Parameters

Name Type Description Required
char list string Characters that should be removed. No.

Returns

A stripped version of the input string.

Description

This operator removes characters from the beginning and the end of the input string. By
default, it will get rid of the following characters:

Character ASCII value (dec) ASCII value (hex) Description
32 0x20 An ordinary space.

\t 9 0x09 A tab.
\n 10 0x0A A new line (line

feed).
\r 13 0x0D A carriage return.
\0 0 0x00 The NUL-byte.
\x0B 11 0x0B A vertical tab.

Examples

Example 1

{’ Gizmo is not a gremlin. ’|trim()}

The following output will be produced: ”Gizmo is not a gremlin.”

5.7.8 Template operators / Strings 1153

5

upcase

Summary

Returns a capitalized version of the input string.

Usage

input|upcase()

Returns

A capitalized version of the input string.

Description

This operator returns a capitalized version of the input string.

Examples

Example 3

{’This is my string.’|upcase()}

The following output will be produced: ”THIS IS MY STRING.”.

5.7.8 Template operators / Strings 1154

5

upfirst

Summary

Returns the input string with a capitalized initial letter.

Usage

input|upfirst()

Returns

The input string with a capitalized initial letter.

Description

This operator converts the first character of the input string to a capital letter. The resulting
string is returned.

Examples

Example 1

{’good bye!’|upfirst()}

The following string will be returned: ”Good bye!”.

5.7.8 Template operators / Strings 1155

5

upword

Summary

Returns the input string with capitalized initial letters.

Usage

input|upword()

Returns

The input string with capitalized initial letters.

Description

This operator returns the input string with capitalized initial letters.

Examples

Example 3

{’good bye lenin!’|upword()}

The following output will be produced: ”Good Bye Lenin!”.

5.7.8 Template operators / Strings 1156

5

wash

Summary

Returns an HTML-safe version of the input string.

Usage

input|wash([type])

Parameters

Name Type Description Required
type string The type of text that should be washed. No.

Returns

An HTML-safe version of the input string.

Description

This operator translates the input string into an HTML friendly version. It will take care of
converting bogus characters to HTML-friendly replacements. The ”type” parameter can be
used to specify the washing type, it can be set to either ”xhtml” or ”email” (the default is
”xhtml”). E-mail washing can be controlled using the setting of the [WashSettings] configu-
ration block of ”template.ini”. All strings that may break the HTML should always be washed
using this operator.

Examples

Example 1

{’Bogus & stuff <’|wash()}

The following output will be produced: "Bogus & stuff <".

Example 2

{’hello@example.com’|wash(’email’)}

The following output will be produced:

helloSPAMFILTER@example.com

Example 3

5.7.8 Template operators / Strings 1157

5

{’hello@example.com’|wash(’email’)}

If a configuration override for ”template.ini” exists and contains...

[WashSettings]

EmailDotText=[dot]

EmailAtText=[at]

...the following output will be produced: ”hello[at]example[dot]com”.

5.7.8 Template operators / Strings 1158

5

wordtoimage

Summary

Returns the input string with embedded image tags.

Usage

input|wordtoimage()

Returns

The input string with embedded image tags.

Description

This operator looks for special character sequences in the input string. When a match is
found, it will be replaced by an image tag. For example, the sequence ”:-)” will be replaced
by a small image of a smiling face. The character sequences that should be replaced and the
images that should be used are defined in the ”wordtoimage.ini” configuration file.

Examples

Example 1

{’No problemo... :-)’|wordtoimage()}

This would return the input string where the ”:-)” sequence would be replaced by an image
tag referencing a small image of a smiling face.

5.7.8 Template operators / Strings 1159

5

wrap

Summary

Returns a wrapped version of the input string.

Usage

input|wrap([width [, break_sequence [, cut]]])

Parameters

Name Type Description Required
width integer The width at which the text should be

wrapped.
No.

break sequence string A custom break/newline sequence. No.
cut boolean TRUE (force wrap) or FALSE (do not force

wrap).
No.

Returns

A wrapped version of the input string.

Description

This operator returns a wrapped version of the input string. The string will be wrapped at
either the default width (80 characters) or at a width specified using the optional ”width”
parameter. It inserts newline characters (”\n”) or a character/sequence which is specified
using the optional ”break sequence” parameter. The ”cut” parameter can be set to either
TRUE or FALSE - it controls whether the string should always be wrapped at the specified
width or not (a word that is larger than the desired width, it will be broken apart).

Examples

Example 1

{’Hello world’|wrap(5)}

The following output will be produced:

Hello
world

5.7.9 Template operators / URLs 1160

5

5.7.9 URLs

exturl (page 1161)
Not documented yet.

ezdesign (page 1162)
Returns the input string prepended with the current design directory.

ezimage (page 1163)
Returns the input string prepended with the current image directory.

ezroot (page 1165)
Same as ”ezurl” without ”index.php” and the siteaccess name in the returned address.

ezurl (page 1166)
Returns a working version of an eZ Publish URL (provided as input).

5.7.9 Template operators / URLs 1161

5

exturl

Summary

Not documented yet.

5.7.9 Template operators / URLs 1162

5

ezdesign

Summary

Returns the input string prepended with the current design directory.

Usage

input|ezdesign([quote])

Parameters

Name Type Description Required
quote string Quote style: ”no”, ”single” or ”double” (de-

fault).
No.

Returns

The input string prepended with the current image directory.

Description

This operator returns the input string prepended with the current design directory. If the
operator is unable to find the specified file within the current design, it will attempt to locate
it in the fallback designs or the standard design. The ”ezdesign” operator should always be
used when a design related file is included in a template. It will make sure that the path
to the file is always correct, regardless of the location of the eZ Publish directory, the access
method, the environment, and so on.

By default, this operator returns a double-quoted string. The optional ”quote” parameter can
be used to control the way the address is returned: ”no” (no quotes), ”single” (single quotes)
or ”double” (double quotes, the default). Dropping quotes is useful when specifying CSS files
in the following way:

<style type="text/css">

@import url({’stylesheets/core.css’|ezdesign(’no’)});

@import url({’stylesheets/ezmain.css’|ezdesign(’no’)});

@import url({’stylesheets/ezsystems.css’|ezdesign(’no’)});

</style>

5.7.9 Template operators / URLs 1163

5

ezimage

Summary

Returns the input string prepended with the current image directory.

Usage

input|ezimage([quote [, slash_skip]])

Parameters

Name Type Description Required
quote string Quote style: ”no”, ”single” or ”double” (de-

fault).
No.

skip slash boolean Include (FALSE, default) or skip (TRUE) the
first slash.

No.

Returns

The input string prepended with the current image directory.

Description

This operator prepends the input string with the location of the image directory used by
the current design. If the operator is unable to find the specified file within the ”images”
subdirectory of the current design, it will attempt to locate it in the ”images” subdirectory of
the fallback designs or the standard design. The ”ezimage” operator should always be used
when an image is included in a template. It will make sure that the path to the image is
always correct, regardless of the location of the eZ Publish directory, the access method, the
environment, and so on.

By default, this operator returns a double-quoted string. The optional ”quote” parameter can
be used to control the way the address is returned: ”no” (no quotes), ”single” (single quotes)
or ”double” (double quotes, the default). The optional ”skip slash” parameter can be used to
get rid of the first slash within the string that is being returned (when set to false()).

Examples

Example 1

In this example, the design ”my company” is used by the siteaccess. Images should be in-
cluded in the following way:

The following output will be produced:

5.7.9 Template operators / URLs 1164

5

If eZ Publish is unable to find the image within the images directory of the current design
directory, it will attempt to find it within the images subdirectory of the additional designs.
At last, it will fallback to the standard design. In this case, the output will be the following:

5.7.9 Template operators / URLs 1165

5

ezroot

Summary

Same as ”ezurl” without ”index.php” and the siteaccess name in the returned address.

Usage

input|ezurl([quote [, type]])

Parameters

Name Type Description Required
quote string Quote style: ”no”, ”single” or ”double” (de-

fault).
No.

type string URL type: ”full” or ”relative” (default). No.

Returns

A string containing a working version of the input address.

Description

This operator works almost in the same way as the ”ezurl” (page 1166) operator. The only
difference is that it does not include ”index.php” or the name of the siteaccess in the returned
address. In other words, it returns an address which points to the root of the eZ Publish
directory.

5.7.9 Template operators / URLs 1166

5

ezurl

Summary

Returns a working version of an eZ Publish URL (provided as input).

Usage

input|ezurl([quote [, type]])

Parameters

Name Type Description Required
quote string Quote style: ”no”, ”single” or ”double” (de-

fault).
No.

type string URL type: ”full” or ”relative” (default). No.

Returns

A quoted string containing a valid / working version of the input URL.

Description

This operator takes an eZ Publish URL as input (either a system URL or a virtual URL); based
on the location of the eZ Publish folder, the access settings and the environment, it will
produce a valid address. All eZ Publish URLs that are specified in templates should always
be piped through this operator; it will make sure that the URLs work regardless where eZ
Publish is installed, which access method is used, and so on.

By default, this operator returns a relative URL as a double-quoted string. The optional
”quote” parameter can be used to control the way the address is returned: ”no” (no quotes),
”single” (single quotes) or ”double” (double quotes, the default). The optional ”type” param-
eter controls whether relative or full URL is returned.

Examples

Example 1

Let’s say that we’re running a site called ”my company” (name of the siteaccess) and that we
wish to create a link to the full view of node number 1024. Instead of specifying the entire
URL (domain and all included) in the link tag, we pipe ”/content/view/full/1024” or the
virtual URL (for example ”/test”) through the ”ezurl” operator:

Test

Test

The operator will take care of translating the URLs into valid addresses depending on the
setup and the environment eZ Publish is running in. If eZ Publish is running in a virtual host

5.7.9 Template operators / URLs 1167

5

environment (page 73) and uses the host access method, the following type of URLs will be
produced:

”http://www.example.com/content/view/full/1024”
”http://www.example.com/test”

The ”index.php” part of the URL will be supressed by the virtual host configuration (page
76). The name of the siteaccess will not appear in the URL because eZ Publish will use the
domain/host to figure out which siteaccess to use.

If eZ Publish is running in a non-virtual host environment and uses the uri access method, the
following URLs will be produced:

”http://www.example.com/index.php/my company/content/view/full/1024”
”http://www.example.com/index.php/my company/test”

Example 2

Test

Test

If eZ Publish is running in a virtual host environment and uses the host access method, the
following type of URLs will be produced:

”/content/view/full/1024”
”/test”

The ”index.php” part of the URL will be supressed by the virtual host configuration. The name
of the siteaccess will not appear in the URL because eZ Publish will use the domain/host to
figure out which siteaccess to use.

If eZ Publish is running in a non-virtual host environment and uses the uri access method, the
following URLs will be produced:

”/index.php/my company/content/view/full/1024”
”/index.php/my company/test”

5.7.10 Template operators / Variable and type handling 1168

5

5.7.10 Variable and type handling

count (page 1169)
Returns the count of the input parameter.

float (page 1170)
Converts the input parameter to a float.

get class (page 1171)
Returns the class name of an object.

get type (page 1173)
Returns the type of the provided variable.

int (page 1175)
Converts the input parameter to an integer.

is array (page 1176)
Returns TRUE if the provided variable is an array.

is boolean (page 1178)
Returns TRUE if the provided variable is a boolean.

is class (page 1180)
Returns TRUE if an object is an instance of a specific class.

is float (page 1182)
Returns TRUE if the provided variable is a float.

is integer (page 1184)
Returns TRUE if the provided variable is an integer.

is null (page 1186)
Returns TRUE if the provided variable is NULL.

is numeric (page 1188)
Returns TRUE if the provided variable is a number.

is object (page 1190)
Returns TRUE if the target variable is an object.

is set (page 1192)
Returns TRUE if the value of the provided variable is set.

is string (page 1194)
Returns TRUE if the provided variable is a string.

is unset (page 1196)
Returns TRUE if the provided variable is not set (has no value).

5.7.10 Template operators / Variable and type handling 1169

5

count

Summary

Returns the count of the input parameter.

Usage

input|count()

Returns

An integer revealing the count.

Description

This operator returns the count of the input parameter. The following table shows how the
operator works with different variable types.

Type Description
Array The number of elements is returned.
Object The number of object attributes is returned.
String The length of the string is returned.
Number The value itself is returned.
Boolean FALSE results in 0 and TRUE results in 1.
Other 0 is returned.

Examples

Example 1

{array(1, 2, 5)|count()}

The following output will be produced: ”3”.

5.7.10 Template operators / Variable and type handling 1170

5

float

Summary

Converts the input parameter to a float.

Usage

input|float()

Returns

A float representation of the input parameter.

Description

This operator attempts to convert the input parameter to a float. It returns the converted
value as a float. If the operator is unable to do the conversion, it will return a value of zero
(0).

Examples

Example 1

{def $pi=’3.1415’}

Value: {$pi|float()}

Converts the string ”3.1415” and returns it as a float. The following output will be produced:
”Value: 3.1415”.

Example 2

{def $pi=’three point fourteen’}

Value: {$pi|float()}

The following output will be produced: ”Value: 0”.

5.7.10 Template operators / Variable and type handling 1171

5

get class

Summary

Returns the class name of an object.

Usage

input|get_class(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

A string containing the class name or FALSE.

Description

This operator gets the class of the input parameter or the target variable. It returns the PHP
class name as a string. If both the input parameter and the target variable are provided, it is
the target variable that will be evaluated. If the provided variable is not an object then the
operator will return FALSE.

Examples

Example 1

{def $my_variable="Test"}

{if get_class($my_variable)}

Class detected.

{else}

There is no class.

{/if}

The following output will be produced: ”There is no class.”.

5.7.10 Template operators / Variable and type handling 1172

5

Example 2

{get_class($node)}

If $node is an actual content node, the following output will be produced: ”ezcontentobject-
treenode”.

5.7.10 Template operators / Variable and type handling 1173

5

get type

Summary

Returns the type of the provided variable.

Usage

input|get_type(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

A string containing the type of the provided variable.

Description

This operator can be used to check the type of a variable. It returns the type of the input
parameter or the target variable as a string. If both the input parameter and the target
variable are provided, it is the target variable that will be evaluated.

• If the data is an object, the string ”object” and the name of the class will be returned.

• If the data is an array, the string ”array” and the number of elements will be returned.

• If the data is a string, the string ”string” and the length of the string will be returned.

Examples

Example 1

{def $my_variable=’ich bin’}

{$my_variable|get_type()}

The following output will be produced: ”string”.

5.7.10 Template operators / Variable and type handling 1174

5

Example 2

{def $my_variable=’ich bin’

$your_variable=array(’du’, ’bist’)}

{$my_variable|get_type($your_variable)}

The following output will be produced: ”array[2]”.

5.7.10 Template operators / Variable and type handling 1175

5

int

Summary

Converts the input parameter to an integer.

Usage

input|int()

Returns

An integer representation of the input parameter.

Description

This operator attempts to convert the input parameter to an integer. It will return the con-
verted value as an integer. If the operator is unable to do the conversion, it will return the
value of zero (0).

Examples

Example 1

{def $number=’57’}

Value: {$number|int()}

Converts the string ”57” and returns it as an integer. The following output will be produced:
”Value: 57”.

Example 2

{def $number=’fiftyseven’}

Value: {$number|int()}

The following output will be produced: ”Value: 0”.

5.7.10 Template operators / Variable and type handling 1176

5

is array

Summary

Returns TRUE if the provided variable is an array.

Usage

input|is_array(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is an array. If it is, the
operator will return TRUE, otherwise FALSE will be returned. If both the input parameter
and the target variable are provided, it is the target variable that will be evaluated.

Examples

Example 1

{def $my_variable=array(1, 2, 3)}

{if $my_variable|is_array()}

It is an array.

{else}

It is not an array.

{/if}

The following output will be produced: ”It is an array.”.

5.7.10 Template operators / Variable and type handling 1177

5

Example 2

{def $my_variable=array(1, 2, 3)}

{if is_array($my_variable)}

It is an array.

{else}

It is not an array.

{/if}

The following output will be produced: ”It is an array.”.

Example 3

{def $a=array(1, 2, 3)

$b=’Mobile instrument.’}

{if $a|is_array($b)}

It is an array.

{else}

It is not an array.

{/if}

The following output will be produced: ”It is not an array.”.

5.7.10 Template operators / Variable and type handling 1178

5

is boolean

Summary

Returns TRUE if the provided variable is a boolean.

Usage

input|is_boolean(target)

Parameters

Name Type Description Required
target any Target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is a boolean. If it is, the
operator will return TRUE, otherwise FALSE will be returned. If both the input parameter
and the target variable are provided, it is the target variable that will be evaluated.

Examples

Example 1

{def $my_variable=true

{if $my_variable|is_boolean()}

It is a boolean.

{else}

It is not a boolean.

{/if}

The following output will be produced: ”It is a boolean.”.

Example 2

5.7.10 Template operators / Variable and type handling 1179

5

{def $my_variable=true

{if is_boolean($my_variable)}

It is a boolean.

{else}

It is not a boolean.

{/if}

The following output will be produced: ”It is a boolean.”.

Example 3

{def $my_variable=true

$your_variable=’BOFID’}

{if $my_variable|is_boolean($your_variable)}

It is a boolean.

{else}

It is not a boolean.

{/if}

The following output will be produced: ”It is not a boolean.”.

5.7.10 Template operators / Variable and type handling 1180

5

is class

Summary

Returns TRUE if an object is an instance of a specific class.

Usage

input|is_class(name [, object])

Parameters

Name Type Description Required
name string The class name that should be matched. Yes.
object object An object of any type (instead of the input

parameter).
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator attempts to find out the class name of the object that is provided either as
the input parameter or the ”object” parameter. If the name of the class matches the name
provided using the ”name” parameter, the function will return TRUE; otherwise FALSE will
be returned.

Examples

Example 1

{if $node|is_class(’ezcontentobjecttreenode’)}

Everything is okay.

{else}

Something is wrong.

{/if}

As long as the $node refers to an instance of the ”ezcontentobjecttreenode” class, the follow-
ing output will be produced: ”Everything is okay.”.

5.7.10 Template operators / Variable and type handling 1181

5

Example 2

{if is_class(’ezcontentobjecttreenode’, $node)}

Everything is okay.

{else}

Something is wrong.

{/if}

As long as the $node refers to an instance of the ”ezcontentobjecttreenode” class, the follow-
ing output will be produced: ”Everything is okay.”.

5.7.10 Template operators / Variable and type handling 1182

5

is float

Summary

Returns TRUE if the provided variable is a float.

Usage

input|is_float(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

true of false, see description for details.

Description

This operator checks if the input parameter or the target variable is a float. If it is, the
operator will return TRUE, otherwise FALSE will be returned. If both the input parameter
and the target variable are provided, it is the target variable that will be evaluated.

Examples

Example 1

{def $my_variable=3.1415}

{if $my_variable|is_float()}

It is a float.

{else}

It is not a float.

{/if}

The following output will be produced: ”It is a float.”.

5.7.10 Template operators / Variable and type handling 1183

5

Example 2

{def $my_variable=3.1415}

{if is_float($my_variable)}

It is a float.

{else}

It is not a float.

{/if}

The following output will be produced: ”It is a float.”.

Example 3

{def $a=3.1415

$b=’Mobile instrument.’}

{if $a|is_float($b)}

It is a float.

{else}

It is not a float.

{/if}

The following output will be produced: ”It is not a float.”.

5.7.10 Template operators / Variable and type handling 1184

5

is integer

Summary

Returns TRUE if the provided variable is an integer.

Usage

input|is_integer(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is an integer. If it is, the
operator will return TRUE, otherwise FALSE will be returned. If both the input parameter
and the target variable are provided, it is the target variable that will be evaluated.

Examples

Example 1

{def $my_variable=3}

{if $my_variable|is_float()}

It is an integer.

{else}

It is not an integer.

{/if}

The following output will be produced: ”It is an integer.”.

5.7.10 Template operators / Variable and type handling 1185

5

Example 2

{def $my_variable=3}

{if is_float($my_variable)}

It is an integer.

{else}

It is not an integer.

{/if}

The following output will be produced: ”It is an integer.”.

Example 3

{def $a=3

$b=’Mobile instrument.’}

{if $a|is_float($b)}

It is an integer.

{else}

It is not an integer.

{/if}

The following output will be produced: ”It is not an integer.”.

5.7.10 Template operators / Variable and type handling 1186

5

is null

Summary

Returns TRUE if the provided variable is NULL.

Usage

input|is_null(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is NULL. If it is, the operator
will return TRUE, otherwise FALSE will be returned. If both the input parameter and the
target variable are provided, it is the target variable that will be evaluated. Please note that
an integer with a value of zero is not the same as NULL.

Examples

Example 1

{def $my_variable=3}

{if $my_variable|is_null()}

It is NULL.

{else}

It is not NULL.

{/if}

The following output will be produced: ”It is not NULL.”.

5.7.10 Template operators / Variable and type handling 1187

5

Example 2

{def $my_variable=3}

{if is_null($my_variable)}

It is NULL.

{else}

It is not NULL.

{/if}

The following output will be produced: ”It is not NULL.”.

Example 3

{def $a=3

$b=’Mobile instrument.’}

{if $a|is_null($b)}

It is NULL.

{else}

It is not NULL.

{/if}

The following output will be produced: ”It is not NULL.”.

5.7.10 Template operators / Variable and type handling 1188

5

is numeric

Summary

Returns TRUE if the provided variable is a number.

Usage

input|is_numeric(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is a number or a numeric
string (a string containing a number). If it is, the operator will return TRUE, otherwise FALSE
will be returned. If both the input parameter and the target variable are provided, it is the
target variable that will be evaluated.

Examples

Example 1

{def $my_variable=3}

{if $my_variable|is_numeric()}

It is a number.

{else}

It is not a number.

{/if}

The following output will be produced: ”It is a number.”.

5.7.10 Template operators / Variable and type handling 1189

5

Example 2

{def $my_variable=’256’}

{if is_numeric($my_variable)}

It is a number.

{else}

It is not a number.

{/if}

The following output will be produced: ”It is a number.”.

Example 3

{def $a=3

$b=’Mobile instrument.’}

{if $a|is_numeric($b)}

It is a number.

{else}

It is not a number.

{/if}

The following output will be produced: ”It is not a number.”.

5.7.10 Template operators / Variable and type handling 1190

5

is object

Summary

Returns TRUE if the target variable is an object.

Usage

input|is_object(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is an object (as opposed to
simple types like integer, string, etc.). If it is, the operator will return TRUE, otherwise FALSE
will be returned. If both the input parameter and the target variable are provided, it is the
target variable that will be evaluated.

Examples

Example 1

{def $my_variable=3}

{if $my_variable|is_object()}

It is an object.

{else}

It is not an object.

{/if}

The following output will be produced: ”It is not an object.”.

5.7.10 Template operators / Variable and type handling 1191

5

Example 2

{def $my_variable=’256’}

{if is_object($my_variable)}

It is an object.

{else}

It is not an object.

{/if}

The following output will be produced: ”It is not object.”.

Example 3

{def $a=3

$b=’Mobile instrument.’}

{if $a|is_object($b)}

It is an object.

{else}

It is not an object.

{/if}

The following output will be produced: ”It is not an object.”.

5.7.10 Template operators / Variable and type handling 1192

5

is set

Summary

Returns TRUE if the value of the provided variable is set.

Usage

is_set(target)

Parameters

Name Type Description Required
target any The target variable. Yes.

Returns

TRUE or FALSE.

Description

This operator checks if the value of the target parameter is a non-false value (meaning that it
is set). If it is, the operator will return TRUE, otherwise FALSE will be returned. Please note
that this operator does not take an input parameter.

Examples

Example 1

{if is_set($whatever)}

It is set.

{else}

It is not set.

{/if}

The following output will be produced: ”It is not set.” - because $whatever is not declared
and/or defined.

Example 2

{def $whatever=’We need more rocket fuel!’}

{if is_set($whatever)}

It is set.

{else}

It is not set.

5.7.10 Template operators / Variable and type handling 1193

5

{/if}

The following output will be produced: ”It is set.”.

5.7.10 Template operators / Variable and type handling 1194

5

is string

Summary

Returns TRUE if the provided variable is a string.

Usage

input|is_string(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is a string. If it is, the
operator will return TRUE, otherwise FALSE will be returned. If both the input parameter
and the target variable are provided, it is the target variable that will be evaluated.

Examples

Example 1

{def $my_variable=’Commodore’}

{if $my_variable|is_string()}

It is a string.

{else}

It is not a string.

{/if}

The following output will be produced: ”It is a string.”.

5.7.10 Template operators / Variable and type handling 1195

5

Example 2

{def $my_variable=’Amiga’}

{if is_string($my_variable)}

It is a string.

{else}

It is not a string.

{/if}

The following output will be produced: ”It is a string.”.

Example 3

{def $a=’C64’

$b=128}

{if $a|is_string($b)}

It is a string.

{else}

It is not a string.

{/if}

The following output will be produced: ”It is not a string.”.

5.7.10 Template operators / Variable and type handling 1196

5

is unset

Summary

Returns TRUE if the provided variable is not set (has no value).

Usage

is_unset(target)

Parameters

Name Type Description Required
test any The target variable. Yes.

Returns

TRUE or FALSE.

Description

This operator checks if the target variable is set (has a value). If it is, the operator returns
FALSE, otherwise TRUE will be returned.

Examples

Example 1

{def $my_variable=true()}

{if is_unset($my_variable)}

Yes.

{else}

No.

{/if}

The following output will be produced: ”No.”.

Example 2

{def $my_variable=false()}

{is_unset($my_variable)}

Yes.

{else}

No.

{/if}

5.7.10 Template operators / Variable and type handling 1197

5

The following output will be produced: ”Yes.”.

5.8 Template functions 1198

5

5.8 Template functions

The template functions are documented in the following sections:

• Debugging (page 1199)

• Miscellaneous (page 1205)

• Variables (page 1218)

• Visualization (page 1231)

5.8.1 Template functions / Debugging 1199

5

5.8.1 Debugging

debug-accumulator (page 1200)
Generates debug statistics for a block of template code.

debug-log (page 1201)
Generates a debug log entry for the specified variables.

debug-timing-point (page 1203)
Measures the time it takes to process a block of template code.

debug-trace (page 1204)
Generates an XDebug dump which can be traced/analyzed.

5.8.1 Template functions / Debugging 1200

5

debug-accumulator

Summary

Generates debug statistics for a block of template code.

Usage

{debug-accumulator [id=id] [name=name]}

...

{/debug-accumulator}

Parameters

Name Type Description Required
id string A unique identifier string for an accu-

mulator.
No.

name string A name that will be used in the debug
output.

No.

Description

This mechanism generates some debug statistics based on the code that is encapsulated by
”{debug-accumulator}” and ”{/debug-accumulator}”. The encapsulated code will be pro-
cessed normally. The number of calls, total time and average time will be shown in the debug
output.

The ”id” and the ”name” parameters are optional. The ”id” parameter can be used to uniquely
identify one accumulator. This means that if the same accumulator is used at multiple loca-
tions, the values will be accumulated and appended. The ”name” parameter can be used to
assign a name which will be used in the debug output.

Examples

Example 1

{debug-accumulator}

{def $nodes=fetch(’content’, ’tree’, hash(’parent_node_id’, 2))}

{foreach $nodes as $node}

{$node.name|wash()}

{/foreach}

{/debug-accumulator}

This example demonstrates how the ”debug-accumulator” mechanism can be used to generate
some debug statistics based on the encapsulated template code.

5.8.1 Template functions / Debugging 1201

5

debug-log

Summary

Generates a debug log entry for the specified variables.

Usage

{debug-log [var=variable] [msg=message]}

Parameters

Name Type Description Required
var mixed A variable to be outputted to the

debug-log
No.

msg string A label for the debug message. No.

Description

This function creates a debug log entry based on the input variables to the function. If none of
the parameters are used, no log output will be shown. If both ”var” and ”msg” parameters are
given, ”msg” will be the label of the log entry, and ”var” will be the variable to be outputted.
”var” can be any variable, eg, a string, an array or an object. If the php extension, xdebug is
installed, it will be used to render the variable, as per normal eZDebug behavior.

If only one parameter is used, the function will treat both parameters equally and the content
of the variable used will be outputted to the debug-log.

Examples

Example 1

{debug-log var=$object msg=’object contents’}

This example demonstrates the ”debug-log” with both parameters used. ”msg” will be used
as label and ”var” as output.

Example 2

{debug-log msg=’hello world’}

This example demonstrates the ”debug-log” with only the ”msg” parameter used. ”msg” will
be used as output.

Example 3

5.8.1 Template functions / Debugging 1202

5

{debug-log var=array(1,2,3)}

This example demonstrates the ”debug-log” with only the ”var” parameter used. ”var” will be
used as output.

5.8.1 Template functions / Debugging 1203

5

debug-timing-point

Summary

Measures the time it takes to process a block of template code.

Usage

{debug-timing-point [id=id]}

...

{/debug-timing-point}

Parameters

Name Type Description Required
id string An identification string for the timing

point.
No.

Description

This mechanism starts a timer, executes the template code that is encapsulated by ”{debug-
timing-point...}” and ”{/debug-timing-point}”, finally it stops the timer. It can be used to
figure out how much time it takes to process a block of template code and/or to isolate debug
messages that are generated between the timing points. The measurements will show up in
the debug message. The optional ”id” parameter can be used to assign an identification string
to the block.

Examples

Example 1

{debug-timing-point id=’test’}

{def $nodes=fetch(’content’, ’tree’, hash(’parent_node_id’, 2))}

{foreach($nodes as $node)}

{$node.name|wash()}

{/foreach}

{/debug-timing-point}

This example demonstrates how the ”debug-timing-point” mechanism can be used to measure
the amount of time it takes to fetch and print the names of all nodes that are below node
number 2.

5.8.1 Template functions / Debugging 1204

5

debug-trace

Summary

Generates an XDebug dump which can be traced/analyzed.

Usage

{debug-trace [id=id]}

...

{/debug}

Parameters

Name Type Description Required
id string The name of the debug file. No.

Description

This mechanism makes it possible to trace a block of code using ”XDebug”. The result will be
a trace file made by XDebug which can be analyzed. If XDebug is not installed and enabled,
this mechanism will not do anything. The ”id” parameter can be used to name the trace file.
The file extension will be ”.xt”. The default ID/name is ”template-debug”. Please note that
the trace file will be reset every time a debug-trace is encountered; it is a good idea to have
one unique ID per entry.

Examples

Example 1

{debug-trace id=’fetch-trace’}

{def $nodes=fetch(’content’, ’tree’, hash(’parent_node_id’, 2))}

{foreach($nodes as $node)}

{$node.name|wash()}

{/foreach}

{/debug-trace}

This will generate an XDebug trace file called ”fetch-trace.xt”.

5.8.2 Template functions / Miscellaneous 1205

5

5.8.2 Miscellaneous

\begin{description} \item[cache-block]\refer{label4ed580e5a6963d17ef18217c84e885fb}\
\\ Caches the contents of a template block.

\item[fetch\ alias]\refer{labeldba359bb91acf1e1ad693c0f787ba30d}\ \\ Executes a fetch
based on configuration settings.

\item[include]\refer{labeleedff54400b6ce4370a51268bcc1c2c5}\ \\ Includes a file.

\item[ldelim]\refer{label72361283e58f45469f00786062686846}\ \\ Outputs a left curly
bracket, ”\{”.

\item[literal]\refer{labelc92f0c328759704800a9da6e7e4034f4}\ \\ Instructs the parser to
ignore a block of template code.

\item[rdelim]\refer{label6b23cb68ebeac3a859087855b26bd687}\ \\ Outputs a right curly
bracket, ”\}”.

\item[run-once]\refer{label879c7fdc11d796a1c2f9499e2179d289}\ \\ Assures that a block
of template code is run only once within a page view.

\end{description}

5.8.2 Template functions / Miscellaneous 1206

5

cache-block

Summary

Caches the contents of a template block.

Usage

{cache-block [keys=keys]

[expiry=expiry]

[ignore_content_expiry]

[subtree_expiry=subtree_expiry]}

...

{/cache-block}

Parameters

Name Type Description Required
keys string or ar-

ray
Cache key(s) - either as a string or an
array of strings.

No.

expiry integer The number of seconds that the cache
should be allowed to live.

No.

ignore content expiry - Disables cache expiry when new con-
tent is published.

No.

subtree expiry string A subtree that expires the cache block. No.

Description

This solution makes it possible to reduce the processing time of the main template (”page-
layout.tpl”), which often contains a lot of dynamic elements. It can be used to instruct the
system to store and reuse cached blocks of template code based on different conditions.

A typical example of where the ”cache-block” mechanism should be used is the main menu
of a site. The menu is often dynamically generated by fetching and displaying information
about some nodes. It is usually the same for almost every page, therefore it should not be
generated from scratch every time eZ Publish is instructed to render a page. This is where
the ”cache-block” solution comes in. In this particular scenario, it can be used to cache the
contents of the main menu and thus reduce the processing time for each page load.

Note: The cache-block stores it’s content as text fragments, and does not execute any of it
content again before the cache has been expired.

Cache keys

The ”keys” parameter can be used to define the uniqueness of a cache block. It must be either
a string or an array of strings. By default, eZ Publish uses the name of the template and the

5.8.2 Template functions / Miscellaneous 1207

5

position of the cache block as keys. This means that if the cache block is common for all
cases that use the given template (normally ”pagelayout.tpl”), there is no need to define any
keys. However, the ”keys” parameter is quite handy when it comes to relating a cache block
to something specific (for example URLs, users, etc.). Please refer to the examples below for
a demonstration of how this parameter can be used.

Time based expiration

The ”expiry” parameter makes it possible to manually specify how long a cache block should
live (number of seconds). The default expiration time is two hours (this is hardcoded in the
system and can not be configured). If an object is published, all blocks will automatically be
expired. A value of zero will produce a cache block that will never expire.

Content expiration

By default, all cache blocks will be expired whenever an object is published. If the ”ignore
content expiry” parameter is used, the cache block will not be expired when an object is
published. However, it will still expire after two hours unless an alternative time is specified
using the ”expiry” parameter.

Subtree expiration

The ”subtree expiry” parameter can be used to bind the expiration of a cache block to a certain
part of the content node tree. When this is done, the block will expire if an object is published
below the given subtree instead of the entire tree. In addition, it will also expire after two
hours unless an alternative time is specified using the ”expiry” parameter.

Tips and tricks

Since cache blocks themselves also produce some overhead, too many blocks may lead to
longer response times than expected. Because of this, only a few cache blocks should be
used; and their keys should be as unique as possible. It is often very efficient to have two
large cache blocks. One which caches all header information (title, path, etc.) and one which
will take care of the bottom/footer of the page. This solution combined with a nested cache
block used for the main menu (or several menus, etc.) often leads to good results. Please
note that although the cache block mechanism was designed to minimize the processing of
the main template, it may also be used in view templates. For example, it is possible to cache
a part of a view - this is typically useful when the viewcache is frequently deleted. Another
scenario is when the view cache is turned off and there is a need to create a cache on a
per-user basis.

Examples

Example 1

5.8.2 Template functions / Miscellaneous 1208

5

...

{include uri=’design:page_toppath.tpl’}

{cache-block}

{include uri=’design:menu.tpl’}

{/cache-block}

{$module_result.content}

{include uri=’design:page_bottom.tpl’}

...

This example demonstrates how the cache block solution can be used to cache the contents
of a menu (which will be the same for all pages) in the pagelayout.

Example 2

{cache-block expiry=130}

...

{/cache-block}

This example demonstrates how to create a cache block that will expire after 130 seconds.

Example 3

{cache-block keys=$uri_string}

...

{/cache-block}

This example demonstrates how to create a cache block that will be unique for every URL.

Example 4

{cache-block keys=array($uri_string, $current_user.contentobject_id)}

...

{/cache-block}

This example demonstrates how to create a cache block that is unique for each URL and each
user.

Example 5

{cache-block ignore_content_expiry}

...

{/cache-block}

This example demonstrates how to create a cache block that will not expire when new content
is published. However, it will expire every second hour unless an alternative ”time to live”
value is specified using the ”expiry” parameter.

5.8.2 Template functions / Miscellaneous 1209

5

Example 6

{cache-block subtree_expiry=’products/’}

...

{/cache-block}

This example demonstrates how to create a cache block that will expire only if something
is modified within the ”products/” subtree, for example if a product is modified or a new
product is published.

5.8.2 Template functions / Miscellaneous 1210

5

fetch alias

Summary

Executes a fetch based on configuration settings.

Usage

fetch_alias(alias_name, hash([parameter1, value1,]

[parameter2, value2]))

Parameters

Name Type Description Required
alias name string The name of the fetch alias that should

be used.
Yes.

parameter1 string The name of parameter 1. No.
value1 string The value of parameter 1. No.
parameter2 string The name of parameter2. No.
value2 string The value of parameter 2. No.

Description

This function can be thought of as a configuration-file based version of the ”fetch” (page
1013) operator. It makes it possible to move data fetching blocks from template code to a
configuration file and thus gather all fetches at one place. The advantage of such a scenario
is that it allows quick modifications without the need of having to locate and modify different
templates. The fetch aliases must be defined in a configuration override for ”fetchalias.ini”.
Each fetch has to be defined within its own block with a unique name. The following code
shows the basic syntax/structure of a fetch block.

[fetch_alias_name]

Module=module_name

FunctionName=function_name

Parameter[parameter1]=fetch_alias_name1

Parameter[parameter2]=fetch_alias_name2

...

Constant[parameter3]=<any value>

Constant[parameter4]=<any value>

...

Directive Description
Module The name of the target module (for example

”content”).
FunctionName The name of the target fetch function (for

example ”list”).
Parameter The ”Parameters” array may be used to spec-

5.8.2 Template functions / Miscellaneous 1211

5

ify variables that will be set in the tem-
plate(s). The ”parameter name” maps to the
parameter name used in normal fetch func-
tions. The ”fetch alias name” will be the pa-
rameter name used in the template(s).

Constant Parameters that are defined as constants
within the regular fetch function(s).

Examples

Example 1

Configuration block:

[object]

Module=content

FunctionName=object

Parameter[object_id]=id

Template code:

{def $object=fetch_alias(’object’, hash(’id’, 1))}

This example demonstrates how to fetch an object.

Example 2

Configuration block:

[comments]

Module=content

FunctionName=list

Constant[sort_by]=published;0

Parameter[parent_node_id]=parent_node_id

Constant[class_filter_type]=include

Constant[class_filter_array]=comment

Template code:

{def $comments=fetch_alias(’comments’, hash(’parent_node_id’, 42))}

This example demonstrates how to fetch comments.

5.8.2 Template functions / Miscellaneous 1212

5

Example 3

Configuration block:

[news_list]

Module=content

FunctionName=tree

Constant[sort_by]=published;0

Constant[class_id]=2

Constant[parent_node_id]=2

Constant[class_filter_type]=include

Constant[limit]=10

Constant[class_filter_array]=2

Template code:

{foreach fetch_alias(’news_list’) as $article}

{node_view_gui node=$article}

{/foreach}

This example demonstrates how to fetch and display the 10 latest news articles using full
view.

5.8.2 Template functions / Miscellaneous 1213

5

include

Summary

Includes a file.

Usage

{include uri=’path_to_file’ [name=’namespace’] [parameter(s)=’value(s)’

]}

Parameters

Name Type Description Required
uri string Path + name of the file that should be

included.
Yes.

name string Alternative namespace for the included
template.

No.

other parameters any Parameters that will be passed to the
included template.

No.

Description

This function includes a file in the template from where the function was called. The ”uri”
parameter must be used to specify the target file. In most cases, the value of this parameter
starts with a ”design:”, which tells the system to look for the desired template within the
current (and fallback) design resources. The ”name” parameter can be used to specify an
alternative namespace for the included template, this is useful for avoiding variable name
clashes when including other templates. All other parameters will be passed to the included
template as template variables. This function makes it possible to share template code among
different parts of the solution.

Examples

Example 1

{include uri=’design:example/menu.tpl’ something=’Hello world’}

This example demonstrates how to include a template called ”menu.tpl” (which is located
within the ”example” subdirectory of the ”templates” directory. If eZ Publish is unable to
find the template in the current design, it will automatically attempt to locate it in one of
the fallback designs or the standard design. The value of the ”something” parameter will be
available through a variable called $something within the template that is included.

5.8.2 Template functions / Miscellaneous 1214

5

ldelim

Summary

Outputs a left curly bracket, ”{”.

Usage

{ldelim}

Description

This function displays a left curly bracket, ”{”. It can for example be used to add JavaScript
functions in a template.

Examples

Example 1

<script language="JavaScript" type="text/javascript">

<!--

function foo()

{ldelim}

alert (’Call me!’);

{rdelim}

//-->

</script>

This example demonstrates how to use the ”ldelim” and ”rdelim” template functions to gen-
erate curly brackets.

5.8.2 Template functions / Miscellaneous 1215

5

literal

Summary

Instructs the parser to ignore a block of template code.

Usage

{literal}

...

{/literal}

Description

This function can be used to encapsulate foreign code (for example JavaScript) that makes
use of characters that may confuse the template parser. Everything that is inside a literal
block will be completely ignored by the parser.

Examples

Example 1

{literal}

<script language="JavaScript" type="text/javascript">

<!--

function foo()

{

alert ("Call me");

}

//-->

</script>

{/literal}

This example demonstrates how to include a JavaScript snippet in a template using the
”{literal}” and ”{/literal}” notation.

5.8.2 Template functions / Miscellaneous 1216

5

rdelim

Summary

Outputs a right curly bracket, ”}”.

Usage

{rdelim}

Description

This function displays a right curly bracket, ”}”. It can for example be used to add JavaScript
functions in a template.

Examples

Example 1

<script language="JavaScript" type="text/javascript">

<!--

function foo()

{ldelim}

alert (’Call me!’);

{rdelim}

//-->

</script>

This example demonstrates how to use the ”ldelim” and ”rdelim” template functions to gen-
erate curly brackets.

5.8.2 Template functions / Miscellaneous 1217

5

run-once

Summary

Assures that a block of template code is run only once within a page view.

Usage

{run-once}

...

{/run-once}

Description

This function makes sure that a block of template code is processed only once within a page
view. It is typically useful when it comes to displaying elements that should appear once or to
do timeconsuming calculations that only has to be processed once (and the result is included
in multiple templates).

Examples

Example 1

{def $elements=array(’A’, ’B’, ’C’)}

{foreach $elements as $element}

{run-once}

Hello world

{/run-once}

{$element}

{/foreach}

The following output will be produced:

Hello World
A
B
C

5.8.3 Template functions / Variables 1218

5

5.8.3 Variables

append-block (page 1219)
Redirects the output from multiple blocks of template code to an array.

def (page 1221)
Declares (and defines) a variable. Warns if the variable already exists.

default (page 1223)
Deprecated.

let (page 1224)
Deprecated.

sequence (page 1225)
Creates a sequence that can be iterated.

set (page 1226)
Sets the value of a variable.

set-block (page 1228)
Redirects the output from a block of template code to a string.

undef (page 1230)
Destroys previously defined variable(s).

5.8.3 Template functions / Variables 1219

5

append-block

Summary

Redirects the output from multiple blocks of template code to an array.

Usage

{append-block variable=$variable [name=name] [scope=scope]}

...

{/append-block}

Parameters

Name Type Description Required
name string Name of the namespace. No.
scope string The scope (”global”, ”root” or ”rela-

tive”).
No.

variable string The name of variable that will be re-
turned.

Yes.

Description

This mechanism will silently process all template code which is encapsulated by ”{append-
block ...}” and ”{/append-block}”. It will not produce any actual output. Instead, the gener-
ated output will be assigned to a variable specified by the ”variable” parameter (as an array).
If the variable does not exist, it will be automatically created. If the same target variable is
used in several blocks, the function will simply add new elements to the array and thus the
previous contents will be preserved.

Examples

Example 1

{append-block variable=$alien}

It seems to have a life,

{/append-block}

...

{append-block variable=$alien}

organic life...

{/append-block}

...

{foreach $alien as $element}

{$element}

5.8.3 Template functions / Variables 1220

5

{/foreach}

This example demonstrates how to create an array called $alien using the ”append-block”
mechanism. The output from the code that is encapsulated by ”{append-block ...}” and ”{/
append-block}” will be assigned as elements to the target variable. When the $alien array is
inspected, the following output will be produced:

It seems to have a life,
organic life...

5.8.3 Template functions / Variables 1221

5

def

Summary

Declares (and defines) a variable. Warns if the variable already exists.

Usage

{def $var1=value1 [$var2=value2 [...]]}

Parameters

Name Type Description Required
$var1 string Name of variable number one (with a

dollar sign in front of it).
Yes.

value1 any The value that should be assigned to
variable one.

Yes.

$var2 string Name of variable number two (with a
dollar sign in front of it).

No.

value2 any The value that should be assigned to
variable two.

No.

Description

This function allows the declaration and definition of a single variable or a group of variables.
The ”undef” (page 1230) function can be used to flush/destroy variables that were created
using the ”def” function. Please note that this function does not support the ”name” and the
”scope” parameters (like the old {let} did).

Replacement for ”default”

The following technique can be used as a replacement for the old ”default” function:

{if is_set($a)|not}

{def $a=5}

Examples

Example 1

{def $oranges=13}

This example demonstrates how the ”def” function can be used to declare a variable called
”oranges”. The variable will be declared as an integer with a value of 13.

5.8.3 Template functions / Variables 1222

5

Example 2

{def $oranges=13 $apples=’There are no apples.’}

or

{def $oranges=13

$apples=’There are no apples.’}

These code snippets demonstrates how the ”def” function can be used to declare multiple
variables. A variable called ”oranges” will be declared as an integer with a value of 13.
A variable called ”apples” will be declared as a string containing the following characters:
”There are no apples.”.

5.8.3 Template functions / Variables 1223

5

default

Summary

Deprecated.

Description

This function is deprecated and should not be used. If you need more information, please
refer to the documentation of the old template syntax (it is still present in some of the default
templates included in the distributions).

http://ez.no/products/ez_publish/documentation/development/libraries/ez_template/functions/function_list

5.8.3 Template functions / Variables 1224

5

let

Summary

Deprecated.

Description

This function is deprecated and should not be used. If you need more information, please
refer to the documentation of the old template syntax (it is still present in some of the default
templates included in the distributions).

http://ez.no/products/ez_publish/documentation/development/libraries/ez_template/functions/function_list

5.8.3 Template functions / Variables 1225

5

sequence

Summary

Creates a sequence that can be iterated.

Usage

{sequence name=name loop=loop}

Parameters

Name Type Description Required
name string The name of the target namespace. Yes.
loop array The iteration elements (as an array). Yes.

Description

This function allows the creation of a sequence which can be iterated. If the number of
iterations exceed the length of the sequence, the contents of the sequence will be wrapped
and thus repeated. It is typically useful when it comes to the creation of lists / tables with
alternating colors. Both the name and the elements (which will be iterated) must be defined.

5.8.3 Template functions / Variables 1226

5

set

Summary

Sets the value of a variable.

Usage

{set $var1=value1 [var2=value2 [...]] [name=name] [scope=scope]}

Parameters

Name Type Description Required
var1 string Name of variable number one (with a

dollar sign in front of it).
Yes.

value1 any The value that should be assigned to
variable 1.

Yes.

var2 string Name of variable number two (with a
dollar sign in front of it).

No.

value2 any The value that should be assigned to
variable 2.

No.

name string The name of the target namespace. No.
scope string The scope (”global”, ”root” or ”rela-

tive”).
No.

Description

This function makes it possible to assign new values to variables that previously have been
declared using either the ”def” (page 1221) function. The ”name” and ”scope” parameters
are optional and can be used to set the desired namespace and scope.

Examples

Example 1

{def $apples=4}

Before: {$apples}

...

{set $apples=8}

After: {$apples}

The following output will be produced:

Before: 4
After: 8

5.8.3 Template functions / Variables 1227

5

Example 1

{def name=ns1 $var1=’ns1 org value’}

{def name=ns2 $var1=’ns2 org value’}

Original values:

$ns1:var1 : {$ns1:var1}

$ns1:ns2:var1 : {$ns1:ns2:var1}

...

{set name=ns1 scope=root var1=’new value’}

{set var1=’new value’}

...

New values:

$ns1:var1 : {$ns1:var1}

$ns1:ns2:var1 : {$ns1:ns2:var1}

The following output will be produced:

Original values:
$ns1:var1 : ns1 org value
$ns1:ns2:var1 : ns2 org value

New values:
$ns1:var1 : new value
$ns1:ns2:var1 : new value

5.8.3 Template functions / Variables 1228

5

set-block

Summary

Redirects the output from a block of template code to a string.

Usage

{set-block variable=$variable [name=name] [scope=scope]}

...

{/set-block}

Parameters

Name Type Description Required
variable string The name of the variable (with dollar

sign).
Yes.

name string The name of the target namespace. No.
scope string The scope (”global”, ”root” or ”rela-

tive”).
No.

Description

This mechanism will silently process all template code which is encapsulated by ”{set-block
...}” and ”{/set-block}”. It will not produce any actual output. Instead, the generated output
will be assigned to a variable specified by the ”variable” parameter (as a string). If the variable
does not exist, it will be automatically created. If the same target variable is used in several
blocks, its contents will be overwritten every time a new block is processed.

Examples

Example 1

{set-block variable=$example}

{def $test=array(’x’, ’y’, ’z’)}

Hello world - {$test[1]}

{/set-block}

...

{$example}

The code which is encapsulated by ”set-block” will not produce any output. Instead, the
output will be put into a string called $example. When this variable is accessed directly, the
following output will be produced: ”Hello world - y”.

Example 2

5.8.3 Template functions / Variables 1229

5

{set-block scope=root variable=cache_ttl}0{/set-block}

This will put zero into the ”cache ttl” global variable and thus disable view caching for this
page.

5.8.3 Template functions / Variables 1230

5

undef

Summary

Destroys previously defined variable(s).

Usage

{undef [$var1 [...]]}

Parameters

Name Type Description Required
var1 string The name of the variable that should

be destroyed ($-notation).
No.

Description

This function destroys variables that have previously been created using the ”def” (page 1221)
function. The names of the variables that should be destroyed can be provided as parameters.
If no parameters are specified, the function will automatically get rid of all variables that were
previously defined within the current/same namespace.

Examples

Example 1

{def $a=1 $b=2 $c=3}

...

{undef}

This example demonstrates how the ”undef” function can be used to clean up / get rid of a
previously the variables that were previously created using the ”def” function .

Example 2

{def $a=1 $b=2 $c=3}

...

{undef $b}

This example demonstrates how the ”undef” function can be used to clean up / get rid of a
previously created variable. The variables $a and $c will not be destroyed.

5.8.4 Template functions / Visualization 1231

5

5.8.4 Visualization

attribute edit gui (page 1232)
Outputs the edit template for a content object attribute.

attribute pdf gui (page 1233)
Outputs the PDF template for a content object attribute.

attribute result gui (page 1234)
Outputs the result template for a content object attribute.

attribute view gui (page 1235)
Outputs the view template for a content object attribute.

class attribute edit gui (page 1236)
Outputs the edit template for a content class attribute.

class attribute view gui (page 1237)
Outputs the view template for a content class attribute.

collaboration icon (page 1238)
Outputs the icon for a collaboration item.

collaboration participation view (page 1239)
Outputs information about a collaboration participant.

collaboration simple message view (page 1240)
Outputs the view template for a collaboration message.

collaboration view gui (page 1241)
Outputs the template for a collaboration item.

content pdf gui (page 1242)
Outputs the PDF template for a content object.

content version view gui (page 1243)
Outputs a view template for a content object version.

content view gui (page 1244)
Outputs a view template for a content object.

event edit gui (page 1245)
Outputs the edit template for a workflow event.

node view gui (page 1246)
Outputs the view template for a node.

related view gui (page 1247)
Not documented yet.

shop account view gui (page 1248)
Outputs the view template for a specified order.

tool bar (page 1249)
Outputs the template for a toolbar.

5.8.4 Template functions / Visualization 1232

5

attribute edit gui

Summary

Outputs the edit template for a content object attribute.

Usage

{attribute_edit_gui attribute=attribute [parameter=value [...]]}

Parameters

Name Type Description Required
attribute object The target content object attribute. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the edit interface for a content object attribute. The attribute must be
specified (as a ”ezcontentobjectattribute” (page 902) object) using the ”attribute” parameter.
All other parameters (of any type) will be passed on and thus become available as template
variables in the included template.

5.8.4 Template functions / Visualization 1233

5

attribute pdf gui

Summary

Outputs the PDF template for a content object attribute.

Usage

{attribute_pdf_gui attribute=attribute [parameter=value [...]]}

Parameters

Name Type Description Required
attribute object The target content object attribute. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the PDF view interface for a content object attribute. The target attribute
must be specified (as a ”ezcontentobjectattribute” (page 902) object) using the ”attribute”
parameter. All other parameters (of any type) will be passed on and thus become available
as template variables in the included template

5.8.4 Template functions / Visualization 1234

5

attribute result gui

Summary

Outputs the result template for a content object attribute.

Usage

{attribute_result_gui attribute=attribute [parameter=value [...]]}

Parameters

Name Type Description Required
attribute object The target content object attribute. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the information collection result interface for a content object attribute.
The attribute must be specified (as a ”ezcontentobjectattribute” (page 902) object) using the
”attribute” parameter. All other parameters (of any type) will be passed on and thus become
available as template variables in the included template.

5.8.4 Template functions / Visualization 1235

5

attribute view gui

Summary

Outputs the view template for a content object attribute.

Usage

{attribute_view_gui attribute=attribute [parameter=value [...]]}

Parameters

Name Type Description Required
attribute object The target content object attribute. Yes.
parameters any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for a content object attribute. The attribute must be
specified (as a ”ezcontentobjectattribute” (page 902) object) using the ”attribute” parameter.
All other parameters (of any type) will be passed on and thus become available as template
variables in the included template.

5.8.4 Template functions / Visualization 1236

5

class attribute edit gui

Summary

Outputs the edit template for a content class attribute.

Usage

{class_attribute_edit_gui class_attribute=attribute [parameter=value [...]

]}

Parameters

Name Type Description Required
class attribute object The target content class attribute. Yes.
other parameters any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the edit interface for a content class attribute. The attribute must be
specified (as a ”ezcontentclassattribute” (page 888) object) using the ”attribute” parameter.
All other parameters (of any type) will be passed on and thus become available as template
variables in the included template.

5.8.4 Template functions / Visualization 1237

5

class attribute view gui

Summary

Outputs the view template for a content class attribute.

Usage

{class_attribute_view_gui class_attribute=attribute [parameter=value [...]

]}

Parameters

Name Type Description Required
class attribute object The target content class attribute. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for a content class attribute. The attribute must be
specified (as a ”ezcontentclassattribute” (page 888) object) using the ”attribute” parameter.
All other parameters (of any type) will be passed on and thus become available as template
variables in the included template.

5.8.4 Template functions / Visualization 1238

5

collaboration icon

Summary

Outputs the icon for a collaboration item.

Usage

{collaboration_icon collaboration_item=item [view=view [parameter=value

[...]]]}

Parameters

Name Type Description Required
collaboration item object Collaboration item object. Yes.
view string The view mode to use. No.
parameter any Parameters passed to the GUI tem-

plate.
No.

Description

This function outputs the icon for a collaboration item. The ”collaboration item” parameter
must be used to specify the target collaboration item. The ”view” parameter is optional, it
can be used to specify a view mode (for example ”small”). All other parameters (of any type)
will be passed on and thus become available as template variables in the included template.

5.8.4 Template functions / Visualization 1239

5

collaboration participation view

Summary

Outputs information about a collaboration participant.

Usage

{collaboration_participation_view collaboration_participant=link [view=view

[parameter=value [...]]]}

Parameters

Name Type Description Required
collaboration
participant

object The target collaboration participant
object.

Yes.

view string The view mode to use. No.
parameters mixed Parameters passed to the GUI tem-

plate.
No.

Description

This function shows a collaboration participant. The ”collaboration participant” parameter
must be used to specify the target collaboration participant (as an ”ezcollaborationItempar-
ticipantlink” object). The optional ”view” parameter can be used to specify the view mode
(for example ”text linked”). All other parameters (of any type) will be passed on and thus
become available as template variables in the included template.

5.8.4 Template functions / Visualization 1240

5

collaboration simple message view

Summary

Outputs the view template for a collaboration message.

Usage

{collaboration_simple_message_view

sequence=sequence

is_read=status

item_link=message_link

collaboration_message=simple_message

[view=mode]

[parameter=value [...]]}

Parameters

Name Type Description Required
collaboration message object An eZCollaborationSimpleMessage ob-

ject.
Yes.

sequence string Display sequence value Yes.
is read boolean TRUE if the message has been read,

FALSE if not.
Yes.

item link object eZCollaborationItemMessageLink ob-
ject.

Yes.

view string The view mode that should be used. No.
other parameters mixed Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the interface for a collaboration message.

5.8.4 Template functions / Visualization 1241

5

collaboration view gui

Summary

Outputs the template for a collaboration item.

Usage

{collaboration_view_gui item_class=class

collaboration_item=item

[view=mode]

[parameter=value [...]]}

Parameters

Name Type Description Required
item class string The item class. Yes.
collaboration item object The collaboration item. Yes.
view string The view mode that should be used. No.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for a collaboration item. The class and the target
object must be specified using the ”item class” and the ”collaboration item” parameters. The
”view” parameter is optional, it can be used to specify a desired view. All other parameters (of
any type) will be passed on and thus become available as template variables in the included
template.

5.8.4 Template functions / Visualization 1242

5

content pdf gui

Summary

Outputs the PDF template for a content object.

Usage

{content_pdf_gui content_object=object [view=reserved] [parameter=value [

...]]}

Parameters

Name Type Description Required
content object object The target content object. Yes.
view string Reserved for future use. No.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the PDF interface for a content object. The target object must be specified
(as an ”ezcontentobject” (page 894) object) using the ”content object” parameter. The ”view”
parameter is reserved for future use. All other parameters (of any type) will be passed on and
thus become available as template variables in the included template.

5.8.4 Template functions / Visualization 1243

5

content version view gui

Summary

Outputs a view template for a content object version.

Usage

{content_version_view_gui content_version=version [view=mode] [

parameter=value [...]]}

Parameters

Name Type Description Required
content version object The target version. Yes.
view string The view mode that should be used. No.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for a content object version. The target version must
be specified (as a ”ezcontentobjectversion” (page 912) object) using the ”content version”
parameter. The ”view” parameter is optional, it can be used to specify a desired view (for
example ”full”, ”plain”, ”text”, etc.). The function will attempt to use the following template
from within either the current design or one of the fallback designs: ”templates/content/
version/view/[name of view mode].tpl”. All other parameters (of any type) will be passed
on and thus become available as template variables in the included template.

5.8.4 Template functions / Visualization 1244

5

content view gui

Summary

Outputs a view template for a content object.

Usage

{content_view_gui content_object=object [view=view] [parameter=value

[...]]}

Parameters

Name Type Description Required
content object object The target content object. Yes.
view string The view mode that should be used. No.
other parameters any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for a content object. The target object must be specified
(as an ”ezcontentobject” (page 894) object) using the ”content object” parameter. The ”view”
parameter is optional, it can be used to specify a desired view (for example ”text”, ”text
linked”, ”embed”, etc.). The function will attempt to use the following template from either
the current design or one of the fallback designs: ”templates/content/view/[name of view
mode].tpl”. All other parameters (of any type) will be passed on and thus become available
as template variables in the included template.

5.8.4 Template functions / Visualization 1245

5

event edit gui

Summary

Outputs the edit template for a workflow event.

Usage

{event_edit_gui event=event [parameter=value [...]] }

Parameters

Name Type Description Required
event object The target workflow event object. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the edit interface for a content object attribute. The target workflow
event must be specified using the ”event” parameter. All other parameters (of any type) will
be passed on and thus become available as template variables in the included template.

5.8.4 Template functions / Visualization 1246

5

node view gui

Summary

Outputs the view template for a node.

Usage

{node_view_gui content_node=node [view=view_mode [parameter=value [...]

]]}

Parameters

Name Type Description Required
content node object The target node (as an ezcontentob-

jecttreenode object).
Yes.

view string The view mode that should be used. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function makes it possible to display a node using its view (or override) template. The
target node must be specified as an ”ezcontentobjecttreenode” (page 907) object using the
”content node” parameter. The ”view” parameter specifies which view mode that should be
used. All other parameters (of any type) will be passed on and thus become available as
template variables in the view template.

Examples

Example 1

{def $my_node=fetch(’content’, ’node’, hash(’node_id’, 96))}

{node_view_gui view=’example’ content_node=$my_node}

In this example, node number 96 is fetched and stored in $my node. The ”node view gui”
function is used to display the target node using the ”example” view mode. If there are
no override rules for the specified view mode, the system will search for ”example.tpl” in
the ”templates/node/view/” directory of the current design. If the requested template file is
not found, eZ Publish will continue searching for it in the fallback designs and the standard
design.

5.8.4 Template functions / Visualization 1247

5

related view gui

Summary

Not documented yet.

Description

Not documented, the templates seem to be missing from the distribution(s).

5.8.4 Template functions / Visualization 1248

5

shop account view gui

Summary

Outputs the view template for a specified order.

Usage

{shop_account_view_gui order=order [view=view [parameter=value [...]]]}

Parameters

Name Type Description Required
order object The target order object. Yes.
view string The view mode that should be used. No.
other parameters any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for an order. The order must be specified (as a
”ezorder” (page 948) object) using the ”order” parameter. The ”view” parameter is optional,
it can be used to select a desired view mode: either ”html” or ”ascii”. All other parameters (of
any type) will be passed on and thus become available as template variables in the included
template.

5.8.4 Template functions / Visualization 1249

5

tool bar

Summary

Outputs the template for a toolbar.

Usage

{tool_bar name=name view=view [parameter=value [...]]}

Parameters

Name Type Description Required
name string The name of the toolbar. Yes.
view string The view mode that should be used. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function can be used to display a toolbar template. The name parameter must be used to
specify the name of the toolbar that should be show. The default/standard names are ”top”,
”right” and ”bottom” - custom names are also allowed. The ”view” parameter can be used to
specify a desired view mode (”line”, ”full”, etc.). All other parameters (of any type) will be
passed on and thus become available as template variables in the included template.

Examples

Example 1

{tool_bar name=’top’ view=’line’}

Shows a toolbar called ”top” using the ”line” view mode.

5.9 Template control structures 1250

5

5.9 Template control structures

The template control structures are documented in the following sections:

• Conditional control (page 1251)

• Looping (page 1257)

• Deprecated (page 1263)

5.9.1 Template control structures / Conditional control 1251

5

5.9.1 Conditional control

if (page 1252)
Allows conditional control by the way of an IF-THEN-ELSE mechanism.

switch (page 1254)
Allows conditional control of code execution.

5.9.1 Template control structures / Conditional control 1252

5

if

Summary

Allows conditional control by the way of an IF-THEN-ELSE mechanism.

Usage

{if <condition>}

...

[{elseif <condition>}]

...

[{else}]

...

{/if}

Description

This construct allows for conditional execution of code fragments. It is one of the most
important features of many programming languages. The eZ Publish implementation makes
it possible to do conditional branching by the way of the following elements: IF, ELSE and
ELSEIF. The ELSE and ELSEIF elements are optional.

Examples

Example 1

{if eq($var, 128)}

Hello world

{/if}

If $var equals 128, the following output will be produced: ”Hello world”. If it does not equal
128, no output will be produced.

Example 2

{if eq($var, 128)}

Hello world

{else}

No world here, move along.

{/if}

If $var equals 128, the following output will be produced: ”Hello world”. If it does not equal
128, the output will be ”No world here, move along.”.

5.9.1 Template control structures / Conditional control 1253

5

Example 3

{if eq($fruit, ’apples’)}

Apple tree

{elseif eq($fruit, ’oranges’)}

Orange juice

{else}

Banana split

{/if}

If $fruit equals ”apples”, the output will be ”Apple tree”, if it equals ”oranges” then the output
will be ”Orange juice” - otherwise the output will be ”Banana split”.

5.9.1 Template control structures / Conditional control 1254

5

switch

Summary

Allows conditional control of code execution.

Usage

{switch match=<variable>}

{case match=<value>}

{case in=<array>}

...

{/case}

{case}

...

{/case}

{/switch}

Description

This mechanism is similar to a series of IF statements used on the same expression. This
construct is typically useful when the same variable needs to be compared to different values.
It executes a piece of code depending on which value that matched a given criteria. A default
case should always be provided.

Please note that it is also possible to match inside arrays. This can be done by making use of
the ”in” argument, it is demonstrated in the last (third) example.

Examples

Example 1

{def $fruits=’oranges’}

{switch match=$fruits}

{case match=’apples’}

Apples

{/case}

{case match=’oranges’}

Oranges

{/case}

{case}

Unidentified fruit!

5.9.1 Template control structures / Conditional control 1255

5

{/case}

{/switch}

The following output will be produced: ”Oranges”.

Example 2

{def $fruits=’Hello world’}

{switch match=$fruits}

{case match=’apples’}

Apples

{/case}

{case match=’oranges’}

Oranges

{/case}

{case}

Unidentified fruit!

{/case}

{/switch}

The following output will be produced: ”Unidentified fruit!” - which is the outcome of the
default case (none of the other cases matched).

Example 3

{def $digit=1}

{switch match=$digit}

{case in=array(1, 2)}

This one matches.

{/case}

{case in=array(2, 3)}

This one does not match.

{/case}

{case}

Not this one either.

{/case}

5.9.1 Template control structures / Conditional control 1256

5

{/switch}

The following output will be produced: ”This one matches.”.

5.9.2 Template control structures / Looping 1257

5

5.9.2 Looping

do (page 1258)
Creates a do...while loop.

for (page 1259)
Creates a generic for loop.

foreach (page 1260)
Iterates over arrays in different ways.

while (page 1262)
Creates a while loop.

5.9.2 Template control structures / Looping 1258

5

do

Summary

Creates a do...while loop.

Usage

{do}

[{delimiter}...{/delimiter}]

[{break}]

[{continue}]

[{skip}]

{/do while <condition> [sequence <array> as $seqVar]}

Description

This mechanism is very similar to the ”while” (page 1260) construct, except that the expres-
sion is checked at the end of each iteration instead of in the beginning. The main difference is
that this construct will always execute the first iteration (regardless of how the test expression
evaluates). It supports breaking, continual and skipping.

Examples

Example 1

{do}

Keep printing this line ({$counter})

{set $counter=inc($counter)}

{/do while ne($counter, 8)}

If the initial value of $counter is 0, the following output will be produced:

Keep printing this line (0)
Keep printing this line (1)
Keep printing this line (2)
Keep printing this line (3)
Keep printing this line (4)
Keep printing this line (5)
Keep printing this line (6)
Keep printing this line (7)
Keep printing this line (8)

5.9.2 Template control structures / Looping 1259

5

for

Summary

Creates a generic for loop.

Usage

{for <number> to <number> as $itemVar [sequence <array> as $seqVar]}

[{delimiter}...{/delimiter}]

[{break}]

[{continue}]

[{skip}]

{/for}

Description

This mechanism makes it possible to do generic looping. It supports looping over numerical
ranges in both directions. In addition it also supports breaking, continual and skipping.

Examples

Example 1

{for 0 to 7 as $counter}

Value of counter: {$counter}

{/for}

The following output will be produced:

Value of counter: 0
Value of counter: 1
Value of counter: 2
Value of counter: 3
Value of counter: 4
Value of counter: 5
Value of counter: 6
Value of counter: 7

5.9.2 Template control structures / Looping 1260

5

foreach

Summary

Iterates over arrays in different ways.

Usage

{foreach <array> as [$keyVar =>] $itemVar

[sequence <array> as $sequenceVar]

[offset <offset>]

[max <max>]

[reverse]}

[{delimiter}...{/delimiter}]

[{break}]

[{continue}]

[{skip}]

{/foreach}

Description

This construct makes it possible to iterate over arrays in different ways. The loop can be
tweaked using the parameters (see above).

Examples

Example 1

{foreach $objects as $object}

{$object.name}

{/foreach}

This example will print out the names of the objects that are stored in the $objects array.
If this array stores 4 objects with the following names: ”Emmett Brown”, ”Marty McFly”,
”Lorraine Baines” and ”Biff Tannen”, the following output will be produced:

Emmett Brown
Marty McFly
Lorraine Baines
Biff Tannen

Example 2

5.9.2 Template control structures / Looping 1261

5

{foreach $objects as $index => $object}

{$index} : {$object.name}

{/foreach}

This example demonstrates how to create an iteration counter.

0: Emmett Brown
1: Marty McFly
2: Lorraine Baines
3: Biff Tannen

Example 3

{foreach $objects as $object sequence array(’dark’, ’light’) as $style}

<div class="{$style}">{$object.name}</div>

{/foreach}

This example demonstrates how to create a loop where the iterations are displayed using
alternating styles (in this case dark, light, dark, light and so on).

5.9.2 Template control structures / Looping 1262

5

while

Summary

Creates a while loop.

Usage

{while <condition> [sequence <array> as $seqVar]}

[{delimiter}...{/delimiter}]

[{break}]

[{continue}]

[{skip}]

{/while}

Description

This construct is the simplest loop mechanism that the template language offers. It tells eZ
Publish to execute the nested statement(s) repeatedly, as long as a given expression evaluates
to TRUE. The value of the expression is checked for every loop iteration (at the beginning of
the iteration). If the given expression evaluates to FALSE from the very beginning, the nested
statement(s) will not be executed.

Examples

Example 1

{while ne($counter, 8)}

Print this line eight times ({$counter})

{set $counter=inc($counter)}

{/while}

If the initial value of $counter is zero, the following output will be produced:

Print this line eight times (0)
Print this line eight times (1)
Print this line eight times (2)
Print this line eight times (3)
Print this line eight times (4)
Print this line eight times (5)
Print this line eight times (6)
Print this line eight times (7)

5.9.3 Template control structures / Deprecated 1263

5

5.9.3 Deprecated

section (page 1264)
Deprecated looping, branching, etc.

5.9.3 Template control structures / Deprecated 1264

5

section

Summary

Deprecated looping, branching, etc.

Description

Refer to the documentation of the old template syntax for more information about this control
structure.

Please note that this control structure has been deprecated and should not be used. It is
included here only because some of the default templates in the distributions are still using
it.

http://ez.no/products/ez_publish/documentation/reference/template_functions/program_flow/section

5.10 Template override conditions 1265

5

5.10 Template override conditions

This section contains an overview of the override conditions that can be used to override the
system templates.

Override example

[magic_pockets] (1)

Source=node/view/full.tpl (2)

MatchFile=magic_pocket.tpl (3)

Subdir=templates (4)

Match[class_identifier]=pocket (5)

Match[section]=34 (6)

... ...

1. The name of the override.

2. The template that should be overridden.

3. The alternate template that should be used.

4. The location of the override templates.

5. Match condition #1

6. Match condition #2

The following sections reveal the override rules for the different template files:

• class/edit.tpl (page 1267)

• class/groupedit.tpl (page 1268)

• class/view.tpl (page 1269)

• content/advancedsearch.tpl (page 1270)

• content/browse.tpl (page 1271)

• content/collectedinfo/*.tpl (page 1272)

• content/collectedinfo/*.tpl (page 1273)

• content/collectedinfomail/*.tpl (page 1274)

• content/datatype/edit/*.tpl (page 1275)

• content/datatype/view/*.tpl (page 1276)

• content/edit.tpl (page 1277)

• content/search.tpl (page 1278)

• content/versions.tpl (page 1279)

5.10 Template override conditions 1266

5

• content/versionview.tpl (page 1280)

• content/view/*.tpl (page 1281)

• layout/set.tpl (page 1282)

• node/view/*.tpl (page 1283)

• node/view/pdf.tpl (page 1284)

• pagelayout.tpl (page 1285)

• workflow/edit.tpl (page 1286)

• workflow/groupedit.tpl (page 1287)

• workflow/view.tpl (page 1288)

5.10.1 Template override conditions / class/edit.tpl 1267

5

5.10.1 class/edit.tpl

Module/view: edit

Condition Description
class Matches the ID number of the class.

5.10.2 Template override conditions / class/groupedit.tpl 1268

5

5.10.2 class/groupedit.tpl

Module/view: groupedit

Condition Description
object Matches the ID number of class group.

5.10.3 Template override conditions / class/view.tpl 1269

5

5.10.3 class/view.tpl

Module/view: view

Condition Description
class Matches the ID number of the class.
class identifier Matches the identifier of the class (for exam-

ple ”folder”).

5.10.4 Template override conditions / content/advancedsearch.tpl 1270

5

5.10.4 content/advancedsearch.tpl

Module/view: advancedsearch

Condition Description
section Matches the number of the section in which

the search was conducted.

5.10.5 Template override conditions / content/browse.tpl 1271

5

5.10.5 content/browse.tpl

Module/view: browse

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which

the object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
view offset Matches the offset view parameter.
depth Matches the depth of the node. The depth

of a top level node is 1.
navigation part identifier Matches the identifier of the navigation part.
url alias Matches the virtual URL of the node.

5.10.6 Template override conditions / content/collectedinfo/*.tpl 1272

5

5.10.6 content/collectedinfo/*.tpl

Module/view: collectinformation

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which

the object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
depth Matches the depth of the node. The depth

of a top level node is 1.
navigation part identifier Matches the identifier of the navigation part.
url alias Matches the virtual URL of the node.

5.10.7 Template override conditions / content/collectedinfo/*.tpl 1273

5

5.10.7 content/collectedinfo/*.tpl

Module/view: collectedinfo

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which

the object is an instance of.
depth Matches the depth of the node. The depth

of a top level node is 1.
navigation part identifier Matches the identifier of the navigation part.
url alias Matches the virtual URL of the node.

5.10.8 Template override conditions / content/collectedinfomail/*.tpl 1274

5

5.10.8 content/collectedinfomail/*.tpl

Module/view: collectinformation

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which

the object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
depth Matches the depth of the node. The depth

of a top level node is 1.
navigation part identifier Matches the identifier of the navigation part.
url alias Matches the virtual URL of the node.

5.10.9 Template override conditions / content/datatype/edit/*.tpl 1275

5

5.10.9 content/datatype/edit/*.tpl

Module/view: none.

Condition Description
class identifier Matches the identifier of the class.
attribute identifier Matches the identifier of the attribute.

5.10.10 Template override conditions / content/datatype/view/*.tpl 1276

5

5.10.10 content/datatype/view/*.tpl

Module/view: none.

Condition Description
class identifier Matches the identifier of the class.
attribute identifier Matches the identifier of the attribute.

5.10.11 Template override conditions / content/edit.tpl 1277

5

5.10.11 content/edit.tpl

Module/view: edit

Condition Description
object Matches the ID number of the object.
class Matches the ID number of the class which

the object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
section Matches the number of the section which the

object belongs to.
class group Matches the ID number of the group that the

class which the object is an instance of be-
longs to.

5.10.12 Template override conditions / content/search.tpl 1278

5

5.10.12 content/search.tpl

Module/view: search

Condition Description
section Matches the number of the section in which

the search was conducted.

5.10.13 Template override conditions / content/versions.tpl 1279

5

5.10.13 content/versions.tpl

Module/view: versions

Condition Description
object Matches the ID number of the object.
class Matches the ID number of the class which

the object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
section id Matches the number of the section which the

object belongs to.

5.10.14 Template override conditions / content/versionview.tpl 1280

5

5.10.14 content/versionview.tpl

Module/view: versionview

Condition Description
navigation part identifier Matches the identifier of the navigation part.

5.10.15 Template override conditions / content/view/*.tpl 1281

5

5.10.15 content/view/*.tpl

Module/view: view

Condition Description
object Matches the ID number of the object.
class Matches the ID number of the class which

the object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
section Matches the number of the section which the

object belongs to.
class group Matches the ID number of the group that the

class which the object is an instance of be-
longs to.

5.10.16 Template override conditions / layout/set.tpl 1282

5

5.10.16 layout/set.tpl

Module/view: set

Condition Description
layout Matches the name of the layout (for example

”print”, ”fullpage”, etc.).

5.10.17 Template override conditions / node/view/*.tpl 1283

5

5.10.17 node/view/*.tpl

Module/view: view

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which

the object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
view offset Matches the offset view parameter.
depth Matches the depth of the node. The depth

of a top level node is 1.
section Matches the number of the section which the

object belongs to.
navigation part identifier Matches the identifier of the navigation part.
viewmode Matches the name of the view mode (full,

line, etc.)
url alias Matches the virtual URL of the node.
class group Matches the ID number of the group that the

class which the object is an instance of be-
longs to.

5.10.18 Template override conditions / node/view/pdf.tpl 1284

5

5.10.18 node/view/pdf.tpl

Module/view: pdf

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which

the object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
depth Matches the depth of the node. The depth

of a top level node is 1.
url alias Matches the virtual URL of the node.
class group Matches the ID number of the group that the

class which the object is an instance of be-
longs to.

5.10.19 Template override conditions / pagelayout.tpl 1285

5

5.10.19 pagelayout.tpl

Module/view: none.

Condition Description
persistent variable Matches the value of the persistent variable

if the ”view” view of the ”content” mod-
ule was executed. (The persistent vari-
able should be set in the ”node/view/<view
mode>.tpl” template that was used by this
view.)

[any] The pagelayout may be overridden using the
same keys that are available for the view
which was used within the request. For
example, if the ”view” view of the ”con-
tent” module was accessed, then the over-
ride conditions of that view will be matched.
This makes it possible to create a pagelay-
out override that will be triggered when, for
example, nodes referencing objects that be-
long to a certain section are requested.

5.10.20 Template override conditions / workflow/edit.tpl 1286

5

5.10.20 workflow/edit.tpl

Module/view: edit

Condition Description
workflow Matches the ID number of the workflow.

5.10.21 Template override conditions / workflow/groupedit.tpl 1287

5

5.10.21 workflow/groupedit.tpl

Module/view: groupedit

Condition Description
workflowgroup Matches the ID number of the workflow

group.

5.10.22 Template override conditions / workflow/view.tpl 1288

5

5.10.22 workflow/view.tpl

Module/view: view

Condition Description
workflow Matches the ID number of the workflow.

5.11 Template fetch functions 1289

5

5.11 Template fetch functions

The template fetch functions are documented in the following sections:

• class (page 541)

• collaboration (page 560)

• content (page 575)

• error (page 693)

• ezinfo (page 694)

• form (page 699)

• infocollector (page 702)

• layout (page 707)

• notification (page 712)

• package (page 724)

• pdf (page 747)

• reference (page 751)

• role (page 752)

• rss (page 760)

• search (page 766)

• section (page 769)

• setup (page 782)

• shop (page 783)

• trigger (page 824)

• url (page 827)

• user (page 836)

• workflow (page 861)

5.12 Template PDF functions 1290

5

5.12 Template PDF functions

anchor (page 1292)
Creates an internal link anchor.

create index (page 1293)
Creates an index based on the specified keywords.

filled circle (page 1294)
Creates a filled circle.

filled rectangle (page 1296)
Creates a filled rectangle.

footer (page 1298)
Sets the footer.

footer block (page 1300)
Inserts complex footers.

frame header (page 1301)
Sets the header text.

frontpage (page 1303)
Adds content to the frontpage.

header (page 1304)
Inserts a header / title.

header block (page 1306)
Inserts a complex header.

image (page 1307)
Inserts an image to the PDF document.

keyword (page 1309)
Adds a keyword to the keyword index.

line (page 1310)
Draws a line.

link (page 1312)
Inserts an external link.

new line (page 1313)
Inserts a new line.

new page (page 1314)
Inserts a new page.

page number (page 1315)
Starts the page number counter.

set font (page 1316)
Changes the default font.

5.12 Template PDF functions 1291

5

set margin (page 1318)
Sets the page margins or line spacing.

strike (page 1319)
Inserts striked text.

table (page 1320)
Inserts a table.

text (page 1322)
This function inserts formatted text into the PDF document.

text box (page 1324)
Inserts text at a specified location.

text frame (page 1325)
Inserts a text with a frame.

toc (page 1327)
Inserts a generated table of contents.

ul (page 1328)
Inserts a bullet list.

5.12.1 Template PDF functions / anchor 1292

5

5.12.1 anchor

Summary

Creates an internal link anchor.

Usage

{pdf(anchor, label)}

Parameters

Name Type Description Required
label string The name of the anchor. Yes.

Description

This function does not work. It is supposed to create an anchor for making internal links in
PDF documents.

Examples

Example 1

{pdf(’anchor’, ’image_1’)}

5.12.2 Template PDF functions / create index 1293

5

5.12.2 create index

Summary

Creates an index based on the specified keywords.

Usage

pdf(create_index)

Description

This function creates an index page from a collection of keywords. The keywords must be
specified using the ”keyword” (page 1309) PDF template function. The index will start on the
next page, and consists of the specified keywords with their corresponding page number.

Examples

Example 1

{pdf(’text’, ’Index page demo.’ | wash(’pdf’))}

{pdf(’keyword’, ’apples’)}

{pdf(’keyword’, ’bananas’)}

{pdf(’create_index’)}

This example creates an index page using the following keywords ”apples” and ”bananas”.

5.12.3 Template PDF functions / filled circle 1294

5

5.12.3 filled circle

Summary

Creates a filled circle.

Usage

pdf(filled_circle, hash(radius, circle_radius,

x, x_position,

y, y_position,

[rgb, rgb_color,]

[cmyk, cmyk_color]))

Parameters

Name Type Description Required
radius integer The radius of the circle. Yes.
x integer The x position of the circle placement. Yes.
y integer The y position of the circle placement. Yes.
rgb array The RGB color of the circle. Only

if the
”cmyk”
param-
eter is
omitted.

cmyk array The CMYK color of the circle. Only if
the ”rgb”
param-
eter is
omitted.

Description

This function creates a filled circle with a given radius and color. The position of the circle
is specified with the ”x” and ”y” parameters. The given coordinate must be within the page
margins. The lower-left corner is at (0,0).

Examples

Example 1

{pdf(’new_page’)}

{pdf(’filled_circle’, hash(’radius’, 100,

’x’, 300,

’y’, 400,

5.12.3 Template PDF functions / filled circle 1295

5

’rgb’, array(0, 0, 0)))}

{pdf(’filled_circle’, hash(’radius’, 98,

’x’, 300,

’y’, 400,

’rgb’, array(255, 0, 0)))}

This example creates a black circle with red filling on a new page.

5.12.4 Template PDF functions / filled rectangle 1296

5

5.12.4 filled rectangle

Summary

Creates a filled rectangle.

Usage

pdf(filled_rectangle, hash(x, x_position,

y, y_position,

width, width,

height, height,

[rgb, rgb_color,]

[rgbTop, rgb_top_color,

rgbBottom, rgb_bottom_color,]

[cmyk, cmyk_color,]

[cmykTop, cmyk_top_color,

cmykBottom, cmyk_bottom_color,]))

Parameters

Name Type Description Required
x integer/

float
X coordinate. Yes.

y integer/
float

Y coordinate. Yes.

width integer/
float

Rectangle width. Yes.

height integer/
float

Rectangle height. Yes.

rgb array Rectangle RGB color. No.
rgbTop array Rectangle top RGB color. No.
rgbBottom array Rectangle bottom RGB color. No.
cmyk array Rectangle CMYK color. No.
cmykTop array Rectangle top CMYK color. No.
cmykBottom array Rectangle bottom CMYK color. No.

Description

This function creates a filled rectangle. The ”x” and ”y” parameters specify the lower-left cor-
ner of the rectangle. The ”width” and ”height” parameters determine the size of the rectangle.

The color of the rectangle can be specified using either the ”rgb” or the ”cmyk” parameter.
The ”rgb” parameter must be an array consisting of three numbers between 0 and 255. The
”cmyk” parameter must be an array of four floats between 0 and 1. The ”rgb” or ”cmyk”
parameter fills the entire rectangle with the same color; no color interpolation. This option
has the same result as setting the ”rgbTop”, ”rgbBottom” or ”cmykTop”, ”cmykBottom” with
the same color. A different top and bottom color results in a gradient fill. The color will be
linearly interpolated from the top color to the bottom color of the rectangle.

5.12.4 Template PDF functions / filled rectangle 1297

5

This function uses features that appeared in the PDF1.3 specification. Because of this, rectan-
gles will not visible in PDF-viewers that are not PDF 1.3 compliant (for example ”Ghostview”,
etc.).

Examples

Example 1

{pdf(’filled_rectangle’, hash(’x’, -10,

’y’, 30.5,

’width’, 282.9,

’height, 821.9,

’cmykTop, array(0.96, 0.30, 0, 0),

’cmykBottom’, array(0.15, 0.04, 0, 0)))}

{pdf(’filled_rectangle’, hash(’x’, 272.9,

’y’, 30.5,

’width’, 333,

’height’, 821.9,

’cmykTop’, array(0.34, 0.05, 0, 0),

’cmykBottom’, array(0.10, 0.02, 0, 0))) }

{pdf(’filled_rectangle’, hash(’x’, -10,

’y’, -10,

’width’, 606,

’height’, 40.5,

’cmyk’, array(0.89, 0.43, 0.01, 0)))}

This example fills the page with three different rectangles.

5.12.5 Template PDF functions / footer 1298

5

5.12.5 footer

Summary

Sets the footer.

Usage

pdf(footer, hash([text, text,]

[align, text_alignment,]

[font, font_name,]

[size, font_size,]

[page, page_interval,]

[pageOffset, page_offset,]

[margin, hash([bottom, bottom_margin,]

[left, left_margin,]

[right, right_margin,]),]

[line, hash([leftMargin, left_margin,]

[rightMargin, right_margin,]

[thickness, line_thickness,]),]

[newline, boolean]

))

5.12.5 Template PDF functions / footer 1299

5

Parameters

Name Type Description Required
text string Text used in the footer. No.
align string Alignment of the text. No.
page string Page occurence is all, even or odd. No.
pageOffset integer Page number where the footer starts. No.
size integer Size of the font. No.
font string Type of the font. No.
margin hash The definition of the margins. No.
left integer/

float
Left footer margin. No.

right integer/
float

Right footer margin. No.

bottom integer/
float

Bottom footer margin. No.

line hash The definition of a line. No.
leftMargin integer/

float
Left line margin. No.

rightMargin integer/
float

Right line margin. No.

thickness integer/
float

The thickness of the line. No.

newline boolean Adds a new line to the footer. Force
footer entry to new line

No.

Description

This function makes it possible to create a footer for a collection of pages. Please note that it
does not work correctly. The page number from where the footer starts can be specified using
the ”pageOffset” parameter. The ”page” parameters can be used to specify whether the footer
should occur on ”all”, ”even” or ”odd” pages.

If the ”text” parameter is used, the parameters ”align”, ”type”, and ”size” can be used to
change the default alignment, font type and size. Please refer to the ”text” (page 1322)
function for more information about these parameters.

There are two keywords reserved in the text string (parameter):

• #page: will be replaced by the current page number.

• #total: will be replaces by the total number of pages.

The footer should only be included once in the PDF document.

5.12.6 Template PDF functions / footer block 1300

5

5.12.6 footer block

Summary

Inserts complex footers.

Usage

{pdf(footer_block, hash(block_code, $variable))}

Parameters

Name Type Description Required
block code mixed Variable of template code set using

”set block”.
Yes.

Description

This function makes it possible to create complex footers. There are some known problems
with this function.

5.12.7 Template PDF functions / frame header 1301

5

5.12.7 frame header

Summary

Sets the header text.

Usage

{pdf(frame_header, hash([text, text,]

[align, text_alignment,]

[page, page_interval,]

[pageOffset, page_offset,]

[size, font_size,]

[font, font_name,]

[margin, hash([bottom, bottom_margin,]

[left, left_margin,]

[right, right_margin,]),]

[line, hash([leftMargin, left_margin,]

[rightMargin, right_margin,]

[thickness, line_thickness,]),])) }

Parameters

Name Type Description Required
text string The header text. No.
align string The text alignment. No.
page string Page occurence (”all”, ”even” or

”odd”).
No.

pageOffset integer Page number to start footer at. No.
size integer The font size. No.
font string The font name. No.
margin hash Margin definition. No.
left integer/

float
Left header margin. No.

right integer/
float

Right header margin. No.

bottom integer/
float

Bottom footer margin. No.

line hash Line definition. No.
leftMargin integer/

float
Left line margin. No.

rightMargin integer/
float

Right line margin. No.

thinkness integer/
float

Line thickness. No.

newline boolean Force header entry to new line. No.

5.12.7 Template PDF functions / frame header 1302

5

Description

This function is deprecated and should not be used.

5.12.8 Template PDF functions / frontpage 1303

5

5.12.8 frontpage

Summary

Adds content to the frontpage.

Usage

pdf(frontpage, hash(text, page_text,

[align, text_alignment,]

[size, text_size,]

[top_margin, top_text_margin]))

Parameters

Name Type Description Required
text string Text that will be added to the front

page.
Yes.

align string The text alignment. No.
size int The font size. No.
top margin int The top margin. No.

Description

This function makes it possible to add text to the front page. If the frontpage is not present,
a new front page will be created when the function is used for the first time. This function
should be called after all other content has been added to the PDF document. The ”align” and
”size” parameters control the alignment and the size of the text. The ”top margin” parameter
can be used to specify the top margin (vertical positioning) for the text.

Examples

Example 1

{pdf(’frontpage’, hash(’text’, ’eZ Publish

’|wash(’pdf’), ’align’, ’center’, ’size’, 32, ’top_margin’, 350))}

{pdf(’frontpage’, hash(’text’, ’The road ahead’| wash(’pdf’), ’align’,

’center’, ’size’, 22, ’top_margin’, 400))}

This example adds a main and a sub title to the front page. The sub title is smaller and
positioned below the main title. Both titles are centered. Notice that the main title ends with
a new line, this assures that the sub title is correctly centered.

5.12.9 Template PDF functions / header 1304

5

5.12.9 header

Summary

Inserts a header / title.

Usage

pdf(header, hash(text, header_text,

level, header_level,

size, font_size,

[align, text_alignment,]

[font, font_type]))

Parameters

Name Type Description Required
text string The header text. Yes.
level integer The header level. Yes.
size integer The font size. Yes.
align string The text alignment. No.
font string The font that should be used. No.

Description

This function inserts a header or title. The main difference between the ”text” and the header
function is the ”level” parameter. This parameter specifies the type of the header. The level
number goes from 1 and up:

1. Chapters

2. Section

3. Subsection

4. Subsubsection

5. etc.

The level has nothing to do with the header text, it controls how the text appears in the table
of contents (page 1327). The font size, font type, and text alignment can be specified using
the ”size”, ”font”, and ”align” parameters. Please refer to the documentation of the ”text”
function for an explanation of these parameters.

Examples

Example 1

5.12.9 Template PDF functions / header 1305

5

{pdf(’header’, hash(’level’, 1, ’text’, ’The first chapter’|wash(’pdf’),

’size’, 20))}

{pdf(’header’, hash(’level’, 2, ’text’, ’The first section’|wash(’pdf’),

’size’, 16))}

{pdf(’header’, hash(’level’, 2, ’text’, ’The second section’|wash(’pdf’

), ’size’, 16))}

{pdf(’header’, hash(’level’, 3, ’text’, ’The first subsection’|wash(’pdf’

), ’size’, 14))}

{pdf(’header’, hash(’level’, 1, ’text’, ’The second chapter’|wash(’pdf’

), ’size’, 20))}

This example shows how to create a chapters, section and subsections.

5.12.10 Template PDF functions / header block 1306

5

5.12.10 header block

Summary

Inserts a complex header.

Usage

{pdf(header_block, hash(block_code, $variable))}

Parameters

Name Type Description Required
block code mixed Variable of template code set using the

”set block” function.
Yes.

Description

This function is not documented because there are some problems with it.

5.12.11 Template PDF functions / image 1307

5

5.12.11 image

Summary

Inserts an image to the PDF document.

Usage

pdf(image, hash(src, image_path,

[width, image_width,]

[height, image_height,]

[align, justification,]

[x, x_position,]

[y, y_position,]

[dpi, resolution,]

[static, flow_properties]))

Parameters

Name Type Description Required
src string The path to the image. Yes.
width integer The width of the image. No.
height integer The height of the image. No.
align string The alignment of the image. No.
x integer The absolute horizontal offset. No.
y integer The absolute y offset. No.
dpi integer The image resolution. No.
static boolean Float properties of the image. No.

Description

This function makes it possible to insert an image. The image location or image source points
to the root directory of the eZ publish installation. The image location is relative to this
directory. Currently, the supported image types are ”jpg” and ”png” without alpha channel.

The width and height of the image can be specified using the ”width” and ”height” parameters.
If these parameters are omitted, the image will be scaled to 100 by 100 dots. The ”align”
parameter can be used to specify the horizontal position of the image. Possible alignments
are ”left”, ”right”, and ”center” - the default is ”left”. The ”x” and ”y” parameter makes it
possible to place the image at an exact location. These parameters will override the settings
from the image alignment (”align”) and float properties (”static”).

If the image is too sharp, the dots-per-inch can be decreased using the ”dpi” parameter. (It is
not possible to make the image sharper than the original.)

The ”static” parameter can be used to specify whether the content around the image will float
around the image or not. When the ”static” parameter is set to TRUE, additional content will
not float around and may actually overlap the image.

5.12.11 Template PDF functions / image 1308

5

Examples

Example 1

{pdf(’text’, ’The logo is on the right hand side of this text.’|wash(’pdf’

))}

{pdf(’image’, hash(’src’, ’design/mysite/images/company_logo.png’,

’width’, 200,

’height’, 200,

’align’, ’right’))}

This example displays an image with some text on the left hand side.

Example 2

{pdf(’image’, hash(’src’, $image.full_path, ’width’, $image.width,

’height’, $image.height))}

This example adds the image assigned to the $image variable.

5.12.12 Template PDF functions / keyword 1309

5

5.12.12 keyword

Summary

Adds a keyword to the keyword index.

Usage

pdf(keyword, word)

Parameters

Name Type Description Required
word string The keyword that should be added. Yes.

Description

This function adds a word to the keywords. When generating the keyword index (using the
”create index” (page 1293) function), an internal link to the position where the keyword was
added will be created.

Examples

Example 1

{pdf(’keyword’, ’alien’)}

This example will add the ”alien” word to the keywords.

5.12.13 Template PDF functions / line 1310

5

5.12.13 line

Summary

Draws a line.

Usage

pdf(line, hash(x1, x_start,

y1, y_start,

x2, x_stop,

y2, y_stop,

[page, occurence,]

[thickness, line_thickness]))

Parameters

Name Type Description Required
x1 float Start coordinate of the X-ax. Yes.
y1 float Start coordinate of the Y-ax. Yes.
x2 float Stop coordinate of the X-ax. Yes.
y2 float Stop coordinate of the Y-ax. Yes.
pages string The pages on which the line should ap-

pear.
No.

thickness float The thickness of the line. No.

Description

This function draws a line. The line will be drawn from the (x1, y1) coordinate to the (x2,
y2) coordinate. If the ”pages” parameter is omitted or set to ”current”, the line will only
be present on the current page. If ”pages” is set to all, it will appear on all the pages. The
thickness of the line can be set with the ”thickness” parameter; the default thickness is 1.

When the line must be visible on all the pages, the line definition must be set after the content
is written to the PDF-document (at the end of the template) and the line should be defined
only once. A common technique is to use the ”include” (page 1213) operator.

Examples

Example 1

{pdf(’line’, hash(’x1’, 100, ’y1’, 100, ’x2’, 100, ’y2’, 300))}

This example draws a vertical line, from (100, 100) to (100, 300) on the current page.

5.12.13 Template PDF functions / line 1311

5

Example 2

{pdf(’line’, hash(’x1’, 20, ’y1’, 30, ’x2’, 20, ’y2’, 40, pages, ’all’))}

{pdf(’line’, hash(’x1’, 20, ’y1’, 40, ’x2’, 30, ’y2’, 40, pages, ’all’))}

{pdf(’line’, hash(’x1’, 30, ’y1’, 40, ’x2’, 30, ’y2’, 35, pages, ’all’))}

{pdf(’line’, hash(’x1’, 25, ’y1’, 35, ’x2’, 33, ’y2’, 35, pages, ’all’))}

{pdf(’line’, hash(’x1’, 33, ’y1’, 35, ’x2’, 33, ’y2’, 27, pages, ’all’))}

{pdf(’line’, hash(’x1’, 25, ’y1’, 35, ’x2’, 25, ’y2’, 27, pages, ’all’))}

{pdf(’line’, hash(’x1’, 25, ’y1’, 27, ’x2’, 33, ’y2’, 27, pages, ’all’))}

{pdf(’line’, hash(’x1’, 20, ’y1’, 30, ’x2’, 25, ’y2’, 30, pages, ’all’))}

This example draws the eZ logo in the lower left corner of every page.

5.12.14 Template PDF functions / link 1312

5

5.12.14 link

Summary

Inserts an external link.

Usage

pdf(link, hash(url, url,

text, link_text))

Parameters

Name Type Description Required
url string The URL that should be called. Yes.
text string The text of the link. Yes.

Description

This function insert a link to an external document.

Examples

Example 1

{pdf(’link’, hash(’url’, ’http://www.ez.no’,

’text’, ’eZ Systems website’))}

This example creates an link to the eZ Systems website.

5.12.15 Template PDF functions / new line 1313

5

5.12.15 new line

Summary

Inserts a new line.

Usage

pdf(new_line)

Description

This function inserts a new line.

Examples

Example 1

{pdf(’text’, ’Some text.’|wash(’pdf’))}

{pdf(’text’, ’This sentence is written at the same line.’|wash(’pdf’))}

{pdf(’new_line’)}

{pdf(’text’, ’The start of a new line.’|wash(’pdf’))}

{pdf(’new_line’)}

{pdf(’new_line’)}

{pdf(’text’, ’There is a blank line above this one.’|wash(’pdf’))}

This example demonstrates everything that can be done with the ”new line” function.

5.12.16 Template PDF functions / new page 1314

5

5.12.16 new page

Summary

Inserts a new page.

Usage

pdf(new_page)

Description

This function inserts a new page, following content will be placed on a new page. Please note
that the system automatically takes care of adding new pages when needed. This function
simply makes it possible to manually insert a new page.

Examples

Example 1

{pdf(’text’, ’Text that will be on page #1.’)}

{pdf(’new_page’)}

{pdf(’header’, hash(’text’, ’Text that will be on page #2.’, ’level’, 1,

’size’, 18))}

This example demonstrates the manual insertion of a new page.

5.12.17 Template PDF functions / page number 1315

5

5.12.17 page number

Summary

Starts the page number counter.

Usage

{pdf(page_number)}

Description

This function starts the page number counter.

5.12.18 Template PDF functions / set font 1316

5

5.12.18 set font

Summary

Changes the default font.

Usage

pdf(set_font, hash([name, font_name,]

[size, font_size,]

[colorCMYK, cmyk_color,]

[colorRGB, rgb_color,]

[justification, text_justification]))

Parameters

Name Type Description Required
name string The font type (name). No.
size integer The size of the font. No.
colorCMYK array The CMYK color. No.
colorRGB array The RGB color. No.
justification string The text alignment. No.

Description

This function makes it possible to change the default/current font and the text color, style,
etc. The following list shows the fonts that can be used.

• Courier-Bold

• Courier-BoldOblique

• Courier-Oblique

• Courier

• Helvetica-Bold

• Helvetica-BoldOblique

• Helvetica-Oblique

• Helvetic

• Symbol

• Times-Bold

• Times-BoldItalic

• Times-Italic

• Times-Roman

5.12.18 Template PDF functions / set font 1317

5

Either the ”colorRGB” or the ”colorCMYK” parameter can be used to specify the font color.
The ”colorRGB” parameter must be an array consisting of three integers between 0 and 255.
The ”colorCMYK” parameter must be an array of four decimal values between 0 and 1.

The justification parameter controls the text alignment, it can be:

• left

• right

• center

• full

Examples

Example 1

{pdf(’set_font’, hash(’name’, ’Times-Roman’, ’size’, 12))}

{pdf(’text’, ’Hello world’|wash(’pdf’))}

{pdf(’new_line’)}

{pdf(’new_line’)}

{pdf(’set_font’, hash(’name’, ’Times-Italic’,

’size’, 10,

’justification’, ’full’,

’colorRGB’, array(255, 255, 128)))}

{pdf(’text’, ’Example’|wash(’pdf’))}

This example demonstrates how to change the default font type, size, style, and color.

5.12.19 Template PDF functions / set margin 1318

5

5.12.19 set margin

Summary

Sets the page margins or line spacing.

Usage

pdf(set_margin, hash([left, left_margin,]

[right, right_margin,]

[top, top_margin,]

[bottom, bottom_margin,]

[x, x_offset,]

[y, y_offset,]

[line_space, line_space]))

Parameters

Name Type Description Required
left float Left page margin. No.
right float Right page margin. No.
top float Top page margin. No.
bottom float Bottom page margin. No.
x float Page x offset. No.
y float Page y offset. No.
line space float Line space size. No.

Description

This function sets the page margins of the current and following pages. The ”left”, ”right”,
”top”, and ”bottom” parameters specify the distances from the edges. The parameters ”x” and
”y” specify a point on the current page where the new margin starts. For the next pages, the
parameters ”x” and ”y” are ignored and thus the margins will affect the entire area of the
upcoming pages. The ”line space” parameter specifies the amount of white space between
each line. The default margins are configured in the ”pdf.ini” file.

Examples

Example 1

{pdf(’set_margin’, hash(’left’, 370, ’right’, 100))}

{pdf(’text’, ’The text written on this page is presented in a small column.

The space between each new line is also adjusted.’|wash(’pdf’))}

This example creates a small column with some text.

5.12.20 Template PDF functions / strike 1319

5

5.12.20 strike

Summary

Inserts striked text.

Usage

pdf(strike, text)

Parameters

Name Type Description Required
text string Text to strike through. Yes.

Description

This function draws a line through the specified text. The ”set font” (page 1316) function is
the only way to change the font type, font size, font color, and text alignment.

Examples

Example 1

{pdf(’strike’, ’A strike is a deliberate absence from work.’|wash(’pdf’)

)}

This example demonstrates a striked sentence.

5.12.21 Template PDF functions / table 1320

5

5.12.21 table

Summary

Inserts a table.

Usage

pdf(table, table_rows, hash([showLines, number,]

[firstRowTitle, boolean,]

[titleCellCMYK, cmyk_color,]

[titleTextCMYK, cmyk_color,]

[titleFontSize, font_size,]

[cellCMYK, cmyk_color,]

[textCMYK, cmyk_color,]

[rowGap, row_gap,]

[colGap, col_gap,]

[cellPadding, cell_padding,]

[width, table_width,]

[repeatTableHeader, repeat_table_header]))

Parameters

Name Type Description Required
showLines integer Defines the drawing style of the table. No.
firstRowTitle boolean Defines whether the first row should be

displayed as a title header (or not).
No.

titleCellCMYK array CMYK color of the title cell. No.
titleTextCMYK array CMYK color of the title text. No.
titleFontSize integer Font size of the title. No.
cellCMYK array CMYK color of the cells. No.
textCMYK array CMYK color of the text. No.
rowGap integer/

float
Space between the table rows. No.

colGap integer/
float

Space between the table columns. No.

cellPadding integer/
float

Padding around the text in each cell. No.

width integer/
float

Width of the table. No.

repeatTableHeader boolean Defines whether the table header
should be repeated on a new page.

No.

Description

This function inserts a table. The table data must defined using the ”table rows” parameter.
Use the ”set-block” (page 1228) template function to specify the rows and the cells. The rows
and cells are defined the same way as rows and cells are defined in HTML. Note that nested
tables are not supported.

5.12.21 Template PDF functions / table 1321

5

The ”showLines” parameter specifies the drawing style of the table, it must be one of the
following numbers:

• 0 - Don’t draw lines at all.

• 1 - Draw only the inner lines.

• 2 - Draw all the lines.

The ”firstRowTitle” expects an boolean value. This parameter defines whether the first row
in the table, should be used for column descriptions. With the ”titleCellCMYK” and ”title-
TextCMYK” parameters the color of the cell-background and the text of the column titles can
be controlled. The title font size can be changed with the ”titleFontSize” parameter.

For the rest of the cells can the background and text color be changed with the ”cellCMYK”
and ”textCMYK”.

The size of the table and the space between the columns and rows is defined with the ”row-
Gap”, ”colGap”, ”cellPadding”, and ”width” parameters.

The parameter ”repeatTableHeader” defines whether the title should be repeated on each new
page, if the table is stretched over multiple pages.

5.12.22 Template PDF functions / text 1322

5

5.12.22 text

Summary

This function inserts formatted text into the PDF document.

Usage

pdf(text, page_text, hash([font, font_name,]

[size, font_size,]

[rgb, rgb_color,]

[cmyk, cmyk_color,]

[align, text_alignment]))

Parameters

Name Type Description Required
text string The text that should be inserted. Yes.
font string The font type. No.
size integer The size of the font. No.
rgb array The RGB text color. No.
cmyk array The CMYK text color. No.
align text The text alignment. No.

Description

This function inserts regular text into the PDF document. The font type, font size, font color,
and text alignment can be specified. If not specified, this function uses the current settings.
The available font types are:

• Courier-Bold

• Courier-BoldOblique

• Courier-Oblique

• Courier

• Helvetica-Bold

• Helvetica-BoldOblique

• Helvetica-Obliqu

• Helvetic

• Symbol

• Times-Bold

• Times-BoldItalic

5.12.22 Template PDF functions / text 1323

5

• Times-Italic

• Times-Roman

The ”rgb” and ”cmyk” parameters can be used to specify the font color. Only one of these
two parameters can be used at the same time. The ”rgb” parameter must be an array of three
integers between 0 and 255. The ”cmyk” parameter must be an array of four decimal values
between 0.0 and 1.0.

The alignment parameter can be used to set the text alignment, possible values are:

• left

• right

• center

• full

The last options will spread/justify the text from the left to the right margin if it covers at
least 80% of the margin-width.

Examples

Example 1

{pdf(’text’, ’eZ publish and PDF’|wash(’pdf’),

hash(’font’, ’Times-Bold’, ’size’, 22, ’align’, ’center’))}

This example generates a centered text using ”Times-Bold” at 22 points.

Example 2

{pdf(’text’, ’red’|wash(’pdf’), hash(’rgb’, array(255, 0, 0)))}

{pdf(’text’, ’green’|wash(’pdf’), hash(’rgb’, array(0, 255, 0)))}

{pdf(’text’, ’blue’|wash(’pdf’), hash(’rgb’, array(0, 0, 255)))}

This example demonstrates text coloring.

Example 3

{pdf(’text’, ’A primary color is a color that can not be created by mixing

other colors in the gamut of a given color space. Primary colors may

themselves be mixed to produce most of the colors in a given color

space.’|wash(’pdf’), hash(’align’, ’full’))}

This example demonstrates how the text can be justified.

5.12.23 Template PDF functions / text box 1324

5

5.12.23 text box

Summary

Inserts text at a specified location.

Usage

pdf(text_box, hash(text, text

x, x_offset,

y, y_offset,

width, total width,

[align, text_alignment,]

[size, text_size]))

Parameters

Name Type Description Required
text string The text that should be inserted into

the box.
Yes.

x float X coordinate of the text box. Yes.
y float Y coordinate of the text box. Yes.
width float The width of the text box. Yes.
align string The alignment of the text. No.
size float The font size. No.

Description

This function creates a text box at the specified place on the current page. The font properties
(type, size, and color) are not affected by the ”set font” (page 1316) function.

If the text box is positioned before any other content, the content will flow nicely over and
under the text box. If other content is present before the text box is added, the text box will
overlap it.

Examples

Example 1

{pdf(’text_box’, hash(’text’, ’This text appears in a text box.’|wash(

’pdf’),

’x’, 250,

’y’, 400,

’width’, 30))}

This example will write a sentence at coordinate (250, 400).

5.12.24 Template PDF functions / text frame 1325

5

5.12.24 text frame

Summary

Inserts a text with a frame.

Usage

pdf(text_frame, text, hash([frameRGB, rgb_frame_color,]

[frameCMYK, cmyk_frame_color,]

[textRGB, rgb_text_color,]

[textCMYK, cmyk_text_color,]

[fontSize, font_size,]

[fontName, font_name,]

[padding, text_padding,]

[leftPadding, left_text_padding,]

[rightPadding, right_text_padding,]

[topPadding, top_text_padding,]

[bottomPadding, bottom_text_padding,]

[roundEnds, round_ends]))

Parameters

Name Type Description Required
frameRGB array Frame RGB color. No.
frameCMYK array Frame CMYK color. No.
textRGB array Text RGB color. No.
textCMYK array Text CMYK color. No.
fontSize integer Font size. No.
fontName string Font name. No.
padding integer Padding around the text. No.
leftPadding integer Padding left of the text. No.
rightPadding integer Padding right of the text. No.
topPadding integer Padding above the text. No.
bottomPadding integer Padding below the text. No.
roundEnds boolean Squared or rounded frame edges. No.
text string The text that should be displayed in-

side the frame.
Yes.

Description

This function creates a text with a colored frame around it. The frame has the size of the
text plus the amount of padding. The padding can be specified for each side of the text
with the parameters ”leftPadding”, ”rightPadding”, ”topPadding”, and ”bottomPadding”. If
the padding is equal for each side, the ”padding” parameter can be used instead.

The ”leftPadding” and ”rightPadding” parameters may be set to ”-1”, which will result in
padding that reaches the page margin.

5.12.24 Template PDF functions / text frame 1326

5

By default the frame has squared corners. If the ”roundEnds” parameter is set to TRUE, the
frame will have rounded corners.

The colors of the frame and the text can be specified using the ”frameRGB”, ”frameCMYK”,
”textRGB”, and ”textCMYK” parameters. The RGB parameters must be arrays consisting of
three integers between 0 and 255. The CMYK parameters must be arrays consisting of four
decimal values between 0.0 and 1.0.

The font can be changed using the ”fontSize” and ”fontName” parameters.

Examples

Example 1

{pdf(text_frame, "Test frame", hash(roundEnds, true(),

textCMYK, array(0.89, 0.43, 0.01, 0),

frameRGB, array(255,255,128),

padding, 8,

fontSize, 14))}

This example creates a frame (with round edges) around the sentence ”Test frame”.

5.12.25 Template PDF functions / toc 1327

5

5.12.25 toc

Summary

Inserts a generated table of contents.

Usage

pdf(toc, hash(contentText, toc_header_text,

[size, size_array,]

[dots, boolean,]

[indent, indent_array]))

Parameters

Name Type Description Required
contentText string Table of contents header. Yes.
size array An array of numbers, indicating the

font sizes for each header level.
No.

indent array An array of booleans, indicating
whether the title should be indented
for each header level.

No.

dots boolean Display dots between the titles and
page numbers.

No.

Description

This function generates and inserts the table of contents after the front page. If the front page
is not available, the table of contents is inserted at the beginning of the PDF document.

Examples

Example 1

{pdf(’toc’, hash(’size’, array(18, 16, 14, 12, 10),

’dots’, true(),

’contentText’, ’Content’|wash(’pdf’),

’indent’, array(0, 4, 6, 8, 10)))}

This example creates a table of contents. The size of the level 1 headers will be 18 and will
not indented, level 2 headers will have size 16 and will be indented 4 dots, etc. There will be
dots between the headers and the page numbers.

5.12.26 Template PDF functions / ul 1328

5

5.12.26 ul

Summary

Inserts a bullet list.

Usage

pdf(ul, text, hash([rgb, rgb_color,]

[cmyk, cmyk_color,]

[radius, dot_radius,]

[indent, text_indent,]

[pre_indent, bullet_indent]))

Parameters

Name Type Description Required
text string Bullet text. Yes.
rgb array Array of RGB colors. No.
cmyk array Array of CMYK colors. No.
radius float The radius of the dot. No.
indent float Text indentation after the dot. No.
pre indent float Indentation before the bullet. No.

Description

This function inserts a bullet list into the PDF document.

The colors of the bullet can be specified using the ”rgb” or the ”cmyk” parameter. The ”rgb”
parameter must be an array consisting of three integers between 0 and 255. The ”cmyk”
parameter must be array of four decimal numbers between 0.0 and 1.0.

The size of the bullet can be controlled using the ”radius” parameter. The indentation (in dots)
before and after the dot can be specified using the ”pre indent” and ”indent” parameters.

Examples

Example 1

{pdf(’text’, "Most popular internet browsers in 2004:" |wash(’pdf’)}

{pdf(’ul’, ’Internet Explorer (88,9%)’|wash(’pdf’))}

{pdf(’ul’, ’Version 6 (80.95%)’|wash(’pdf’), hash(’pre_indent’, 15))}

{pdf(’ul’, ’Version 5.5 (4.18%)’|wash(’pdf’), hash(’pre_indent’, 15))}

{pdf(’ul’, ’Version 5.0 (3.66%)’|wash(’pdf’), hash(’pre_indent’, 15))}

{pdf(’ul’, ’Mozilla-based browsers (7.35%)’|wash(’pdf’))}

{pdf(’ul’, ’Rest (3.75%)’|wash(’pdf’))}

This example generates a bullet list where some of the bullets are indented.

5.13 Configuration files 1329

5

5.13 Configuration files

binaryfile.ini (page 1332)
Not documented yet.

browse.ini (page 1333)
Not documented yet.

collaboration.ini (page 1334)
Not documented yet.

collect.ini (page 1335)
Not documented yet.

content.ini (page 1336)
Settings related to content.

contentstructuremenu.ini (page 1360)
Settings related to the ”Content structure” tree menu in the admin interface.

cronjob.ini (page 1365)
Settings related to cronjobs.

datatype.ini (page 1374)
Not documented yet.

datetime.ini (page 1375)
Not documented yet.

dbschema.ini (page 1376)
Not documented yet.

debug.ini (page 1377)
Not documented yet.

design.ini (page 1378)
Settings related to designs and design related files like css and javascripts.

error.ini (page 1387)
Not documented yet.

extendedattributefilter.ini (page 1388)
Not documented yet.

ezxml.ini (page 1389)
Not documented yet.

fetchalias.ini (page 1390)
Not documented yet.

file.ini (page 1391)
Not documented yet.

i18n.ini (page 1392)
Settings related to internationalization.

5.13 Configuration files 1330

5

icon.ini (page 1395)
Not documented yet.

image.ini (page 1396)
Not documented yet.

layout.ini (page 1397)
Not documented yet.

ldap.ini (page 1398)
Not documented yet.

logfile.ini (page 1400)
Settings related to log files.

menu.ini (page 1405)
Not documented yet.

module.ini (page 1406)
Not documented yet.

notification.ini (page 1407)
Not documented yet.

override.ini (page 1408)
Not documented yet.

package.ini (page 1409)
Not documented yet.

paymentgateways.ini (page 1410)
Not documented yet.

setup.ini (page 1411)
Not documented yet.

shopaccount.ini (page 1412)
Not documented yet.

site.ini (page 1413)
Controls the overall/main behavior of the system.

soap.ini (page 1648)
Not documented yet.

staticcache.ini (page 1649)
Settings related to the static cache.

template.ini (page 1656)
Not documented yet.

textfile.ini (page 1657)
Not documented yet.

texttoimage.ini (page 1658)
Not documented yet.

5.13 Configuration files 1331

5

toolbar.ini (page 1659)
Not documented yet.

transform.ini (page 1660)
Not documented yet.

units.ini (page 1661)
Not documented yet.

upload.ini (page 1662)
Not documented yet.

viewcache.ini (page 1663)
Settings related to the view cache system.

webdav.ini (page 1673)
Not documented yet.

wordtoimage.ini (page 1674)
Not documented yet.

workflow.ini (page 1675)
Settings related to workflows.

5.13.1 Configuration files / binaryfile.ini 1332

5

5.13.1 binaryfile.ini

5.13.2 Configuration files / browse.ini 1333

5

5.13.2 browse.ini

5.13.3 Configuration files / collaboration.ini 1334

5

5.13.3 collaboration.ini

5.13.4 Configuration files / collect.ini 1335

5

5.13.4 collect.ini

5.13.5 Configuration files / content.ini 1336

5

5.13.5 content.ini

The configuration blocks are documented in the following sections:

• [ActionSettings] (page 1337)

• [ContentOverrideSettings] (page 1339)

• [DataTypeSettings] (page 1341)

• [HideSettings] (page 1345)

• [UnpublishSettings] (page 1348)

• [VersionManagement] (page 1351)

• [VersionView] (page 1355)

5.13.5 Configuration files / content.ini 1337

5

[ActionSettings]

ExtensionDirectories (page 1338)
Sets the directories where eZ Publish will look for action extensions.

5.13.5 Configuration files / content.ini 1338

5

ExtensionDirectories

Summary

Sets the directories where eZ Publish will look for action extensions.

Usage

ExtensionDirectories[]= directory1

ExtensionDirectories[]= directory2

...

Description

eZ Publish will look for actions in ” ExtensionDirectory (page 1464)/ directory/actions/
content actionhandler.php”. In that file eZ Publish will look for the function directory
ContentActionHandler. This function will be invoked when your action is triggered.
The function must accept three parameters: ”module”, ”http” and ”objectID”.

5.13.5 Configuration files / content.ini 1339

5

[ContentOverrideSettings]

EnableClassGroupOverride (page 1340)
Sets whether it should be possible to override templates based on the ”class group”
condition.

5.13.5 Configuration files / content.ini 1340

5

EnableClassGroupOverride

Summary

Sets whether it should be possible to override templates based on the ”class group” condition.

Usage

EnableClassGroupOverride=true|false

Description

This directive sets whether it should be possible to override templates based on the ”class
group” condition. (Refer to the ”Template override conditions” section of the ”Reference”
chapter for information about which templates that can be overriden based on this condition.)
The default value is ”false”, which means that the Cclass groupC condition will not work.

5.13.5 Configuration files / content.ini 1341

5

[DataTypeSettings]

AvailableDatatypes (page 1342)
Sets the datatypes available to eZ Publish.

ExtensionDirectories (page 1343)
Sets the extensions that contains datatypes.

RepositoryDirectories (page 1344)
Sets the directories where eZ Publish should look for datatypes.

5.13.5 Configuration files / content.ini 1342

5

AvailableDatatypes

Summary

Sets the datatypes available to eZ Publish.

Usage

AvailableDatatypes[]= datatype1

AvailableDatatypes[]= datatype2

...

Description

eZ Publish will look for the datatypes in the directories specified by RepositoryDirectories
(page 1344) and ExtensionDirectories (page 1343).

Examples

ExtensionDirectory[]=my_extension

AvailableDatatypes[]=my_datatype

This example shows a typical configuration of content.ini.append in an extension with a
datatype. If extensions are located in the ”extension” directory (default) these settings will
make eZ Publish look for the datatype extension in the directory ”/extension/my extension/
datatypes/my datatype/”.

5.13.5 Configuration files / content.ini 1343

5

ExtensionDirectories

Summary

Sets the extensions that contains datatypes.

Usage

ExtensionDirectories[]= directory1

ExtensionDirectories[]= directory2

...

Description

eZ Publish will look for datatypes in ” ExtensionDirectory (page 1464)/ directory/datatypes/
”. You must also add your datatype to AvailableDataTypes (page 1342) in order to make eZ
Publish recognize it.

5.13.5 Configuration files / content.ini 1344

5

RepositoryDirectories

Summary

Sets the directories where eZ Publish should look for datatypes.

Usage

RepositoryDirectories[]= directory1

RepositoryDirectories[]= directory2

Description

Directories should be specified relative to your eZ Publish root directory.

This setting is for kernel datatypes only. If you add your own datatype you should put it in
an extension and use the ExtensionDirectories (page 1343) setting to tell eZ Publish where to
find it.

5.13.5 Configuration files / content.ini 1345

5

[HideSettings]

\begin{description} \item[HideDateAttributeList]\refer{labeleb972767b12b71f7272306c3ec5778a8}\
\\ Sets which date/time attributes the hide cronjob should use.

\item[RootNodeList]\refer{label25237074faab8c942a394de1ccb0aca1}\ \\ Sets which sub-
trees that will be affected by the ”hide.php” cronjob.

\end{description}

5.13.5 Configuration files / content.ini 1346

5

HideDateAttributeList

Summary

Sets which date/time attributes the hide cronjob should use.

Usage

HideDateAttributeList[class id1]=attribute id1

HideDateAttributeList[class id2]=attribute id2

...

Description

This directive can be used to tell the ”hide.php” cronjob about which date/time values it
should look for when hiding nodes. Both the class and the attribute (which needs to be
represented by the ”Date and time (page 443)” datatype) must be specified using identifiers
(not ID numbers). In addition, the ”RootNodeList (page 1347)” directive must be used to
specify which subtrees that can have their nodes affected by the cronjob script.

Examples

Example 1

HideDateAttributeList[article]=hide_date

The hide cronjob will check date/time values specified in the ”hide date” attribute of your
articles.

5.13.5 Configuration files / content.ini 1347

5

RootNodeList

Summary

Sets which subtrees that will be affected by the ”hide.php” cronjob.

Usage

RootNodeList[]=node id1

RootNodeList[]=node id2

...

Description

If you are using the ”hide.php” cronjob to control the visibility of your nodes (based on a
date/time-attribute), you must use this directive to specify which subtrees that can have their
children (recursively) affected by this feature. Please note that the default value is empty,
which means that no nodes will be hidden.

Examples

Example 1

RootNodeList[]=2

This tells the system that the ”hide.php” cronjob can affect all items in the content node tree.

5.13.5 Configuration files / content.ini 1348

5

[UnpublishSettings]

ClassList (page 1349)
Sets the content classes that use the ”Date and time” datatype (used by the ”unpub-
lish.php” cronjob).

RootNodeList (page 1350)
Controls which subtrees that will be affected by the ”unpublish.php” cronjob.

5.13.5 Configuration files / content.ini 1349

5

ClassList

Summary

Sets the content classes that use the ”Date and time” datatype (used by the ”unpublish.php”
cronjob).

Usage

ClassList[]=class id1

ClassList[]=class id2

...

Description

This setting reveals the content classes that contain attributes which can be used by the ”un-
publish.php” script. Please note that you’ll have to use ID numbers here, not identifiers. Only
objects that are of these classes will be affected by the script. In addition, the ”RootNodeList
(page 1350)” directive must be used to specify which subtrees that can have their nodes
affected by the cronjob script.

Examples

Example 1

ClassList[]=2

Assuming that the ID number of your article class is 2, this configuration will tell the ”unpub-
lish.php” cronjob to check the date and time values specified in the ”unpublish date” attribute
of the article(s).

5.13.5 Configuration files / content.ini 1350

5

RootNodeList

Summary

Controls which subtrees that will be affected by the ”unpublish.php” cronjob.

Usage

RootNodeList[]=node id1

RootNodeList[]=node id2

...

Description

If you are using the ”unpublish.php” cronjob to delete (move to Trash) your content objects
when a specified date and time is reached, you can use this directive to specify which par-
ent nodes that will have their children (recursively) affected by the unpublish feature. The
”RootNodeList” configuration array is empty by default, i.e. no objects will be removed.

Examples

Example 1

RootNodeList[]=2

This will tell the system that the ”unpublish.php” cronjob can be applied to any item in the
content tree.

5.13.5 Configuration files / content.ini 1351

5

[VersionManagement]

Read more (page 120) about the versioning system in eZ Publish.

DefaultVersionHistoryLimit (page 1354)
Sets the number of concurrent versions that can exist of an object.

DeleteDrafts (page 1352)
Sets if drafts should be discarded if there is no room to create a new draft.

VersionHistoryClass (page 1353)
Sets the number of concurrent versions that can exist of an object per class.

5.13.5 Configuration files / content.ini 1352

5

DeleteDrafts

Summary

Sets if drafts should be discarded if there is no room to create a new draft.

Usage

DeleteDrafts=enabled|disabled

Description

This settings controls what eZ Publish should do if a user wants to create a new draft but
there are no ”empty” versions.

• disabled - (default) The oldest archived version is discarded. If there are no archived
versions to discard the user is shown an error screen and is given the possibility to
remove drafts.

• enabled - The oldest archived version is discarded. If there are no archived versions to
discard eZ Publish discards the oldest draft.

5.13.5 Configuration files / content.ini 1353

5

VersionHistoryClass

Summary

Sets the number of concurrent versions that can exist of an object per class.

Usage

VersionHistoryClass[class id1]= number

VersionHistoryClass[class id2]= number

...

Description

This setting is similar to DefaultVersionHistoryLimit (page 1354) but allows you to set the
maximum number of versions per class giving you more fine grained control.

A typical scenario is to limit the number of versions of posts in your public forum, but not for
the other classes in the system.

Examples

VersionHistoryClass[1]=5
VersionHistoryClass[3]=3

Using these settings eZ Publish will allow 5 versions for objects of classes with id 1 and 3
versions for objects of class 3. Other objects in your system will use the global DefaultVer-
sionHistoryLimit (page 1354) to determine the maximum number of versions.

5.13.5 Configuration files / content.ini 1354

5

DefaultVersionHistoryLimit

Summary

Sets the number of concurrent versions that can exist of an object.

Usage

DefaultVersionHistoryLimit= number

Description

This setting globally determines how many versions eZ Publish will store of a specific object
including drafts.
You should never set this setting below 2 since you need to allow at least one published
version and one draft.

5.13.5 Configuration files / content.ini 1355

5

[VersionView]

AllowChangeButtons (page 1357)
This setting is not used anymore.

AllowVersionsButton (page 1356)
This setting is not used anymore.

AvailableSiteDesignList (page 1359)
DEPRECATED (Sets the sitedesigns that are used by the complete site.)

DefaultPreviewDesign (page 1358)
Sets the default preview design for eZ Publish releases prior to 3.6.

5.13.5 Configuration files / content.ini 1356

5

AllowVersionsButton

Summary

This setting is not used anymore.

Usage

AllowVersionsButton=enabled|disabled

5.13.5 Configuration files / content.ini 1357

5

AllowChangeButtons

Summary

This setting is not used anymore.

Usage

AllowChangeButtons=enabled|disabled

5.13.5 Configuration files / content.ini 1358

5

DefaultPreviewDesign

Summary

Sets the default preview design for eZ Publish releases prior to 3.6.

Usage

DefaultPreviewDesign= design name

5.13.5 Configuration files / content.ini 1359

5

AvailableSiteDesignList

Summary

DEPRECATED (Sets the sitedesigns that are used by the complete site.)

Usage

AvailableSiteDesignList[]=design1

AvailableSiteDesignList[]=design2

...

Description

Note: This setting is deprecated and no longer used.

This setting defines the complete set of designs (page 160) that is used by your site. The
value is used by the caching system to clear the correct caches when your site is updated. In
addition the designs listed here will be available when you are previewing content.

eZ Publish will only clear the caches of the listed designs when content is published. To
ensure the correct operation of your site it is important that you list all the designs you are
using with this setting.

Examples

AvailableSiteDesignList[]=standard
AvailableSiteDesignList[]=base
AvailableSiteDesignList[]=admin

5.13.6 Configuration files / contentstructuremenu.ini 1360

5

5.13.6 contentstructuremenu.ini

The configuration blocks are documented in the following sections:

\begin{itemize} \item{} [TreeMenu]\refer{labeld1fdccf5b67f365a89f8106415f1c706}
\end{itemize}

5.13.6 Configuration files / contentstructuremenu.ini 1361

5

[TreeMenu]

MaxDepth (page 1362)
Sets the maximal depth for the tree menu.

RootNodeID (page 1363)
Sets the root node for the tree menu.

ShowClasses (page 1364)
Sets which types of nodes to show in the tree menu.

5.13.6 Configuration files / contentstructuremenu.ini 1362

5

MaxDepth

Summary

Sets the maximal depth for the tree menu.

Usage

MaxDepth=number

Description

Sets the maximum level of depth that should be explored. The default value is 0 which means
”unlimited”. If a non-zero number is specified, the tree will only go to this depth.

Examples

Example 1

MaxDepth=1

This will tell the system to show only the ”Content” top level node without subitems.

Example 2

MaxDepth=2

This will instruct the system to show only the root node and its children without further
exploring.

5.13.6 Configuration files / contentstructuremenu.ini 1363

5

RootNodeID

Summary

Sets the root node for the tree menu.

Usage

RootNodeID=node id

Description

This setting controls which node to use as the root one for the tree menu. The default value
is 2 which means that the ”Content structure” menu will display a tree containing the nodes
that belong to the ”Content” top level node (node ID= 2).

5.13.6 Configuration files / contentstructuremenu.ini 1364

5

ShowClasses

Summary

Sets which types of nodes to show in the tree menu.

Usage

ShowClasses[]=class identifier1

ShowClasses[]=class identifier2

...

Description

The ”Content structure” tree in the administration interface only shows certain types of nodes
by default. The ”ShowClasses” setting determines which types of nodes to show. If a content
class is not listed in this array, then a node that encapsulates an object of this class will not be
shown in the tree menu.

Examples

Example 1

ShowClasses[]

ShowClasses[]=folder

ShowClasses[]=product

ShowClasses[]=article

This will tell the system to show folders, products and articles in the tree menu. Any other
nodes will not be shown.

Example 2

ShowClasses[]

This allows the tree menu to show all kinds of nodes.

5.13.7 Configuration files / cronjob.ini 1365

5

5.13.7 cronjob.ini

The configuration blocks are documented in the following sections:

• [CronjobPart-group of tasks] (page 1366)

• [CronjobSettings] (page 1370)

• [linkCheckSettings] (page 1368)

5.13.7 Configuration files / cronjob.ini 1366

5

[CronjobPart-group of tasks]

Scripts (page 1367)
Specifies the cronjob scripts that will be executed for this cronjob part.

5.13.7 Configuration files / cronjob.ini 1367

5

Scripts

Summary

Specifies the cronjob scripts that will be executed for this cronjob part.

Usage

Scripts[]=cronjob script1

Scripts[]=cronjob script2

...

Description

This setting contains a list of cronjob scripts that will be run when the ”group of tasks” set of
cronjobs is executed. Please refer to the ”Configuring cronjobs (page 308)” section for more
information and examples.

5.13.7 Configuration files / cronjob.ini 1368

5

[linkCheckSettings]

SiteURL (page 1369)
Sets the site URLs to use when validating internal links by the linkcheck cronjob.

5.13.7 Configuration files / cronjob.ini 1369

5

SiteURL

Summary

Sets the site URLs to use when validating internal links by the linkcheck cronjob.

Usage

SiteURL[]=URL1

SiteURL[]=URL2

...

Description

Specify your site URLs so that the ”linkcheck.php” cronjob will handle relative URLs (internal
links) properly.

Examples

SiteURL[]=http://admin.mysite.com

SiteURL[]=http://mysite.com

This example will tell the linkcheck script to use ”http://admin.mysite.com” and ”http://
mysite.com” site URLs when checking relative URLs like ”/products/black box”.

5.13.7 Configuration files / cronjob.ini 1370

5

[CronjobSettings]

ExtensionDirectories (page 1371)
Sets one or multiple extension directories that may contain cronjobs.

ScriptDirectories (page 1373)
Sets one or multiple directories that may contain cronjobs.

Scripts (page 1372)
Specifies the cronjob scripts that will be executed.

5.13.7 Configuration files / cronjob.ini 1371

5

ExtensionDirectories

Summary

Sets one or multiple extension directories that may contain cronjobs.

Usage

ExtensionDirectories[]= extension1

ExtensionDirectories[]= extension2

...

Description

The cronjob script will search through all the ”cronjobs” directories of the specified extensions.

Examples

Scripts[]=workflow.php

Scripts[]=notification.php

Scripts[]=linkcheck.php

ExtensionDirectories[]=myExtension

This example will search through the myExtension/cronjobs directories to find the workflow,
notification, and linkcheck cronjobs.

5.13.7 Configuration files / cronjob.ini 1372

5

Scripts

Summary

Specifies the cronjob scripts that will be executed.

Usage

Scripts[]= cronjob script

Scripts[]= cronjob script2

...

Examples

ScriptDirectories[]=cronjobs

ScriptDirectories[]=cronjobs2

Scripts[]=workflow.php

Scripts[]=notification.php

Scripts[]=linkcheck.php

This example will search through the cronjobs and cronjobs2 directories to find the workflow,
notification, and linkcheck cronjobs.

5.13.7 Configuration files / cronjob.ini 1373

5

ScriptDirectories

Summary

Sets one or multiple directories that may contain cronjobs.

Usage

ScriptDirectories[]= directory

ScriptDirectories[]= directory2

...

Description

The cronjob script will search through all the ScriptDirectories to find cronjobs.

Examples

ScriptDirectories[]=cronjobs

ScriptDirectories[]=cronjobs2

Scripts[]=workflow.php

Scripts[]=notification.php

Scripts[]=linkcheck.php

This example will search through the cronjobs and cronjobs2 directories to find the workflow,
notification, and linkcheck cronjobs.

5.13.8 Configuration files / datatype.ini 1374

5

5.13.8 datatype.ini

5.13.9 Configuration files / datetime.ini 1375

5

5.13.9 datetime.ini

5.13.10 Configuration files / dbschema.ini 1376

5

5.13.10 dbschema.ini

5.13.11 Configuration files / debug.ini 1377

5

5.13.11 debug.ini

5.13.12 Configuration files / design.ini 1378

5

5.13.12 design.ini

The configuration blocks are documented in the following sections:

• [ExtensionSettings] (page 1385)

• [JavaScriptSettings] (page 1379)

• [StyleSheetSettings] (page 1381)

5.13.12 Configuration files / design.ini 1379

5

[JavaScriptSettings]

JavaScriptList (page 1380)
Sets the Javascript files to include in the pagelayout.

5.13.12 Configuration files / design.ini 1380

5

JavaScriptList

Summary

Sets the Javascript files to include in the pagelayout.

Usage

JavaScriptList[]= javascript1

JavaScriptList[]= javascript2

...

Description

You should provide the full path relative to the design directory.

Examples

JavaScriptList[]=javascipts/mynewticker.js

Using this configuration eZ Publish will load the file ”/design/ mydesign/javascripts/
mynewsticker.js”

5.13.12 Configuration files / design.ini 1381

5

[StyleSheetSettings]

ClassesCSS (page 1383)
Sets the CSS files which contains class definitions for the base layout.

CSSFileList (page 1382)
Sets the CSS files to include in the pagelayout.

SiteCSS (page 1384)
Sets the global CSS file for designs based on the base layout.

5.13.12 Configuration files / design.ini 1382

5

CSSFileList

Summary

Sets the CSS files to include in the pagelayout.

Usage

CSSFileList[]= css file1

CSSFileList[]= css file2

...

Description

Sets the CSS files that should automatically be included in the pagelayout. You should provide
the full path relative to the stylesheets subdirectory in the design directory.

Examples

CSSFileList[]=mycss.css

Using this configuration eZ Publish will load the file ”/design/ mydesign/stylesheets/
mycss.css”.

5.13.12 Configuration files / design.ini 1383

5

ClassesCSS

Summary

Sets the CSS files which contains class definitions for the base layout.

Usage

ClassesCSS= path to CSS file

5.13.12 Configuration files / design.ini 1384

5

SiteCSS

Summary

Sets the global CSS file for designs based on the base layout.

Usage

SiteCSS= path to css file

5.13.12 Configuration files / design.ini 1385

5

[ExtensionSettings]

DesignExtensions (page 1386)
Sets which extensions that have designs.

5.13.12 Configuration files / design.ini 1386

5

DesignExtensions

Summary

Sets which extensions that have designs.

Usage

DesignExtensions[]= extension1

DesignExtensions[]= extension2

...

Description

By default eZ Publish will only look for designs in the ”/design” directory. If your extensions
provide designs you must tell eZ Publish by providing the extension name in the DesignEx-
tensions setting.

eZ Publish will look for designs in the directory ”/extension/ extension name/design/”

This setting is typically overriden in the design.ini.append in extensions.

Examples

DesignExtensions[]=myextension

eZ Publish will now search for designs in ”/extension/myextension/design”.

5.13.13 Configuration files / error.ini 1387

5

5.13.13 error.ini

5.13.14 Configuration files / extendedattributefilter.ini 1388

5

5.13.14 extendedattributefilter.ini

5.13.15 Configuration files / ezxml.ini 1389

5

5.13.15 ezxml.ini

5.13.16 Configuration files / fetchalias.ini 1390

5

5.13.16 fetchalias.ini

5.13.17 Configuration files / file.ini 1391

5

5.13.17 file.ini

5.13.18 Configuration files / i18n.ini 1392

5

5.13.18 i18n.ini

The configuration blocks are documented in the following sections:

• [CharacterSettings] (page 1393)

5.13.18 Configuration files / i18n.ini 1393

5

[CharacterSettings]

Charset (page 1394)
Sets the character set that eZ Publish should use

5.13.18 Configuration files / i18n.ini 1394

5

Charset

Summary

Sets the character set that eZ Publish should use

Usage

Charset=character set

Description

Use this directive to set the internal charset for the site. Specify UTF-8 for multilingual sites
or a specific charset for monolingual sites.

Examples

Example 1

Charset=utf-8

This will set the output character set of eZ Publish to UTF-8.

5.13.19 Configuration files / icon.ini 1395

5

5.13.19 icon.ini

5.13.20 Configuration files / image.ini 1396

5

5.13.20 image.ini

5.13.21 Configuration files / layout.ini 1397

5

5.13.21 layout.ini

5.13.22 Configuration files / ldap.ini 1398

5

5.13.22 ldap.ini

The configuration blocks are documented in the following sections:

• [LDAPSettings] (page 1399)

5.13.22 Configuration files / ldap.ini 1399

5

[LDAPSettings]

5.13.23 Configuration files / logfile.ini 1400

5

5.13.23 logfile.ini

The configuration blocks are documented in the following sections:

• [AccessLogFileSettings] (page 1401)

5.13.23 Configuration files / logfile.ini 1401

5

[AccessLogFileSettings]

LogFileName (page 1403)
Sets the name of the Apache log file.

SitePrefix (page 1402)
Sets which prefixes that are used in the Apache log of requested URLs.

StorageDir (page 1404)
Sets the directory where eZ Publish will look for the Apache log file.

5.13.23 Configuration files / logfile.ini 1402

5

SitePrefix

Summary

Sets which prefixes that are used in the Apache log of requested URLs.

Usage

SitePrefix[]=siteaccess1

SitePrefix[]=siteaccess2

...

Description

If the ”updateviewcount.php” cronjob script is run periodically, it will analyze the requested
URLs stored in the Apache log file. When the URI access method is used, the requested URLs
will contain the name of the target siteaccess. For example, the following URL will tell eZ
Publish to use the ”example admin” siteaccess: http://www.mysite.com/example admin. If
you wish these prefixes to be removed before analyzing the log file, specify the names of the
siteaccesses using the ”SitePrefix” directive.

5.13.23 Configuration files / logfile.ini 1403

5

LogFileName

Summary

Sets the name of the Apache log file.

Usage

LogFileName=file name

Description

The node view count (number of page views) in the database isn’t updated by the module/
view system when the different nodes are being shown. To make the view counter work, you
must periodically run the ”updateviewcount.php” cronjob script. The script will extract infor-
mation from the Apache log file and store it in the database. Please note that this directive
can only be used to set the name of the log file. The path to the file must be specified using
the StorageDir (page 1404) directive.

Examples

Example 1

StorageDir=/var/log/httpd/

LogFileName=access_log

This configuration will tell eZ Publish to use the ”access log” file inside the ”/var/log/httpd/”
directory.

5.13.23 Configuration files / logfile.ini 1404

5

StorageDir

Summary

Sets the directory where eZ Publish will look for the Apache log file.

Usage

StorageDir=directory name

Description

The node view count (number of page views) in the database isn’t updated by the module/
view system when the different nodes are being shown. To make the view counter work,
you must periodically run the ”updateviewcount.php” cronjob script. The script will extract
information from the Apache log file and store it in the database. Please note that this direc-
tive can only be used to specify the path to the log file. Use the ”LogFileName” (page 1403)
directive to set the actual name of the file.

Examples

Example 1

StorageDir=/var/log/httpd/

LogFileName=access_log

This configuration will tell eZ Publish to use the ”access log” file inside the ”/var/log/httpd/”
directory.

5.13.24 Configuration files / menu.ini 1405

5

5.13.24 menu.ini

5.13.25 Configuration files / module.ini 1406

5

5.13.25 module.ini

5.13.26 Configuration files / notification.ini 1407

5

5.13.26 notification.ini

5.13.27 Configuration files / override.ini 1408

5

5.13.27 override.ini

Please refer to the following pages:

• The template override system (page 229)

• Template override example (page 231)

• Template override conditions (page 1265)

5.13.28 Configuration files / package.ini 1409

5

5.13.28 package.ini

5.13.29 Configuration files / paymentgateways.ini 1410

5

5.13.29 paymentgateways.ini

5.13.30 Configuration files / setup.ini 1411

5

5.13.30 setup.ini

5.13.31 Configuration files / shopaccount.ini 1412

5

5.13.31 shopaccount.ini

5.13.32 Configuration files / site.ini 1413

5

5.13.32 site.ini

The configuration blocks are documented in the following sections:

• [ContentSettings] (page 1414)

• [DatabaseSettings] (page 1426)

• [DebugSettings] (page 1448)

• [DesignSettings] (page 1457)

• [ExtensionSettings] (page 1461)

• [FileSettings] (page 1465)

• [FormProcessSettings] (page 1475)

• [HTTPHeaderSettings] (page 1477)

• [InformationCollectionSettings] (page 1479)

• [MailSettings] (page 1481)

• [OverrideSettings] (page 1494)

• [PortAccessSettings] (page 1496)

• [RegionalSettings] (page 1498)

• [RoleSettings] (page 1512)

• [RSSSettings] (page 1518)

• [SearchSettings] (page 1524)

• [Session] (page 1535)

• [SetupSettings] (page 1544)

• [ShopSettings] (page 1549)

• [SiteAccessRules] (page 1553)

• [SiteAccessSettings] (page 1556)

• [SiteSettings] (page 1584)

• [SSLZoneSettings] (page 1594)

• [TemplateSettings] (page 1598)

• [TimeZoneSettings] (page 1612)

• [TipAFriend] (page 1614)

• [UnitSettings] (page 1618)

• [URLTranslator] (page 1621)

• [UserSettings] (page 1625)

5.13.32 Configuration files / site.ini 1414

5

[ContentSettings]

CacheDir (page 1425)
Sets the directory where eZ publish stores view cache files.

CachedViewModes (page 1423)
Sets which of the content view modes that use view cache.

CachedViewPreferences (page 1422)
Sets the user preferences each view mode depends on.

CacheThreshold (page 1419)
Sets the treshold for content cache cleanup

ComplexDisplayViewModes (page 1420)
Sets content views that have their content cache expired whenever an object is pub-
lished.

EditDirtyObjectAction (page 1418)
Sets what eZ Publish should do if the user tries to edit a page that has a draft that is
newer than the published version.

PreCacheSiteaccessArray (page 1416)
Sets the siteaccesses that will have view cache created when an object is published.

PreViewCache (page 1417)
Sets if eZ publish should generate the view cache when an object is published.

PreviewCacheUsers (page 1415)
Sets the users that should have view cache generated when an object is published.

StaticCache (page 1421)
Sets if static caching should be enabled or not.

ViewCaching (page 1424)
Sets if view caching should be enabled or not.

5.13.32 Configuration files / site.ini 1415

5

PreviewCacheUsers

Summary

Sets the users that should have view cache generated when an object is published.

Usage

PreviewCacheUsers[]=anonymous|current|user id1

PreviewCacheUsers[]=anonymous|current|user id2

...

Description

By default eZ publish will generate view cache for the anonymous user. Using this setting you
can specify additional user IDs that eZ publish will generate view cache for.
You must enable PreViewCache (page 1417) for this setting to have any effect.

Examples

PreviewCacheUsers[]=anonymous

PreviewCacheUsers[]=current

PreviewCacheUsers[]=23

Using these settings eZ publish will generate view cache for the anonymous user, the current
user and the user with ID 23 when an object is published.

5.13.32 Configuration files / site.ini 1416

5

PreCacheSiteaccessArray

Summary

Sets the siteaccesses that will have view cache created when an object is published.

Usage

PreCacheSiteaccessArray[]=siteaccess1

PreCacheSiteaccessArray[]=siteaccess2

...

Description

You must enable PreViewCache (page 1417) for this setting to have any effect. The ”Pre-
CacheSiteaccessArray” setting controls which siteaccesses the view cache should be generated
for when an object is published. Please refer to the ”Pre-generation of view cache (page 392)”
section for more information.

Examples

PreViewCache=enabled

PreCacheSiteaccessArray[]=admin

PreCacheSiteaccessArray[]=base

With these settings eZ publish will create view cache when an object is published for the
admin and the base siteacesses.

5.13.32 Configuration files / site.ini 1417

5

PreViewCache

Summary

Sets if eZ publish should generate the view cache when an object is published.

Usage

PreViewCache=enabled|disabled

Description

Enabling this setting will make the publishing process a bit slower. However, the first request
to the page will be a bit faster. For sites with lots of content editors you should disable
this setting. Please refer to the ”Pre-generation of view cache (page 392)” section for more
information.

5.13.32 Configuration files / site.ini 1418

5

EditDirtyObjectAction

Summary

Sets what eZ Publish should do if the user tries to edit a page that has a draft that is newer
than the published version.

Usage

EditDirtyObjectAction=showversions|usecurrent

Description

If you select showversions eZ Publish will display a page with all the available versions, in-
cluding drafts. The user can then select which version he wants to base the new draft on.
If you select usecurrent eZ Publish will create a new draft based on the published version and
let the user edit that.

5.13.32 Configuration files / site.ini 1419

5

CacheThreshold

Summary

Sets the treshold for content cache cleanup

Usage

CacheTreshold= number

Description

The threshold for file cleanup, if it is exceeded a global expiry is used instead. The value is
calculated with the number of affected nodes * viewmodes * translations * sitedesign.
Note: This is an internal change that you should not change unless you are a developer.

5.13.32 Configuration files / site.ini 1420

5

ComplexDisplayViewModes

Summary

Sets content views that have their content cache expired whenever an object is published.

Usage

ComplexDisplayViewModes= view1 [; view2]...

5.13.32 Configuration files / site.ini 1421

5

StaticCache

Summary

Sets if static caching should be enabled or not.

Usage

StaticCache=enabled|disabled

Description

Static caching means that some pages on your system will be stored and served completely
in HTML with a huge speed improvement. You can only use static caching for pages that do
not have any dynamic elements (e.g the pages are available to everyone and looks exactly the
same to all users).

Static caching is configured in staticcache.ini (page 1649).

5.13.32 Configuration files / site.ini 1422

5

CachedViewPreferences

Summary

Sets the user preferences each view mode depends on.

Usage

CachedViewPreferences[viewmode1]= setting1 [= defaultvalue1]; setting2 [=

defaultvalue2]...

CachedViewPreferences[viewmode2]= setting1 [= defaultvalue1] ; setting2 [=

defaultvalue2]...

...

Description

Sometimes you have conditions based on user preferences (page 1010) in the templates of
cached view modes (page 1423). eZ publish needs to know the preferences you use per view
mode in order to make sure that the caches are correct. You should use this setting if at
least one of your templates (including override templates) use a condition based on a user
preference.
A typical symptom of a missing CachedViewPreferences setting is if you change a preference
setting and the interface is not updated until you clear the cache.

Examples

CachedViewPreferences[full]=mysetting;myothersetting=1

CachedViewPreferences[pdf]=myothersetting=1

This example shows a site where at least one of the templates of the ”full” view mode uses
the mysetting and myothersetting. One of the templates in the ”pdf” view also uses the
myothersetting setting.

5.13.32 Configuration files / site.ini 1423

5

CachedViewModes

Summary

Sets which of the content view modes that use view cache.

Usage

CachedViewModes=view1[;view2][;view3]...

Description

This setting enables the viewcache for the specified view modes (page 177) inside the ”view
(page 692)” view of the content module. When view caching is enabled, the entire result of
the module will be cached. The cache is stored for each possible role combination on your
site. This means that your templates can have conditions based on roles even when caching
is on.

In addition, you can enable view caching for the ”pdf (page 676)” view of the content module
by specifying ”pdf” in this setting. In this case, the actual PDF file will be cached.

Note:Do not change this setting unless you know what you are doing.

Examples

CachedViewModes=full;sitemap;pdf

This makes eZ publish use view cache on the ”full” and ”sitemap” content view modes (”con-
tent/view/full” and ”content/view/sitemap”). The output of the ”pdf” view within the con-
tent module (”content/pdf”) will also be cached.

5.13.32 Configuration files / site.ini 1424

5

ViewCaching

Summary

Sets if view caching should be enabled or not.

Usage

ViewCaching=enabled|disabled

Description

Viewcache is the terminology we use for cache that stores the complete HTML output of a
view (page 154).

You can turn off view cache during development of a site to force eZ publish to render all
templates on each request.

Note: Live sites should always have ViewCache enabled.

5.13.32 Configuration files / site.ini 1425

5

CacheDir

Summary

Sets the directory where eZ publish stores view cache files.

Usage

CacheDir=directory name

Description

CacheDir is set relative to CacheDir (page 1467). This means that view cache files are stored
within ”var dir/cache dir/directory name/” where ”var dir” is specified by the VarDir (page
1468) setting and ”cache dir” is specified by the CacheDir (page 1467) setting.

Examples

[FileSettings]

VarDir=var

CacheDir=cache

[ContentSettings]

CacheDir=content

Using these settings the viewcache will be stored in ”var/cache/content/”.

5.13.32 Configuration files / site.ini 1426

5

[DatabaseSettings]

Charset (page 1441)
Sets the character set that eZ publish uses when communicating with the database.

ConnectRetries (page 1443)
Sets the number of database connection retries.

Database (page 1445)
Sets the database to use when connecting to the database server.

DatabaseImplementation (page 1429)
Sets the type of database you are using.

DatabasePluginPath (page 1428)
Sets the path to an external database driver.

Host (page 1444)
Sets the host that contains the database eZ publish should use.

ImplementationAlias (page 1435)
Sets alias names for database implementations

Password (page 1446)
Sets the password that eZ publish uses when logging in to the database.

SlaverServerDatabase (page 1430)
The databases to use when logging in to the slaveservers.

SlaverServerPassword (page 1431)
The passwords to use when logging in to the slaveservers.

SlaverServerUser (page 1432)
The usernames to use when logging in to the slaveservers.

SlaveServerArray (page 1433)
The hostnames of the slaveservers to use for read queries.

SlowQueriesOutput (page 1437)
Show queries that where slower than a set amount of time.

Socket (page 1439)
Sets the socket eZ publish should use when connecting to the database.

SQLOutput (page 1438)
Enables the output of SQL queries in the debug output.

Transactions (page 1442)
Enables to make eZ publish use transactions to ensure database integrity.

UseBuiltInEncoding (page 1440)
Use the built in character conversion in the database if available.

UsePersistentConnection (page 1436)
Controls if database connections should be kept open between eZ publish runs.

5.13.32 Configuration files / site.ini 1427

5

User (page 1447)
Sets the username that eZ publish uses when logging in to the database.

UseSlaveServer (page 1434)
Enables the usage of slave database servers for read queries. (MySQL only)

5.13.32 Configuration files / site.ini 1428

5

DatabasePluginPath

Summary

Sets the path to an external database driver.

Usage

DatabasePluginPath= path to database driver

Description

If you want to use a custom database driver you must tell eZ publish where to find it. Use
the path relative to the root of your eZ publish installation. eZ publish will search for the file
”dbname” + ”db.php” in that directory.

Examples

DatabaseImplementation=custom

DatabasePluginPath=extensions/mydbdriver/classes/

eZ publish will now search for the file customdb.php in the directory extensions/mydbdriver/
classes/

5.13.32 Configuration files / site.ini 1429

5

DatabaseImplementation

Summary

Sets the type of database you are using.

Usage

DatabaseImplementation=ezmysql|ezpostgresql|ezoracle

Description

Set this option to ”ezmysql” if you are using a MySQL database. If you are using PostgreSQL
set this option to ”ezpostgresql”. In case you are using an Oracle database (note that the eZ
Publish Extension for Oracle Database is required for this) you should specify ”ezoracle” in
the ”DatabaseImplementation” directive.

5.13.32 Configuration files / site.ini 1430

5

SlaverServerDatabase

Summary

The databases to use when logging in to the slaveservers.

Usage

SlaveServerDatabase[]

SlaveServerDatabase[]= database1

SlaveServerDatabase[]= database2

...

Description

Specify one database name on each row of the setting. The order is significant and you have
to use the same order for the settings in SlaveServerArray, SlaverServerUser and SlaverServer-
Password

Examples

SlaverServerDatabase[]

SlaverServerDatabase[]=publishslave

SlaverServerDatabase[]=publishslave2

This setup will use the database publishslave in the first slave server and the database pub-
lishslave2 in the second slave server.

5.13.32 Configuration files / site.ini 1431

5

SlaverServerPassword

Summary

The passwords to use when logging in to the slaveservers.

Usage

SlaveServerPassword[]

SlaveServerPassword[]= password1

SlaveServerPassword[]= password2

Description

Specify one password on each row of the setting. The order is significant and you have to
use the same order for the settings in SlaveServerArray, SlaverServerUser and SlaverServer-
Database.

Examples

SlaverServerPassword[]

SlaverServerPassword[]=secret

SlaverServerPassword[]=verysecret

This setup will use the password secret to log in to the first slave server and the password
verysecret to log in to the second slave server.

5.13.32 Configuration files / site.ini 1432

5

SlaverServerUser

Summary

The usernames to use when logging in to the slaveservers.

Usage

SlaveServerUser[]

SlaveServerUser[]= user1

SlaveServerUser[]= user2

Description

Specify one username on each row of the setting. The order is significant and you have to use
the same order for the settings in SlaveServerArray, SlaverServerPassword and SlaverServer-
Database

Examples

SlaverServerUser[]

SlaverServerUser[]=admin

SlaverServerUser[]=root

This setup will use the username admin to log in to the first slave server and the username
root to log in to the second slave server.

5.13.32 Configuration files / site.ini 1433

5

SlaveServerArray

Summary

The hostnames of the slaveservers to use for read queries.

Usage

SlaveServerArray[]

SlaveServerArray[]= hostname1

SlaveServerArray[]= hostname2

...

Description

Specify one database server on each row of the setting. The order is significant and you
have to use the same order for the settings in SlaverServerUser, SlaverServerPassword and
SlaverServerDatabase.

Examples

SlaveServerArray[]

SlaveServerArray[]=donald

SlaveServerArray[]=mickey

This setup will load balance read queries between the main database server and the database
servers located on donald and mickey.

5.13.32 Configuration files / site.ini 1434

5

UseSlaveServer

Summary

Enables the usage of slave database servers for read queries. (MySQL only)

Usage

UseSlaveServer=enabled|disabled

Description

Set this option to enabled to make eZ Publish load balance read queries between several SQL
servers. You can set the location and login information for the slave servers using the settings:

• SlaveServerArray

• SlaverServerUser

• SlaverServerPassword

• SlaverServerDatabase

For all other connection options the values set for the standard database will be used.

This option only works on MySQL setups. You can read more about how to set up MySQL
replication here.

http://dev.mysql.com/doc/refman/4.1/en/replication.html

5.13.32 Configuration files / site.ini 1435

5

ImplementationAlias

Summary

Sets alias names for database implementations

Usage

ImplementationAlias[aliasname]=ezpostgresql|ezmysql
....

Description

The various database implementatations in eZ publish uses a database driver. These database
drivers have names like ezmysql and ezpostgresql. In order to make let users use more
commonly known names like mysql and postgresql you can set up aliases for the database
drivers.

Don’t change this setting unless you know what you are doing.

Examples

ImplementationAlias[]

ImplementationAlias[mysql]=ezmysql

This setting means that you can use the alias mysql when you want to use the ezmysql driver.

5.13.32 Configuration files / site.ini 1436

5

UsePersistentConnection

Summary

Controls if database connections should be kept open between eZ publish runs.

Usage

UsePersistentConnection=enabled|disabled

Description

Persistent connections are usually faster but have had a lot of unwanted effects in the past.
Don’t turn this on unless you know what you are doing.

5.13.32 Configuration files / site.ini 1437

5

SlowQueriesOutput

Summary

Show queries that where slower than a set amount of time.

Usage

SlowQueriesOutput= number

Description

The number controls how many milliseconds a query must take in order to be displayed in
the debug output. 0 means that all queries will be shown.

5.13.32 Configuration files / site.ini 1438

5

SQLOutput

Summary

Enables the output of SQL queries in the debug output.

Usage

SQLOutput=enabled|disabled

Description

Debug (page 1609) must be enabled for this setting to have any effect.

5.13.32 Configuration files / site.ini 1439

5

Socket

Summary

Sets the socket eZ publish should use when connecting to the database.

Usage

Socket= number |disabled

Description

Set this option to 0 to use the default socket for the selected database.

5.13.32 Configuration files / site.ini 1440

5

UseBuiltInEncoding

Summary

Use the built in character conversion in the database if available.

Usage

UseBuiltInEncoding=true|false

Description

If this option is set to false or if the conversion is not available in the database the conversion
will be performed by eZ publish at a somewhat slower speed.

5.13.32 Configuration files / site.ini 1441

5

Charset

Summary

Sets the character set that eZ publish uses when communicating with the database.

Usage

Charset= charset

Description

If this setting is left empty the setting from i18n.ini will be used. Usually this setting is
sufficient.

5.13.32 Configuration files / site.ini 1442

5

Transactions

Summary

Enables to make eZ publish use transactions to ensure database integrity.

Usage

Transactions=enabled|disabled

Description

If you enable this setting eZ publish will perform all queries that naturally belong together
within a transaction. This ensure that your database integrity will be kept even if the web-
server crashes in the middle of the transaction. Don’t turn this off unless you know what you
are doing.

MySQL requires tables of the type InnoDB in order to use transactions.

5.13.32 Configuration files / site.ini 1443

5

ConnectRetries

Summary

Sets the number of database connection retries.

Usage

ConnectRetries= number

Description

This directive can be used to set the number of times eZ Publish should attempt to connect to
the database if the initial attempt fails. Note that the number of actual connection attempts
equals the initial attempt plus the number of retries specified by this directive. In other
words, if the number of connection retries is set to 3, eZ Publish will attempt to connect to
the database 4 times before giving up and generating an error message.

Examples

ConnectRetries=3

This setting makes eZ publish attempt to connect to the database four times in total. One
main attempt and three retries.

5.13.32 Configuration files / site.ini 1444

5

Host

Summary

Sets the host that contains the database eZ publish should use.

Usage

Host= hostname

Description

You can use both hostnames and IP addresses. Use ”localhost” if the database and webserver
are located on the same machine.

5.13.32 Configuration files / site.ini 1445

5

Database

Summary

Sets the database to use when connecting to the database server.

Usage

Database= databasename

5.13.32 Configuration files / site.ini 1446

5

Password

Summary

Sets the password that eZ publish uses when logging in to the database.

Usage

User= password

5.13.32 Configuration files / site.ini 1447

5

User

Summary

Sets the username that eZ publish uses when logging in to the database.

Usage

User= username

5.13.32 Configuration files / site.ini 1448

5

[DebugSettings]

Debug (page 1452)
Sets if you want to display debug information in the rendered page or in a separate
popup.

DebugByIP (page 1454)
Enables debug output for some IP addresses only. Useful when debugging live sites.

DebugIPList (page 1453)
Sets the hosts that receive debug output.

DebugLogOnly (page 1449)
Choose if you want debug strings in the debugoutput or in the log only.

DebugOutput (page 1456)
Main switch for debug output

DebugRedirection (page 1451)
Enables debugging of internal and external module redirections.

DisplayDebugWarnings (page 1450)
Choose if debug warnings should be displayed explicitely on the top of the page or in
the debug log only.

ScriptDebugOutput (page 1455)
Enables debug output for PHP scripts run from the command line.

5.13.32 Configuration files / site.ini 1449

5

DebugLogOnly

Summary

Choose if you want debug strings in the debugoutput or in the log only.

Usage

DebugLogOnly=enabled|disabled

Description

Enable this option to remove debug strings from the inline (or popup) debug output. Instead
the debug strings will only be appended to the logs which are located in the directory your
publish root/var/log.

5.13.32 Configuration files / site.ini 1450

5

DisplayDebugWarnings

Summary

Choose if debug warnings should be displayed explicitely on the top of the page or in the
debug log only.

Usage

DisplayDebugWarnings=enabled|disabled

5.13.32 Configuration files / site.ini 1451

5

DebugRedirection

Summary

Enables debugging of internal and external module redirections.

Usage

DebugRedirection=enabled|disabled

Description

Whenever an internal redirection occurs the execution of eZ Publish will be stopped and a
redirection page with a redirect button will appear. This allows you to see any errors that
have occurred before the redirection takes place.

This setting is only useful for developers the eZ Publish core and custom extensions.

5.13.32 Configuration files / site.ini 1452

5

Debug

Summary

Sets if you want to display debug information in the rendered page or in a separate popup.

Usage

Debug=inline|popup

Description

Inline means that the debug output will be displayed together with the page that was ren-
dered. Popup means that a separate popup window will be displayed with the debug infor-
mation. Not all browsers support debug information in a popup. Choose inline if you have
any problems.

Please note that if debug is set to ”popup” in a virtual host environment then the following
rewrite rules must be added to the virtual host block:

RewriteRule ^/var/cache/debug.html.* - [L]

RewriteRule ^/var/[^/]+/cache/debug.html.* - [L]

5.13.32 Configuration files / site.ini 1453

5

DebugIPList

Summary

Sets the hosts that receive debug output.

Usage

DebugIPList[]

DebugIPList[]= ip1|network1
DebugIPList[]= ip2|network2
...

Description

The setting DebugByIP must be set to enabled to make this setting have any effect.

Examples

DebugIPList[]=1.2.3.4

DebugIPList[]=192.0.0.42

DebugIPList[]=192.0.0.0/27

These settings enable debug output for the hosts 1.2.3.4, 192.0.0.42 and the network speci-
fied by the range 192.0.0.0/27

5.13.32 Configuration files / site.ini 1454

5

DebugByIP

Summary

Enables debug output for some IP addresses only. Useful when debugging live sites.

Usage

DebugByIP=enabled|disabled

Description

The setting DebugIPList controls which hosts will receive debug output. Debug output is sent
to everyone if this setting is disabled.

5.13.32 Configuration files / site.ini 1455

5

ScriptDebugOutput

Summary

Enables debug output for PHP scripts run from the command line.

Usage

ScriptDebugOutput=enabled|disabled

Description

This setting relies on DebugOutput to be enabled.

5.13.32 Configuration files / site.ini 1456

5

DebugOutput

Summary

Main switch for debug output

Usage

DebugOutput=enabled|disabled

Description

Set this switch to enabled to turn on debug output in the rendered pages. There are several
options that control what kind of debug output you will get.

5.13.32 Configuration files / site.ini 1457

5

[DesignSettings]

The DesignSettings are typically overridden for each siteaccess.

AdditionalSiteDesignList (page 1458)
Sets the additional site designs.

SiteDesign (page 1459)
Sets the most significant design resource.

StandardDesign (page 1460)
Sets the least significant (fallback) design resource.

5.13.32 Configuration files / site.ini 1458

5

AdditionalSiteDesignList

Summary

Sets the additional site designs.

Usage

AdditionalSiteDesignList[]= design1

AdditionalSiteDesignList[]= design2

...

Description

The design resources in AdditionalSiteDesignList[] are checked for templates after the sit-
edesign (page 1459) but before the standard design (page 1460). The designs are checked in
the order they are listed.

You can read more about how design resources are used in the StandardDesign (page 1460)
setting.

5.13.32 Configuration files / site.ini 1459

5

SiteDesign

Summary

Sets the most significant design resource.

Usage

SiteDesign=design name

Description

This design resource is considered the most significant design resource. eZ publish will always
search for templates in this design first.

You can read more about how design resources are used in the StandardDesign (page 1460)
setting.

5.13.32 Configuration files / site.ini 1460

5

StandardDesign

Summary

Sets the least significant (fallback) design resource.

Usage

StandardDesign= design name

Description

The design resource set by StandardDesign is considered the least significant design resource.
eZ publish will only use templates found in the standard design if the template could not be
found in any of the other designs. It is generally a good idea not to change the standard design
to anything different than standard. The design named standard comes with eZ publish and
provides a default fallback template for all possible templates.

By default eZ publish will look for designs in the design directory in the eZ publish root.
Using the setting DesignExtensions (page 1386) you can configure extensions to have designs
as well.

For general information about designs and siteaccess read the SiteManagement (page 148)
documentation.

The settings described here are usually overridden per siteaccess to provide a unique look.

Examples

StandardDesign=standard

SiteDesign=mydesign

AdditionalSiteDesignList[]=base

AdditionalSiteDesignList[]=extras

This setup will make eZ publish check the design directories in the following order:

1. mydesign

2. base

3. extras

4. standard

5.13.32 Configuration files / site.ini 1461

5

[ExtensionSettings]

ActiveAccessExtensions (page 1462)
Sets the extensions that are available to eZ publish per siteaccess.

ActiveExtensions (page 1463)
Sets the extensions that are available to eZ publish.

ExtensionDirectory (page 1464)
Sets the directory where extensions are located.

5.13.32 Configuration files / site.ini 1462

5

ActiveAccessExtensions

Summary

Sets the extensions that are available to eZ publish per siteaccess.

Usage

ActiveAccessExtensions[]= extension1

ActiveAccessExtensions[]= extension2

Description

Each extension will have its settings automatically loaded. This setting works similarly to
the ActiveExtensions setting but is loaded after the siteaccess is loaded. This means that the
settings activated will only be available in the siteaccess this setting is specified.

5.13.32 Configuration files / site.ini 1463

5

ActiveExtensions

Summary

Sets the extensions that are available to eZ publish.

Usage

ActiveExtensions[]= extension1

ActiveExtensions[]= extension2

...

Description

Each extension will have its settings automatically loaded. This setting is loaded before the
siteaccesses are loaded. Overriding this setting in a siteaccess has no effect.

Examples

ActiveExtensions[]

ActiveExtensions[]=ezdhtml

ActiveExtensions[]=myextension

This setup loads the extension ezdhtml (Online Editor) and your personal extension myex-
tension.

5.13.32 Configuration files / site.ini 1464

5

ExtensionDirectory

Summary

Sets the directory where extensions are located.

Usage

ExtensionDirectory= path relative to ez publish root

Description

This setting is set to extension by default. Do not change it unless you know what you are
doing.

5.13.32 Configuration files / site.ini 1465

5

[FileSettings]

CacheDir (page 1467)
Sets the directory where eZ publish stores cache files.

DirDepth (page 1469)
Sets the number of extra directories that will be made when storing a file.

LogDir (page 1466)
Sets the directory where eZ publish will store its logfiles.

StorageDir (page 1472)
Sets the directory eZ publish uses to store files.

StorageDirPermissions (page 1471)
Sets the permissions set on directories created in the storage directory.

StorageFilePermission (page 1470)
Sets the permissions set on files created in the storage directory.

TemporaryDir (page 1474)
Sets the directory eZ publish uses to store temporary files.

TemporaryPermissions (page 1473)
Sets the permissions on temporary files created by eZ publish

VarDir (page 1468)
Sets the main directory for file storage in eZ publish.

5.13.32 Configuration files / site.ini 1466

5

LogDir

Summary

Sets the directory where eZ publish will store its logfiles.

Usage

LogDir= directory name

Description

The log files are stored within / var dir/ directory name where var dir is specified by the VarDir
(page 1468) setting.

Examples

VarDir=var

LogDir=log

These settings will make eZ publish use the log dir ”/var/log”

5.13.32 Configuration files / site.ini 1467

5

CacheDir

Summary

Sets the directory where eZ publish stores cache files.

Usage

CacheDir=directory name

Description

eZ publish creates many cache files to speed up execution. The cache files are stored within
”var dir/directory name/” where ”var dir” is specified by the VarDir (page 1468) setting.

Note: Don’t change the default setting ”cache” unless you know what you are doing.

Examples

VarDir=var

CacheDir=cache

These settings will make eZ publish use the cache dir ”var/cache/”.

5.13.32 Configuration files / site.ini 1468

5

VarDir

Summary

Sets the main directory for file storage in eZ publish.

Usage

VarDir=directory name

Description

The directory specified by vardir is used by eZ publish for file storage. This includes both
content related files, cache files and other temporary files.

Note: Don’t change the default setting ”var” unless you know what you are doing.

Examples

VarDir=var

The directory ”var/” is used to store files.

5.13.32 Configuration files / site.ini 1469

5

DirDepth

Summary

Sets the number of extra directories that will be made when storing a file.

Usage

DirDepth= number

Description

Filesystems have limitations on how many files you can store within one directory. In order
to avoid these problems eZ publish creates extra directories based on the first letters in the
filename. This solution spreads the files over many directories. The DirDepth settings controls
how many levels of extra directories eZ publish should make.
The default setting ’3’ support millions of files and should be enough for most sites.

Examples

DirDepth=3

If you store the file test.jpg eZ publish will store the file in the directory ”t/e/s/” the complete
path for the file will be ”t/e/s/test.jpg”.

5.13.32 Configuration files / site.ini 1470

5

StorageFilePermission

Summary

Sets the permissions set on files created in the storage directory.

Usage

StorageFilePermission= permission setting

Description

Note that:

• It is important that the webserver has sufficient permissions to both write and remove
directories.

• Settting the permissions to 0666 (read and write to all) is a potential security risk.

The preferred setting is 0660 (full read and write to user and group). This requires apache to
have the correct user/group access.

5.13.32 Configuration files / site.ini 1471

5

StorageDirPermissions

Summary

Sets the permissions set on directories created in the storage directory.

Usage

StorageDirPermissions= permission setting

Description

Note that:

• It is important that the webserver has sufficient permissions to both write and remove
directories.

• Settting the permissions to 0777 (read and write to all) is a potential security risk.

The preferred setting is 0770 (full read and write to user and group). This requires apache to
have the correct user/group access.

5.13.32 Configuration files / site.ini 1472

5

StorageDir

Summary

Sets the directory eZ publish uses to store files.

Usage

StorageDir= dir name

Description

The directory name specified is relative to the var directory specified by VarDir (page 1468).
The directory specified by StorageDir is used to store files related to the content of your site.

5.13.32 Configuration files / site.ini 1473

5

TemporaryPermissions

Summary

Sets the permissions on temporary files created by eZ publish

Usage

TemporaryPermissions= permission setting

Description

The permission setting should be specified using the UNIX file permission schema.
Note that:

• It is important that the webserver has sufficient permissions to both write and remove
files.

• Settting the permissions to 0777 (read and write to all) is a potential security risk.

The preferred setting is 0770 (full read and write to user and group). This requires apache to
have the correct user/group access.

5.13.32 Configuration files / site.ini 1474

5

TemporaryDir

Summary

Sets the directory eZ publish uses to store temporary files.

Usage

TemporaryDir= dir name

Description

eZ publish will use the directory name you choose inside / var dir/ cache dir/ dir name where
var dir is set by VarDir (page 1468) and cache dir is set by CacheDir (page 1467).

This directory is only used to store files that are used during the rendering of one page. After
the page is rendered any temporary files are removed.

5.13.32 Configuration files / site.ini 1475

5

[FormProcessSettings]

Module (page 1476)
Sets if the form module should be enabled or not.

5.13.32 Configuration files / site.ini 1476

5

Module

Summary

Sets if the form module should be enabled or not.

Usage

Module=enabled|disabled

Description

The form module is insecure by design and should not be used.

5.13.32 Configuration files / site.ini 1477

5

[HTTPHeaderSettings]

HeaderList (page 1478)
Not documented yet.

5.13.32 Configuration files / site.ini 1478

5

HeaderList

Summary

Not documented yet.

5.13.32 Configuration files / site.ini 1479

5

[InformationCollectionSettings]

EmailReceiver (page 1480)
Sets the receiver of e-mail generated by the information collection system.

5.13.32 Configuration files / site.ini 1480

5

EmailReceiver

Summary

Sets the receiver of e-mail generated by the information collection system.

Usage

EmailReceiver= e-mail address

Description

Each time the information collector system receives data it is sent to the Email address speci-
fied by this setting.

5.13.32 Configuration files / site.ini 1481

5

[MailSettings]

AdminEmail (page 1488)
Sets the mail address of the site administrator.

AllowedCharsets (page 1486)
Sets the character sets that eZ Publish sends directly in mail.

ContentType (page 1484)
Sets the content type for email sent from eZ Publish.

EmailSender (page 1487)
Sets the default sender address for mail sent from eZ Publish.

HeaderLineEnding (page 1483)
Sets the line ending character used in emails sent from eZ Publish.

OutputCharset (page 1485)
Sets the character set to convert mail into if they are formatted with the wrong character
set.

SendmailOptions (page 1482)
Sets the additional sendmail options.

Transport (page 1493)
Sets the mail transport system for mail sent from eZ Publish.

TransportPassword (page 1489)
Sets the password to use for authentication with the SMTP server.

TransportPort (page 1491)
Sets the port that should be used when connecting to the SMTP server.

TransportServer (page 1492)
Sets the hostname of the SMTP server.

TransportUser (page 1490)
Sets the user to use for authentication with the SMTP server.

5.13.32 Configuration files / site.ini 1482

5

SendmailOptions

Summary

Sets the additional sendmail options.

Usage

SendmailOptions[]= option1

SendmailOptions[]= option2

...

Examples

SendmailOptions[]=-r

SendmailOptions[]=nospam@ez.no

The resulting option ”-r nospam@ez.no” will be passed to sendmail.

5.13.32 Configuration files / site.ini 1483

5

HeaderLineEnding

Summary

Sets the line ending character used in emails sent from eZ Publish.

Usage

HeaderLineEnding=auto| url encoded value

Description

If you have problems with linebreaks in mail you may want to change this setting. Use URL
a URL encoded value if you choose not to use the auto setting. E.g Specify Carriage Return
with %0D and Line Feed with %0A.

Examples

HeaderLineEnding=%0A%0D

Sets linebreaks in e-mail to be LineFeed CarriageReturn.

5.13.32 Configuration files / site.ini 1484

5

ContentType

Summary

Sets the content type for email sent from eZ Publish.

Usage

ContentType=text/plain|text/html

Description

The default setting is text/plain which means that mails sent are written in plain text. You
can change this setting into text/html if you want to send HTML formatted mail. If you do
this, you must also reformat all the mail templates with HTML tags.

5.13.32 Configuration files / site.ini 1485

5

OutputCharset

Summary

Sets the character set to convert mail into if they are formatted with the wrong character set.

Usage

OutputCharset= characterset

Description

If you try to send an e-mail formatted in character set not listed in AllowedCharsets (page
1486) eZ Publish will automatically convert the mail into the characterset specified.

5.13.32 Configuration files / site.ini 1486

5

AllowedCharsets

Summary

Sets the character sets that eZ Publish sends directly in mail.

Usage

AllowedCharsets[]= characterset1

AllowedCharsets[]= characterset2

...

Description

E-mail that are not in an accepted format will be converted to the format specified by Out-
putCharset (page 1485).

Examples

AllowedCharsets[]

AllowedCharsets[]=us-ascii

AllowedCharsets[]=utf-8

With this setup eZ Publish will send all e-mail using the character sets us-ascii and utf-8
without conversion.

5.13.32 Configuration files / site.ini 1487

5

EmailSender

Summary

Sets the default sender address for mail sent from eZ Publish.

Usage

EmailSender= email address

Description

The specified e-mail address will be used as the default value in the from field for mail sent
from eZ Publish. If this field is left blank the value in AdminEmail (page 1488) is used instead.

5.13.32 Configuration files / site.ini 1488

5

AdminEmail

Summary

Sets the mail address of the site administrator.

Usage

AdminEmail= email address

Description

The admin email is used for notification mail for the administrator of the site. It is used
throughout the system for important updates e.g when new users are created.

5.13.32 Configuration files / site.ini 1489

5

TransportPassword

Summary

Sets the password to use for authentication with the SMTP server.

Usage

TransportPassword= password

Description

You must set Transport (page 1493) to ”smtp” for this setting to have any effect.

5.13.32 Configuration files / site.ini 1490

5

TransportUser

Summary

Sets the user to use for authentication with the SMTP server.

Usage

TransportUser= username

Description

If your SMTP server requires authentication you must provide a username with this setting.

You must set Transport (page 1493) to ”smtp” for this setting to have any effect.

5.13.32 Configuration files / site.ini 1491

5

TransportPort

Summary

Sets the port that should be used when connecting to the SMTP server.

Description

You must set Transport (page 1493) to ”smtp” for this setting to have any effect.

5.13.32 Configuration files / site.ini 1492

5

TransportServer

Summary

Sets the hostname of the SMTP server.

Usage

TransportServer= hostname

Description

You can use both a normal hostname and an IP address.

You must set Transport (page 1493) to ”smtp” for this setting to have any effect.

5.13.32 Configuration files / site.ini 1493

5

Transport

Summary

Sets the mail transport system for mail sent from eZ Publish.

Usage

Transport=sendmail|smtp

Description

You can choose between sendmail and SMTP. The sendmail setting uses the sendmail client
on the server. If you choose SMTP you must tell eZ Publish where your SMTP server is
located using the TransportServer (page 1492), TransportPort (page 1491), TransportUser
(page 1490) and TransportPassword (page 1489) settings.

5.13.32 Configuration files / site.ini 1494

5

[OverrideSettings]

Cache (page 1495)
Sets if the template override cache should be enabled.

5.13.32 Configuration files / site.ini 1495

5

Cache

Summary

Sets if the template override cache should be enabled.

Usage

Cache=enabled|disabled

Description

Note: Don’t turn off the template override cache unless you know what you are doing.

5.13.32 Configuration files / site.ini 1496

5

[PortAccessSettings]

Portnumber to siteaccess mapping (page 1497)
Creates a mapping between a portnumber and a siteaccess.

5.13.32 Configuration files / site.ini 1497

5

Portnumber to siteaccess mapping

Summary

Creates a mapping between a portnumber and a siteaccess.

Usage

number1 = siteaccessname1

number2 = siteaccessname2

Description

You should have one line of this type for each port that is used to access your site.

Examples

80=user

81=admin

This setup has two siteaccesses. All requests to port 80 use the user siteaccess, while all
requests to port 81 use the admin siteaccess.

5.13.32 Configuration files / site.ini 1498

5

[RegionalSettings]

ContentObjectLocale (page 1508)
Sets the default language for content objects.

ContentXMLCharset (page 1507)
Sets the characterset used when storing XML in content objects.

Debug (page 1503)
Sets if debug mode should be enabled or disabled.

DevelopmentMode (page 1504)
Sets if development mode should be on or off.

HTTPLocale (page 1510)
Sets the locale transmitted to the web clients.

Locale (page 1511)
Sets the locale (currency, date and time settings etc.)

ShowUntranslatedObjects (page 1499)
Sets whether all languages are shown or not.

SiteLanguageList (page 1500)
The prioritized list of site languages.

SystemLocale (page 1509)
Tells PHP to be run in a specific locale.

TextTranslation (page 1506)
Sets if text translation is enabled for template translation.

TranslationCache (page 1505)
Sets if the translation cache should be anabled or disabled.

TranslationExtensions (page 1501)
Sets the extensions that hold translations

TranslationRepository (page 1502)
Sets the default translation repository for eZ publish.

5.13.32 Configuration files / site.ini 1499

5

ShowUntranslatedObjects

Summary

Sets whether all languages are shown or not.

Usage

ShowUntranslatedObjects=enabled|disabled

Description

This setting has two possible values:

1. disabled - Means that only languages listed in the ”SiteLanguageList (page 1500)” set-
ting are displayed.

2. enabled - Means that all languages are displayed. The system will still use the lan-
guage priorities determined by the ”SiteLanguageList[]” array, but it will not filter away
languages that are not on the list.

This setting is usually enabled for admin siteaccess and disabled for public siteaccess(es).
Please refer to the ”Configuring the site languages (page 244)” section for more information.

Examples

Example 1

SiteLanguageList[]

SiteLanguageList[]=eng-GB

SiteLanguageList[]=ger-DE

ShowUntranslatedObjects=disabled

This will tell the system that British English has the highest priority and German is the second
prioritized language. Any other languages will not be shown.

Example 2

SiteLanguageList[]

SiteLanguageList[]=eng-GB

SiteLanguageList[]=ger-DE

ShowUntranslatedObjects=enabled

This will tell the system that British English has the highest priority and German is the second
prioritized language. All other languages will still be shown (and editable) but will have less
priority.

5.13.32 Configuration files / site.ini 1500

5

SiteLanguageList

Summary

The prioritized list of site languages.

Usage

SiteLanguageList[]=language1

SiteLanguageList[]=language2

...

Description

Sets which languages the contents of a site should be displayed in. The first element in this
array determines the most prioritized language. The system will try to display content in
this language first. If an object is not translated to this language then the second prioritized
language (specified as the second element of the array) will be displayed, and so on. If an
object does not exist in any of the site languages, it will not be shown unless it is always
available or the ”ShowUntranslatedObjects (page 1499)” setting is enabled. Please refer to
the ”Configuring the site languages (page 244)” section for more information and examples.

Note: If this setting is not specified then only default language will be shown.

5.13.32 Configuration files / site.ini 1501

5

TranslationExtensions

Summary

Sets the extensions that hold translations

Usage

TranslationExtensions[]= extension1

TranslationExtensions[]= extension2

...

Description

eZ publish will search for additional translations in the ”translations” directory of your exten-
sion.

This setting is commonly overriden in the extension settings to tell eZ publish that the exten-
sion provides translations.

Examples

TranslationExtensions=myextension

eZ publish will now search the directory ”/extension/myextension/translations” for addi-
tional translations.

5.13.32 Configuration files / site.ini 1502

5

TranslationRepository

Summary

Sets the default translation repository for eZ publish.

Usage

TranslationRepository= path to repository

Description

This setting should point to the default directory for eZ publish translations. This setting
should be changed by developers only.

5.13.32 Configuration files / site.ini 1503

5

Debug

Summary

Sets if debug mode should be enabled or disabled.

Usage

Debug=enabled|disabled

Description

If debug is enabled eZ publish will display information about the locale files that are loaded.
You need to turn on Debug (page 1452) globally to see debug output.

5.13.32 Configuration files / site.ini 1504

5

DevelopmentMode

Summary

Sets if development mode should be on or off.

Usage

DevelopmentMode=enabled|disabled

Description

Development mode makes eZ publish translate all untranslated string using bork mode. This
can be handy when spotting untranslated text.

You should never use development mode in a production environment.

5.13.32 Configuration files / site.ini 1505

5

TranslationCache

Summary

Sets if the translation cache should be anabled or disabled.

Usage

TranslationCache=enabled|disabled

Description

This setting is for debugging purposes only. You should never use eZ publish without transla-
tion cache in a production environment.

5.13.32 Configuration files / site.ini 1506

5

TextTranslation

Summary

Sets if text translation is enabled for template translation.

Usage

TextTranslation=enabled|disabled

Description

This setting controls if eZ publish should translate strings marked with i18n in the templates.
eZ publish runs slightly faster when this setting is set to ”disabled” This setting is automati-
cally set to disabled if your Locale (page 1511) is set to ”eng-GB”.

5.13.32 Configuration files / site.ini 1507

5

ContentXMLCharset

Summary

Sets the characterset used when storing XML in content objects.

Usage

ContentXMLCharset=enabled|disabled| character set

Description

• enabled - Stores XML fields using the current character set. The current character set
is set by the Charset (page 1394) setting. This setting is the correct setting for most
people.

• disabled - Forces storage in UTF8.

• character set - Forces storage in this character set.

5.13.32 Configuration files / site.ini 1508

5

ContentObjectLocale

Summary

Sets the default language for content objects.

Usage

ContentObjectLocale= locale

Description

Sets the default language for content objects. This language will be used as the default value
in PHP functions that support an optional parameter for language, e.g. in the ”eZContent-
Class::instantiate()” function. The default value of this setting is ”eng-GB”.

Note: It is possible but not recommended to change this setting after you have run the setup
wizard and added content to your site. If the specified language does not exist in eZ publish
then it will be automatically added (as a new entry in the ”ezcontent language” database
table).

Examples

ContentObjectLocale=nor-NO

Sets the default language to Norwegian (Bokmal).

5.13.32 Configuration files / site.ini 1509

5

SystemLocale

Summary

Tells PHP to be run in a specific locale.

Usage

SystemLocale=locale name1[,locale name2][,locale name3]...

Description

Use this directive to set locale for the entire PHP system (this functionality is similar to using
the ”setlocale” PHP function where ”LC ALL” is passed as the first parameter). You can specify
a comma separated list of locale names. If you use a character set specific locale (for example,
”no NO.UTF-8”), make sure this character set matches the output character set of eZ Publish
(page 1394). Please note that different operating systems have different naming schemes for
locales, and thus you might need to use multiple names in order for your installation to work
on multiple platforms (such as developing on Windows and running Linux in production).

Examples

Example 1

SystemLocale=de_DE.ISO-8859-1,german

This will tell PHP to first use the ”de DE.ISO-8859-1” locale, and if this is not available, then
the ”german” locale will be used.

Example 2

SystemLocale=no_NO.UTF-8,no_NO,norwegian

With this configuration each of the three listed elements (starting from ”no NO.UTF-8”) will
be tried to be set as new locale until success.

http://www.php.net/setlocale

5.13.32 Configuration files / site.ini 1510

5

HTTPLocale

Summary

Sets the locale transmitted to the web clients.

Usage

HTTPLocale= locale setting

Description

This setting is usually set automatically from the Locale (page 1511) setting. However you
can override it for this setting. For most people the default setting (empty) is sufficient.

5.13.32 Configuration files / site.ini 1511

5

Locale

Summary

Sets the locale (currency, date and time settings etc.)

Usage

Locale= locale name

Description

The locale controls settings related to country specific settings, e.g. language, currency and
date and time formating. eZ publish provides many default locale settings in the ”/share/
locale” directory. Use the filename without the extension (.ini) to tell eZ publish to use that
locale.

If you want custom locale settings, simply copy the locale configuration file that is the closest
to the configuration you want. Then edit it and make it conform to your needs. Finally, tell eZ
publish to use that locale using this setting. Please refer to the ”Configuring your site locale
(page 242)” section for more information about locales.

Examples

Locale=nor-NO

Sets the locale to Norwegian settings.

5.13.32 Configuration files / site.ini 1512

5

[RoleSettings]

EnableCaching (page 1517)
Controls whether role caching should be enabled or disabled.

MaxParentDepthLimitation (page 1513)
Not documented yet.

PolicyOmitList (page 1515)
Excludes modules and views from the permission checking.

ShowAccessDeniedReason (page 1514)
Sets if eZ Publish elaborates on the reason for getting access denied when viewing a
page.

UserPolicyCache (page 1516)
Sets which users’ policies to cache.

5.13.32 Configuration files / site.ini 1513

5

MaxParentDepthLimitation

Summary

Not documented yet.

5.13.32 Configuration files / site.ini 1514

5

ShowAccessDeniedReason

Summary

Sets if eZ Publish elaborates on the reason for getting access denied when viewing a page.

Usage

ShowAccessDeniedReason=enabled|disabled

Description

This option is for site debugging purposes and is disabled by default. Enabling elaborate
messages can pose a security threat since details about the role setup of your system will be
exposed.

5.13.32 Configuration files / site.ini 1515

5

PolicyOmitList

Summary

Excludes modules and views from the permission checking.

Usage

PolicyOmitList[]= module1 [/ view1]

PolicyOmitList[]= module2 [/ view2]

...

Description

This setting allows you to exclude complete modules or specific views from permission con-
trol. Modules and views excluded from permission control are always accessible for all users.

Examples

PolicyOmitList[]=ezinfo

PolicyOmitList[]=user/login

PolicyOmitList[]=user/register

These settings excludes all the views in the ezinfo module, and the views login and register
in the user module from permission checking.

5.13.32 Configuration files / site.ini 1516

5

UserPolicyCache

Summary

Sets which users’ policies to cache.

Usage

UserPolicyCache=enabled|disabled| id1, id2,...

Description

This setting has three possible values

1. enabled - Cache the policies of all users.

2. disabled - No policy cache will be stored.

3. Comma separated list of IDs - Store policy cache for all users with their IDs in this list.

Examples

UserPolicyCache=23,44,24

With this configuration eZ Publish will store policy cache for the users with IDs 23,24 or 44
only.

5.13.32 Configuration files / site.ini 1517

5

EnableCaching

Summary

Controls whether role caching should be enabled or disabled.

Usage

EnableCaching=true|false

Description

When role caching is enabled eZ Publish stores the complete permissions set for each user
once it is computed. This saves both SQL queries and computation time on consequent re-
quests.

Do not disable role caching unless you know what you are doing.

5.13.32 Configuration files / site.ini 1518

5

[RSSSettings]

AvailableVersionList (page 1520)
Sets the available RSS versions

CacheTime (page 1521)
Sets the cachetime for RSS feeds in seconds.

DefaultVersion (page 1519)
Sets the default RSS version to use.

NumberOfObjectsDefault (page 1522)
Sets the default value for the number of items in an RSS export.

NumberOfObjectsList (page 1523)
Sets the number of items in an RSS export that the user can choose between in the
administration interface.

5.13.32 Configuration files / site.ini 1519

5

DefaultVersion

Summary

Sets the default RSS version to use.

Usage

DefaultVersion= version

Description

This setting controls the RSS version that is selected by default when you create a new RSS
export. The specified version must be found in the AvailableVersionList (page 1520) setting.

5.13.32 Configuration files / site.ini 1520

5

AvailableVersionList

Summary

Sets the available RSS versions

Usage

AvailableVersionList[]= version1

AvailableVersionList[]= version2

...

Description

This setting should only be changed by eZ Publish developers.

5.13.32 Configuration files / site.ini 1521

5

CacheTime

Summary

Sets the cachetime for RSS feeds in seconds.

Usage

CacheTime= number of seconds

Description

In order to minimize the server load, generated RSS feeds are cached and updated at a regular
interval. This settings controls the time between each update of the cache.
Changes to the content being fed will show up in the RSS feed after the number of seconds
set at the latest.

5.13.32 Configuration files / site.ini 1522

5

NumberOfObjectsDefault

Summary

Sets the default value for the number of items in an RSS export.

Usage

NumberOfObjectsDefault= number

Description

The number must be present in the NumberOfObjectsList (page 1523) setting.

5.13.32 Configuration files / site.ini 1523

5

NumberOfObjectsList

Summary

Sets the number of items in an RSS export that the user can choose between in the adminis-
tration interface.

Usage

NumberOfObjectsList[]= number1

NumberOfObjectsList[]= number2

...

Description

The administration interface displays a dropdown with the numbers set by this setting in the
RSS export edit screen.. The dropdown is used to determine the number of items to export
in the RSS feed.

5.13.32 Configuration files / site.ini 1524

5

[SearchSettings]

AllowEmptySearch (page 1530)
Sets if users can search for nothing

DelayedIndexing (page 1525)
Sets if new content objects are indexed in the search engine upon publishing or if in-
dexing is done by the cronjob

EnableWildcard (page 1529)
Sets if wildcard searching is allowed or not

LogSearchStats (page 1532)
Sets if search statistics should be saved or not.

MaximumSearchLimit (page 1531)
Sets the maximum number of returned hits.

MinCharacterWildcard (page 1528)
The minimum number of characters a wildcard can represent

SearchEngine (page 1534)
Sets which search engine to use

SearchViewHandling (page 1533)
Sets if searches are handled by the search view or in the template.

StopWordThresholdPercent (page 1526)
Sets the percentage of hits that a word should be present in before ignoring the word
completely

StopWordThresholdValue (page 1527)
Sets the minimum number of objects in the database before the stopword functionality
is used.

5.13.32 Configuration files / site.ini 1525

5

DelayedIndexing

Summary

Sets if new content objects are indexed in the search engine upon publishing or if indexing is
done by the cronjob

Usage

DelayedIndexing=enabled|disabled

Description

Delaying the indexing means that some objects will not be found by the search engine even
after they have been published. However, indexing can be CPU intensitive and delaying the
indexing can mean better performance and a more responsive administration interface for
editors.

5.13.32 Configuration files / site.ini 1526

5

StopWordThresholdPercent

Summary

Sets the percentage of hits that a word should be present in before ignoring the word com-
pletely

Usage

StopWordThresholdPercent= number

Description

Searching for common words can lead to extremely many hits. In order to provide a better
result the stop word system has been implemented. If a word is present in more than a set
percantage of all the objects in the system then this word will be ignore when searched for.

Examples

StopWordThresholdPercent=60

If you search for a word that is present in more than 60% of all the objects then the search
word will be ignored.

5.13.32 Configuration files / site.ini 1527

5

StopWordThresholdValue

Summary

Sets the minimum number of objects in the database before the stopword functionality is
used.

Usage

StopWordThresholdValue= number

Description

This setting should be used together with the StopWordThresholdPercent setting.

5.13.32 Configuration files / site.ini 1528

5

MinCharacterWildcard

Summary

The minimum number of characters a wildcard can represent

Usage

MinCharacterWildcard= number

Description

This setting controls the minimum number of characters required for the wildcard to match.
If MinCharacterWildcard is set to 2 and you search for ”dus*” then ”dust” will not be found
while ”duster” will.

5.13.32 Configuration files / site.ini 1529

5

EnableWildcard

Summary

Sets if wildcard searching is allowed or not

Usage

EnableWildcard=true|false

Description

When wildcard searching is enabled you can match on partial words. E.g searching for ”dust*”
will match both duster and dustdevil. Wildcard search requires a lot of resources and can
heavily influence the performance of your site.

5.13.32 Configuration files / site.ini 1530

5

AllowEmptySearch

Summary

Sets if users can search for nothing

Usage

AllowEmptySearch=enabled|disabled

Description

Empty searches take a lot of resources and can slow down your site considerably. If you
enable empty searches you must use template search view handling and make sure that your
template submits enough limitations on the search.

5.13.32 Configuration files / site.ini 1531

5

MaximumSearchLimit

Summary

Sets the maximum number of returned hits.

Usage

MaximumSearchLimit= integer

Description

It is possible for the user to select the number of returned hits via a POST variable. In order
to avoid very high limits resulting in high server load you can use this setting to set a cap on
the number of returned hits.

Examples

MaximumSearchLimit=25

This setting will limit the maximum number of search hits to 25.

5.13.32 Configuration files / site.ini 1532

5

LogSearchStats

Summary

Sets if search statistics should be saved or not.

Usage

LogSearchStats=enabled|disabled

Description

If enabled statistics about each search are written to the database. You can view the statistics
from the administration interface.

5.13.32 Configuration files / site.ini 1533

5

SearchViewHandling

Summary

Sets if searches are handled by the search view or in the template.

Usage

SearchViewHandling=default|template

Description

This setting has two options

• default - The view code does the search and passes the result to template. The template
is only responsible for displaying the result.

• template - The template does the search and passes the result back to the view code.
This way you have to ”program” the search yourself providing more flexibility.

5.13.32 Configuration files / site.ini 1534

5

SearchEngine

Summary

Sets which search engine to use

Usage

SearchEngine= search engine identifier

Description

eZ Publish supports search engine plugins. This allows you to write support for your favorite
search engine and to use this for the searching functionality in eZ Publish.

eZ Publish comes with built in support for two search engines:

• eZSearchEngine - The standard eZ Publish search engine

• openFts - The Open Source Full Text Search Engine

5.13.32 Configuration files / site.ini 1535

5

[Session]

ActivityTimeout (page 1536)
Sets the number of second before a user is considered inactive.

BasketCleanup (page 1537)
Sets how the shopping baskets for expired and removed sessions are cleaned up.

BasketCleanupAverageFrequency (page 1538)
Sets how often the basket cleanup cronjob will actually work when being executed.

CookieTimeout (page 1539)
Sets the number of seconds that the session cookie lasts.

SessionNameHandler (page 1540)
Sets how session names should be generated

SessionNamePerSiteAccess (page 1541)
Prepends session names with the current siteaccess.

SessionNamePrefix (page 1542)
Sets the prefix eZ publish should use when creating session names.

SessionTimeOut (page 1543)
Sets the number of seconds a session lasts.

5.13.32 Configuration files / site.ini 1536

5

ActivityTimeout

Summary

Sets the number of second before a user is considered inactive.

Usage

ActivityTimeout= number

Description

This setting is only used for lists and statistical purposes in the setup area in the administration
interface. It does not have any impact on the session duration.

5.13.32 Configuration files / site.ini 1537

5

BasketCleanup

Summary

Sets how the shopping baskets for expired and removed sessions are cleaned up.

Usage

BasketCleanup=cronjob|pageload

Description

If a user added some products into his basket and then stopped shopping (e.g. closed his
browser window) without initiating the checkout process, the user’s session will expire after
a while. The eZ Publish session handling, which is based on the PHP session functionality,
takes care about removing expired sessions from the database. It is also possible to remove
sessions (either expired or not) using the ”Setup - Sessions” part of the admin interface.

If the ”BasketCleanup” setting is set to ”cronjob” (default), removing a user’s session from the
database will not delete the shopping basket that was created during this session. These un-
needed baskets can be cleaned up periodically by running the ”basket cleanup.php” cronjob.

If you specify ”BasketCleanup=pageload”, removing a user’s session from the database (either
automatically by session cleanup or manually by the site administrator) will delete the cor-
responding shopping basket. The ”basket cleanup.php” cronjob will not do anything. Please
note that this configuration is not recommended for sites with many visitors because removing
baskets on session cleanup will take a lot of time.

http://php.net/session

5.13.32 Configuration files / site.ini 1538

5

BasketCleanupAverageFrequency

Summary

Sets how often the basket cleanup cronjob will actually work when being executed.

Usage

BasketCleanupAverageFrequency=number

Description

Use this directive to specify how often the shopping baskets will actually be cleaned up when
the ”basket cleanup.php” cronjob is executed. This setting is extremely useful in case you
are running this cronjob frequently together with other tasks. The default value is 10, which
means that baskets will be cleaned about 1 out of 10 times. If you wish to run ”basket
cleanup.php” separately from other cron jobs, you can specify ”BasketCleanupAverageFre-
quency=1”.

You must set BasketCleanup (page 1537) to ”cronjob” for this setting to have any effect.

5.13.32 Configuration files / site.ini 1539

5

CookieTimeout

Summary

Sets the number of seconds that the session cookie lasts.

Usage

CookieTimeout=number

Description

This setting is set in the cookie used by the client browsers to store the session information.
When the cookie times out it will be removed by the client browser. Note that the maximum
session duration is the minimum of this setting and the SessionTimeout setting.

Examples

[Session]

Number of seconds a session will last

3 days is standard

SessionTimeout=259200

Number of seconds before a session is considered inactive/logged out

1 hour is standard

ActivityTimeout=3600

Number of seconds a session cookie will last,

0 means until browser is closed

Leaving the field empty means to use the default PHP settings

(session.cookie_lifetime)

Example for 6 minutes

CookieTimeout=360

With this configuration, HTTP cookies will expire in six minutes. If the site visitor is inactive
for six minutes without closing his browser window, the cookie will expire and thus the user’s
session will be ended. If the user reloads the page later then a new session will be created.
However, the previous session will not be removed from the database. It will become inactive
in one hour and expired in three days.

5.13.32 Configuration files / site.ini 1540

5

SessionNameHandler

Summary

Sets how session names should be generated

Usage

SessionNameHandler=default|custom

Description

There are two possible options

1. default:The default setting uses PHP to generate session names. If you use the default
handler the session will be valid across siteaccess (e.g admin and user site) if they use
the same database.

2. custom: The custom setting allows you to prefix the session name. The prefix is set
with the SessionNamePrefix setting.

5.13.32 Configuration files / site.ini 1541

5

SessionNamePerSiteAccess

Summary

Prepends session names with the current siteaccess.

Usage

SessionNamePerSiteAccess=enabled|disabled

Description

When this setting is enabled the generated session names are prepended with the name of
the siteaccess used to access the site. This generated unique session names per siteaccess.

5.13.32 Configuration files / site.ini 1542

5

SessionNamePrefix

Summary

Sets the prefix eZ publish should use when creating session names.

Usage

SessionNamePrefix= prefix

Description

The prefix set in this variable is prepended to the generated session name. You can override
this setting for each siteaccess to generate unique session names per siteaccess.

5.13.32 Configuration files / site.ini 1543

5

SessionTimeOut

Summary

Sets the number of seconds a session lasts.

Usage

SessionTimeOut= number

Description

After the specified time has passed the session will no longer be considered valid, and the
user will be logged out even if he/she is active on the site.

5.13.32 Configuration files / site.ini 1544

5

[SetupSettings]

CriticalTests (page 1547)
Sets the tests that must be passed in order to complete the setup procedure.

OptionalTests (page 1546)
Sets the tests optional tests run during the setup procedure.

OverrideSiteDesign (page 1545)
Sets the sitedesign that should be used by the setup wizard.

PageLayout (page 1548)
Sets which pagelayout template to use for the setup wizzard.

5.13.32 Configuration files / site.ini 1545

5

OverrideSiteDesign

Summary

Sets the sitedesign that should be used by the setup wizard.

Usage

OverrideSiteDesign= sitedesign name

5.13.32 Configuration files / site.ini 1546

5

OptionalTests

Summary

Sets the tests optional tests run during the setup procedure.

Usage

OptionalTests= test1, test2,...

Description

Optional tests can be bypassed simply by clicking next.

5.13.32 Configuration files / site.ini 1547

5

CriticalTests

Summary

Sets the tests that must be passed in order to complete the setup procedure.

Usage

CriticalTests= test1, test2,...

5.13.32 Configuration files / site.ini 1548

5

PageLayout

Summary

Sets which pagelayout template to use for the setup wizzard.

Usage

PageLayout= template name

Description

Don’t change this setting unless you are an eZ publish developer.

5.13.32 Configuration files / site.ini 1549

5

[ShopSettings]

ClearBasketOnCheckout (page 1552)
Sets when the basket is cleared.

ClearBasketOnLogout (page 1550)
Sets whether the basket should be cleared after logging out.

RedirectAfterAddToBasket (page 1551)
Controls where the user is redirected after adding an item to the basket.

5.13.32 Configuration files / site.ini 1550

5

ClearBasketOnLogout

Summary

Sets whether the basket should be cleared after logging out.

Usage

ClearBasketOnLogout=enabled|disabled

Description

This setting has two possible values:

1. disabled - Means that the basket is NOT cleared when the user logs out.

2. enabled - Means to clear the basket as soon as the user logs out from the system.

Both anonymous and registered users are affected.

Examples

ClearBasketOnLogout=enabled

This will instruct eZ publish to clear the user’s basket as soon as the user logs out from the
system.

5.13.32 Configuration files / site.ini 1551

5

RedirectAfterAddToBasket

Summary

Controls where the user is redirected after adding an item to the basket.

Usage

RedirectAfterAddToBasket=basket|reload

Description

This setting has two possible values:

1. basket - Redirect the user back to the basket to show the newly added item.

2. reload - Redirect the user back to the page he came from, this allows the user to continue
shopping.

5.13.32 Configuration files / site.ini 1552

5

ClearBasketOnCheckout

Summary

Sets when the basket is cleared.

Usage

ClearBasketOnCheckout=enabled|disabled

Description

This setting has two possible values:

1. disabled - Means that the basket is cleared when the shop/checkout trigger is done. In
practice this means when a user has payed the product and payment system is finished.
This is the default value since it means the user can cancel the order and go back to the
shop with the basket still intact.

2. enabled - Means to clear the basket as soon as the user clicks confirm in the shop/
confirmorder trigger. This may needed by some payment systems. Check the documen-
tation for your payment system to see if this setting must be enabled. The impact on
the users is that the basket will not be available when the payment is cancelled.

5.13.32 Configuration files / site.ini 1553

5

[SiteAccessRules]

Rules (page 1554)
Sets which modules and views to enable or disable.

5.13.32 Configuration files / site.ini 1554

5

Rules

Summary

Sets which modules and views to enable or disable.

Usage

Rules[]=function1;parameter1

Rules[]=function2;parameter2

Description

The ”Rules” setting defines a ruleset that eZ publish uses to determine wether module and
views should be available or not. Each line of the ruleset is read and evaluated. The order
in which you enable/disable modules does not matter, but more specific rules will override
global rules.

The available functions are:

access

The access function is used to change if subsequent module or moduleall rules should be
enabled or disabled. The access function has two possible parameter options

1. enable - enable subsequently mentioned modules and views

2. disable - disables subsequently mentioned modules and views

module

The module function is used to specify complete modules or specific views.
The module or view will get the access level of the last access level set. To specify a module
simply provide the module name as the parameter value:

Rules[]=module;name_of_module

If you specify a module, the access mode is set for all views in that module.

To specify a single view you need to specify both the name of the module and the view as the
parameter value:

Rules[]=module;name_of_module/name_of_view

moduleall

Moduleall is a special mode that should be used on a line on itself without a trailing function
definition. It is used to set the current access mode to all modules in the system.

5.13.32 Configuration files / site.ini 1555

5

Examples

Example 1

Rules[]=access;enable

Rules[]=moduleall

This configuration enables all modules and views. This is equal to the default ruleset.

Example 2

Rules[]=access;enable

Rules[]=moduleall

Rules[]=access;disable

Rules[]=module;ezinfo

Rules[]=module;content/search

This configuration enables all modules and views except all views in the ezinfo module and
the view content/search.

Example 3

Rules[]=access;disable

Rules[]=moduleall

Rules[]=access;enable

Rules[]=module;content/view

This configuration takes a different approach. It disables all modules by default and enables
only the modules that you want to use. In this case only the content/view module is available.

5.13.32 Configuration files / site.ini 1556

5

[SiteAccessSettings]

AnonymousAccessList (page 1577)
Specifies a lists of modules and views that are accessible regardless of the RequireUser-
Login setting.

AvailableSiteAccessList (page 1580)
Sets the siteaccesses that your eZ Publish installation provides.

CheckValidity (page 1582)
Sets if the setup wizard should be activated or not.

DebugAccess (page 1579)
Turns on debug output for access matching.

DebugExtraAccess (page 1578)
Enables verbose access matching debug information.

ForceVirtualHost (page 1583)
Sets if eZ Publish should force virtual host mode.

HostMatchElement (page 1568)
Sets which element (separated by a dot) to use when using element host matching.

HostMatchMapItems (page 1563)
Sets the mapping between hostname and siteaccess when using map host-matching.

HostMatchRegexp (page 1567)
Sets the regular expression that is used to fetch the siteaccess from the hostname with
regexp hostmatching.

HostMatchRegexpItem (page 1566)
Sets which submatch to use to determine the siteaccess name with regexp hostmatching.

HostMatchSubtextPost (page 1564)
Sets the postfix that occurs in the hostname behind the siteaccess when using text host
matching.

HostMatchSubtextPre (page 1565)
Sets the prefix that occurs in the hostname in front of the siteaccess when using text
host matching.

HostMatchType (page 1569)
Sets which type of host matching to use to select the siteaccess.

MatchOrder (page 1576)
Sets the matching algorithms that will be tried to determine which siteaccess to use.

PathPrefix (page 1562)
Not documented yet.

RelatedSiteAccessList (page 1558)
Sets which siteaccesses the view cache should be cleared for when it is cleared for the
current siteaccess.

5.13.32 Configuration files / site.ini 1557

5

RequireUserLogin (page 1581)
Sets if you allow anonymous access to your site.

ServerVariableName (page 1561)
Not documented yet.

ShowHiddenNodes (page 1560)
Sets if hidden nodes should be shown by default or not.

URIMatchElement (page 1573)
Specifies which element (separated by ”/”) of the URI that contains the siteaccess.

URIMatchRegexp (page 1572)
Sets the regular expression that is used to extract the siteaccess from the URI.

URIMatchRegexpItem (page 1571)
Sets the submatch that is used for siteaccess matching when using regexp URIMatching.

URIMatchType (page 1574)
Configures the URI match access method

5.13.32 Configuration files / site.ini 1558

5

RelatedSiteAccessList

Summary

Sets which siteaccesses the view cache should be cleared for when it is cleared for the current
siteaccess.

Usage

RelatedSiteAccessList[]=site access name1

RelatedSiteAccessList[]=site access name2

...

Description

This setting controls which siteaccesses need to have their view cache cleared when the con-
tent is changed on the current siteaccess. When clearing the view cache of a node, the system
will clear it for all related siteaccesses. If this setting is not specified, the cache subsystem will
use the ”AvailableSiteAccessList (page 1580)” setting instead.

If you have several siteaccesses that are using different databases, this setting must be set per
siteaccess.

Examples

Example 1

Let’s say that you have several siteaccesses called ”gb”, ”no”, ”fr” and ”myadmin” using the
same database. When you change the site pages using the admin interface, the view cache
of these pages should be cleared not only for your admin siteaccess but for three public
siteaccesses as well. Add the following lines to the ”settings/override/site.ini.append.php”:

RelatedSiteAccessList[]=gb

RelatedSiteAccessList[]=no

RelatedSiteAccessList[]=fr

RelatedSiteAccessList[]=myadmin

This will instruct the system to clear the view caches for all your siteaccesses.

If you remove ”RelatedSiteAccessList[]=gb” then only three siteaccesses will be considered
as related and thus editing a site page in the admin interface will lead to clearing the view
cache of this page for ”myadmin”, ”no” and ”fr” siteaccess (the view cache for ”gb” will not
be cleared).

Example 2

Let’s say that you have the following siteaccesses:

• ”gb”, ”no” and ”myadmin” using the ”mydb” database

5.13.32 Configuration files / site.ini 1559

5

• ”shop” and ”shopadmin” using the ”myshopdb” database

This means you have to specify the following settings in their ”site.ini.append.php” configu-
ration files:

settings/siteaccess/gb/site.ini.append.php

RelatedSiteAccessList[]=no

RelatedSiteAccessList[]=myadmin

settings/siteaccess/no/site.ini.append.php

RelatedSiteAccessList[]=gb

RelatedSiteAccessList[]=myadmin

settings/siteaccess/myadmin/site.ini.append.php

RelatedSiteAccessList[]=gb

RelatedSiteAccessList[]=no

settings/siteaccess/shop/site.ini.append.php

RelatedSiteAccessList[]=shopadmin

settings/siteaccess/shopadmin/site.ini.append.php

RelatedSiteAccessList[]=shop

5.13.32 Configuration files / site.ini 1560

5

ShowHiddenNodes

Summary

Sets if hidden nodes should be shown by default or not.

Usage

ShowHiddenNodes=true|false

Description

eZ Publish has the concept of node visibility (page 138). These settings controls whether
hidden nodes should be displayed by default or not. The settings controls the behavior of the
content fetch functions. ShowHiddenNodes is typically overridden for siteaccesses where all
content should be shown regardless of the state, e.g in the administration interface.

5.13.32 Configuration files / site.ini 1561

5

ServerVariableName

Summary

Not documented yet.

Usage

ServerVariableName

5.13.32 Configuration files / site.ini 1562

5

PathPrefix

Summary

Not documented yet.

Usage

PathPrefix= prefix

5.13.32 Configuration files / site.ini 1563

5

HostMatchMapItems

Summary

Sets the mapping between hostname and siteaccess when using map host-matching.

Usage

HostMatchMapItems[]= hostname1 ; siteaccess1

HostMatchMapItems[]= hostname2 ; siteaccess2

...

Description

Each row in the array defines one hostname to match and the siteaccess that will be used for
that hostname.

See HostMatchType (page 1569) for examples and more information about host matching.

5.13.32 Configuration files / site.ini 1564

5

HostMatchSubtextPost

Summary

Sets the postfix that occurs in the hostname behind the siteaccess when using text host match-
ing.

Usage

HostMatchSubtextPost= number

Description

Use this setting together with HostMatchSubtextPre (page 1565) to configure text host-
matching.

See HostMatchType (page 1569) for examples and more information about host matching.

5.13.32 Configuration files / site.ini 1565

5

HostMatchSubtextPre

Summary

Sets the prefix that occurs in the hostname in front of the siteaccess when using text host
matching.

Usage

HostMatchSubtextPre= text

Description

Use this setting together with HostMatchSubtextPost to configure text host-matching.
See HostMatchType (page 1569) for examples and more information about host matching.

5.13.32 Configuration files / site.ini 1566

5

HostMatchRegexpItem

Summary

Sets which submatch to use to determine the siteaccess name with regexp hostmatching.

Usage

HostMatchRegexpItem= number

Description

The setting HostMatchRegexp (page 1567) sets the regular expression that is used for match-
ing.

See HostMatchType (page 1569) for examples and more information about host matching.

5.13.32 Configuration files / site.ini 1567

5

HostMatchRegexp

Summary

Sets the regular expression that is used to fetch the siteaccess from the hostname with regexp
hostmatching.

Usage

HostMatchRegexp= regular expression

Description

The regular expression should contain at least one submatch. The setting HostMatchRegex-
pItem (page 1566) controls which submatch that is used for the siteaccess name.

See HostMatchType (page 1569) for examples and more information about host matching.

5.13.32 Configuration files / site.ini 1568

5

HostMatchElement

Summary

Sets which element (separated by a dot) to use when using element host matching.

Usage

HostMatchElement= number

Description

See HostMatchType (page 1569) for examples and more information about host matching.

5.13.32 Configuration files / site.ini 1569

5

HostMatchType

Summary

Sets which type of host matching to use to select the siteaccess.

Usage

HostMatchType=disabled|map|element|text|regexp

Description

Use host match when you want to select the siteaccess based on the host part of the URL.
Host matching can be used in four different modes or be disabled completely. The available
options are:

• disabled - Disables host matching. If host matching is specified in the MatchOrder
(page 1576) setting it will be ignored.

• map - Select the siteaccess based on the complete hostname. Specify the mapping be-
tween a hostname and the siteaccess to use with the HostMatchMapItems (page 1563)
setting.

• element - The siteaccess is specified by a one of the subdomains that are part of the
hostname. Select which part of the hostname (separated by dots) that specifies the
siteaccess with the HostMatchElement (page 1568) setting.

• text - The siteaccess is given by some arbitrary part of the hostname with a fixed pre
and post text. Set the pre and post text with the HostMatchSubtextPre (page 1565) and
HostMatchSubtextPost (page 1564) settings.

• regexp - Use a regular expression to obtain the siteaccess name from the hostname. Set
the regular expression and the submatch to use with the HostMatchRegexp (page 1567)
and HostMatchRegexpItem (page 1566) settings.

Examples

Map matching

HostMatchType=map

HostMatchMapItems[]=mydomain.no;user

HostMatchMapItems[]=admin.mydomain.no;admin

This configuration uses the map hostmatching type. If the site is acccessed using the domain
mydomain.no the siteaccess named user is used. If the domain admin.mydomain.no is used
the admin siteaccess is used instead.

5.13.32 Configuration files / site.ini 1570

5

Element matching

HostMatchType=element

HostMatchElement=1

This configuration uses the second element in the hostname as siteaccess using element
matching. For example the hostname first.second.third.com yields the siteaccess second.

Text matching

HostMatchType=text

HostMatchSubtextPre=my

HostMatchSubtextPost=site.ez.no

This text mathcing configuration uses everything between my and site.ez.no as the siteaccess.
E.g myadminsite.ez.no would produce the siteaccess admin. The hostname myusersite.ez.no
produces the siteaccessname user.

Regexp matching

HostMatchType=regexp

HostMatchRegexp=^(.+)\.example\.com

HostMatchRegexpItem=1

This regexp setup uses the regular expression ˆ(.+)\.example\.com to match anything in
front of .example.com. The first match is set up to hold the siteaccess. E.g the hostname
test.example.com yields the siteaccess test.

5.13.32 Configuration files / site.ini 1571

5

URIMatchRegexpItem

Summary

Sets the submatch that is used for siteaccess matching when using regexp URIMatching.

Usage

URIMatchRegexpItem= number

Description

The setting URIMatchRegexp (page 1572) specifies the regular expression that should be used
for matching.

See URIMatchType (page 1574) for examples and more information about URI matching.

5.13.32 Configuration files / site.ini 1572

5

URIMatchRegexp

Summary

Sets the regular expression that is used to extract the siteaccess from the URI.

Usage

URIMatchRegexp= regular expression

Description

Use the setting URIMatchRegexpItem (page 1571) to determine the submatch that contains
the siteaccess.

See URIMatchType (page 1574) for examples and more information about URI matching.

5.13.32 Configuration files / site.ini 1573

5

URIMatchElement

Summary

Specifies which element (separated by ”/”) of the URI that contains the siteaccess.

Usage

URIMatchElement= number

Description

See URIMatchType (page 1574) for examples and more information about URI matching.

5.13.32 Configuration files / site.ini 1574

5

URIMatchType

Summary

Configures the URI match access method

Usage

URIMatchType=disabled|map|element|text|regexp

Description

URI matching is used to select the siteaccess from the location part of the URL: URL matching
can be used in two different modes or be disabled completely. The options you have for this
settings are:

• disabled - Disables URI matching. If URI matching is present in the MatchOrder (page
1576) setting it will be ignored.

• map - Select the siteaccess to use based on the first element of a given URL. Spec-
ify the mapping between the URL element and the siteaccess to use with the URI-
MatchMapItems setting.

• element - Select the siteaccess to use based on the elements separated by ”/” in the
location part. If you specify ”URIMatchElement=N”, the system will take N parts of the
URL (separated by ”/”) and replace slashes with underscores in the resulting string.

• text - Match URL using pre- or post- substrings (URIMatchSubtextPre, URIMatchSub-
textPost).

• regexp - Works similarly to the element setting but you can specify the delimiter with
a regular expression. The settings URIMatchRegExp and URIMatchRegExpItem control
how to split the URL and what part to use for the siteaccess.

Examples

Example 1 (element matching)

URIMatchType=element

URIMatchElement=1

With this configuration the second element (the first element is element 0) of the URI will be
used as the siteaccess. For example, in the URL ”http://www.mysite.com/news/site/admin/
content/view/full/32” the siteaccess name will be ”news”.

Example 2 (element matching)

5.13.32 Configuration files / site.ini 1575

5

URIMatchType=element

URIMatchElement=3

With this configuration the second element (the first element is element 0) of the URI will be
used as the siteaccess. For example, in the URL ”http://www.mysite.com/news/site/admin/
content/view/full/32” the siteaccess name will be ”news site admin”.

Example 3 (map matching)

URIMatchType=map

URIMatchMapItems[]=myadmin_de;admin_de

URIMatchMapItems[]=MYADMIN_DE;admin_de

This will tell the system to use the ”admin de” siteaccess when the first element of a given
URI is ’myadmin de’ or ’MYADMIN DE’.

5.13.32 Configuration files / site.ini 1576

5

MatchOrder

Summary

Sets the matching algorithms that will be tried to determine which siteaccess to use.

Usage

MatchOrder= match type1 [; match type2]...

Description

You can specify several matching types separated by a semicolon. eZ Publish will try each
matching type, in the order specified, until a match is found.

The possible algorithms are:

• host - Fetch the siteaccess from the hostname. E.g admin.mydomain.com for the admin
site and www.mydomain.com for the user site. Use the settings starting with HostMatch
to configure host matching.

• uri - Fetch the siteaccess from the requested path. E.g mydomain.com/index.php/
siteaccess name/. If you ommit the siteaccess in the URL the default siteaccess will
be used. Use the settings starting with UriMatch to configure URI matching.

• port - Select the siteaccess based on the port used to access the site. E.g mydomain.com
for the user site, and mydomain.com:99 for the administration interface. Use the [Por-
tAccessSettings] group to configure port matching.

• servervar - Fetches the siteaccess to use from a server variable found in the PHP $
SERVER global. Use the ServerVariableName setting to choose the server variable that
contains the siteaccess to use.

The most common access methods are described in detail in the access methods (page 151)
chapter.

5.13.32 Configuration files / site.ini 1577

5

AnonymousAccessList

Summary

Specifies a lists of modules and views that are accessible regardless of the RequireUserLogin
setting.

Usage

AnonymousAccessList[]= module1 / view1

AnonymousAccessList[]= module2 / view2

...

Description

Using the RequireUserLogin (page 1581) setting you can force users to log in in order to get
access to a site. However, those users still need access to the log in page in order to log in. This
setting controls the modules and views that are accessible regardless of the RequireUserLogin
(page 1581) setting.

The default settings allow access to the modules and views related to logging in and register-
ing a user.

Examples

AnonymousAccessList[]=user/register

AnonymousAccessList[]=user/forgotpassword

These settings allow access to the register page and the forgotpassword page even if Re-
quireUserLogin is enabled.

5.13.32 Configuration files / site.ini 1578

5

DebugExtraAccess

Summary

Enables verbose access matching debug information.

Usage

DebugExtraAccess=enabled|disabled

Description

This option is for eZ Publish developers only.

5.13.32 Configuration files / site.ini 1579

5

DebugAccess

Summary

Turns on debug output for access matching.

Usage

DebugAccess=enabled|disabled

Description

This option is for eZ Publish developers only.

5.13.32 Configuration files / site.ini 1580

5

AvailableSiteAccessList

Summary

Sets the siteaccesses that your eZ Publish installation provides.

Usage

AvailableSiteAccessList[]=site access name1

AvailableSiteAccessList[]=site access name2

...

Description

This setting controls the siteaccesses that are available from eZ Publish. Most installations
have two siteaccesses: the user site and the administration interface.

This setting has to be set in settings/override/site.ini.append(.php). eZ Publish will use the
matching rules to decide which siteaccess a user wants to access. More information about the
site access system can be found in the site management (page 148) chapter.

Examples

AvailableSiteAccessList[]=example

AvailableSiteAccessList[]=example_admin

This system has two siteaccesses: example and example admin. Specific override settings
for the public siteaccess can be found in the directory settings/siteaccess/example/. Specific
override settings for the admin siteaccess can be found in the directory settings/siteaccess/
example admin/.

5.13.32 Configuration files / site.ini 1581

5

RequireUserLogin

Summary

Sets if you allow anonymous access to your site.

Usage

RequireUserLogin=true|false

Description

If this setting is set to true, eZ Publish will redirect all requests from users that are not logged
in to the log in page.

This setting is typically overridden for each siteaccess. Private siteaccesses like intranets or
the admin interface will typically have RequireUserLogin set to true while public sites that
everyone can access typically have RequireUserLogin set to false.

5.13.32 Configuration files / site.ini 1582

5

CheckValidity

Summary

Sets if the setup wizard should be activated or not.

Usage

CheckValidity=true|false

5.13.32 Configuration files / site.ini 1583

5

ForceVirtualHost

Summary

Sets if eZ Publish should force virtual host mode.

Usage

ForceVirtualHost=true|false

Description

Normally eZ Publish automatically detects if virtual host or non virtualhost should be used.
However, some special cases require virtual host mode to be forced.

You can read more about the various access methods for eZ Publish in the Access Methods
(page 151) chapter. Specific information about virtual host setups can be found in the Virtual
host setup (page 73) chapter.

5.13.32 Configuration files / site.ini 1584

5

[SiteSettings]

64bitCompatibilityMode (page 1585)
Enables 64bit compatibility mode

DefaultAccess (page 1589)
Sets the default site access when the URI access method is used.

IndexPage (page 1590)
Sets the page to display when the root ”/” of your site is accessed.

LoginPage (page 1588)
Sets if eZ Publish should use a custom pagelayout for the log in page.

MetaDataArray (page 1591)
Sets the site metadata that is used on several places on your site.

SiteList (page 1586)
Sets the siteaccesses available to outside sources (currently used for webdav only)

SiteName (page 1593)
The name of your site.

SiteURL (page 1592)
Sets the URL of your site. Used e.g when generating links for notifactions and emails.

SSLPort (page 1587)
The port that that should be used for SSL requests.

5.13.32 Configuration files / site.ini 1585

5

64bitCompatibilityMode

Summary

Enables 64bit compatibility mode

Usage

64bitCompatibilityMode=enabled|disabled

Description

This setting allows to enable or disable 64bit compatibility mode. This will affect some PHP
functions like crc32.

Examples

64bitCompatibilityMode=enabled

This enables 64bit compatibility mode in eZ publish.

5.13.32 Configuration files / site.ini 1586

5

SiteList

Summary

Sets the siteaccesses available to outside sources (currently used for webdav only)

Usage

SiteList[]= siteaccess1

SiteList[]= siteaccess2

...

5.13.32 Configuration files / site.ini 1587

5

SSLPort

Summary

The port that that should be used for SSL requests.

Usage

SSLPort= integer

Description

Note:The default 443 should suffice for most users.

5.13.32 Configuration files / site.ini 1588

5

LoginPage

Summary

Sets if eZ Publish should use a custom pagelayout for the log in page.

Usage

LoginPage=custom|embedded

Description

If LoginPage is set to custom, eZ Publish will use loginpagelayout.tpl when users access the
login page.

If LoginPage is set to embedded the normal pagelayout.tpl will be used.

5.13.32 Configuration files / site.ini 1589

5

DefaultAccess

Summary

Sets the default site access when the URI access method is used.

Usage

DefaultAccess= siteaccess name

Description

When you use the URI access method (page 151) it is not possible to see which siteaccess
you want to use if you are accessing the root of your site. The DefaultAccess setting specifies
which siteaccess to choose when this happens.

5.13.32 Configuration files / site.ini 1590

5

IndexPage

Summary

Sets the page to display when the root ”/” of your site is accessed.

Usage

IndexPage= internal url

Description

Use either a system or a nice URL to specify the index page. System URL’s are a bit faster
and should be used for the IndexPage setting since the root of your site will be accessed very
often.

Examples

IndexPage=/content/view/full/2

This example shows the full view of node 2 as the index page of your site.

5.13.32 Configuration files / site.ini 1591

5

MetaDataArray

Summary

Sets the site metadata that is used on several places on your site.

Usage

MetaDataArray[meta name1]= meta data1

MetaDataArray[meta name2]= meta data2

...

Description

This setting can be used to control meta data that is used in several different locations in your
site. The default installation defines author, copyright, description and keywords. You are
free to define your own metadata. To fetch the metadata use the ezini template operator.

Examples

MetaDataArray[author]=eZ Systems
MetaDataArray[copyright]=eZ Systems
MetaDataArray[description]=Content Management System
MetaDataArray[keywords]=cms, publish, e-commerce, content management, development
framework

5.13.32 Configuration files / site.ini 1592

5

SiteURL

Summary

Sets the URL of your site. Used e.g when generating links for notifactions and emails.

Usage

SiteURL= site url

Description

The URL should contain the full hostname and any additional path to the root of your eZ
Publish installation.

Examples

SiteURL=ez.no

A typical generated link will now look like http://ez.no/some url here.

5.13.32 Configuration files / site.ini 1593

5

SiteName

Summary

The name of your site.

Usage

SiteName=the name of your site

Description

This setting is used in the title of the default templates. You may use spaces in the title.

Examples

SiteName=Sigges megaphone warehouse

5.13.32 Configuration files / site.ini 1594

5

[SSLZoneSettings]

ModuleViewAccessMode (page 1595)
Not documented yet.

SSLSubtrees (page 1596)
Not documented yet.

SSLZones (page 1597)
Not documented yet.

5.13.32 Configuration files / site.ini 1595

5

ModuleViewAccessMode

Summary

Not documented yet.

5.13.32 Configuration files / site.ini 1596

5

SSLSubtrees

Summary

Not documented yet.

5.13.32 Configuration files / site.ini 1597

5

SSLZones

Summary

Not documented yet.

5.13.32 Configuration files / site.ini 1598

5

[TemplateSettings]

You can read more about the template system in the templates (page 173) chapter.

AutoloadPathList (page 1611)
Sets the directories inside eZ publish itself where eZ publish will look for operator and
function definitions.

Debug (page 1609)
Turns on/off template debug output.

DevelopmentMode (page 1599)
Not documented yet.

ExtensionAutoloadPath (page 1610)
Sets the extensions that contain template function or operator definitions.

NodeTreeCaching (page 1605)
Sets if the template interpreter should cache parsed template files.

ShowMethodDebug (page 1607)
Sets if debug information about called functions and operators should be displayed.

ShowUsedTemplates (page 1606)
Enables a table in the debug displaying all the templates used to render the current
page.

ShowXHTMLCode (page 1608)
Sets if eZ publish should display template load debug inline or not.

TemplateCache (page 1601)
Main switch for all the template related caches.

TemplateCompile (page 1604)
Sets if the template compiler should be used or not.

TemplateCompression (page 1600)
Sets if compiled templates should be compressed or not.

TemplateOptimization (page 1603)
Sets if the template compiler should try to optimize the produced PHP code.

UseFormatting (page 1602)
Sets if the template compiler should keep whitespace in the compiled template.

5.13.32 Configuration files / site.ini 1599

5

DevelopmentMode

Summary

Not documented yet.

5.13.32 Configuration files / site.ini 1600

5

TemplateCompression

Summary

Sets if compiled templates should be compressed or not.

Usage

TemplateCompression=enabled|disabled

Description

Enable template compression to make eZ publish store compiled templates using gzip. This
saves a lot of space but is a bit slower.

5.13.32 Configuration files / site.ini 1601

5

TemplateCache

Summary

Main switch for all the template related caches.

Usage

TemplateCache=enabled|disabled

Description

If you disable TemplateCache the template system will not do any caching at all. This includes
cache-blocks and compiled templates.

Note: Template caching is essential to speed up your site. Do not turn TemplateCache off
unless you are developing.

5.13.32 Configuration files / site.ini 1602

5

UseFormatting

Summary

Sets if the template compiler should keep whitespace in the compiled template.

Usage

UseFormatting=enabled|disabled

Description

Enabling this setting makes the template compiler keep whitespace formatting in the com-
piled templates. This results in HTML output that bigger but easier to read.

This setting has no effect if TemplateCompile (page 1604) is disabled.

5.13.32 Configuration files / site.ini 1603

5

TemplateOptimization

Summary

Sets if the template compiler should try to optimize the produced PHP code.

Usage

TemplateOptimization=enabled|disabled

Description

Optimized templates will be slightly faster than templates that are not compiled.

This setting has no effect if TemplateCompile (page 1604) is disabled.

5.13.32 Configuration files / site.ini 1604

5

TemplateCompile

Summary

Sets if the template compiler should be used or not.

Usage

TemplateCompile=enabled|disabled

Description

If you enable TemplateCompile eZ publish will convert your templates into executable PHP
files. If this option is disabled eZ publish will interpret each template separately for each
page.

eZ publish will compile the templates on demand. Once a template is compiled it takes less
time to process. However, compiling templates takes a lot of time. This can be noticed after
you have cleared the cache. If this is a problem for your site you can use the ”bin/php/
eztc.php” script to compile all your templates before you go live.

5.13.32 Configuration files / site.ini 1605

5

NodeTreeCaching

Summary

Sets if the template interpreter should cache parsed template files.

Usage

NodeTreeCaching=enabled|disabled

Description

Enable this setting to make eZ publish go faster if you have disabled TemplateCompile (page
1604). If TemplateCompile (page 1604) is enabled this setting will have no effect.

5.13.32 Configuration files / site.ini 1606

5

ShowUsedTemplates

Summary

Enables a table in the debug displaying all the templates used to render the current page.

Usage

ShowUsedTemplates=enabled|disabled

Description

Debug (page 1609) must be enabled for this setting to have any effect.

Note: If you have caching enabled you will have to clear the cache for the table to display all
templates used to render a page.

5.13.32 Configuration files / site.ini 1607

5

ShowMethodDebug

Summary

Sets if debug information about called functions and operators should be displayed.

Usage

ShowMethodDebug=enabled|disabled

Description

Debug (page 1609) must be enabled for this setting to have any effect.

The extra debug output provided by this setting is only useful for kernel developers.

5.13.32 Configuration files / site.ini 1608

5

ShowXHTMLCode

Summary

Sets if eZ publish should display template load debug inline or not.

Usage

ShowXHTMLCode=enabled|disabled

Description

If ShowXHTMLCode is enabled eZ publish will display a comment in the rendered output of
the browser for each time a new template is loaded.
Debug (page 1609) must be enabled for this setting to have any effect.

Note: If you have caching enabled you may will have to clear the cache for this setting to
take effect.

5.13.32 Configuration files / site.ini 1609

5

Debug

Summary

Turns on/off template debug output.

Usage

Debug=enabled|disabled

Description

If you enable this setting eZ publish will display a list of debug messages at the bottom of each
page. The output is configurable but will typically consist of information about the time used
to render the page, warnings or errors while executing your template, information about the
SQL queries executed and a list of the templates used.
Turning on debug will also make eZ publish output comments in the HTML output each time
it loads a new template.

If things don’t work as you expected while developing your site, turn on Debug and make
sure that there are no warnings or errors while rendering your page.

Note: If you have caching enabled, some debug messages may disappear the second time you
load a page. This is because the cache was used instead of rerendering the page. If you want
to see all the debug messages you have to clear the cache or turn off caching alltogether.

5.13.32 Configuration files / site.ini 1610

5

ExtensionAutoloadPath

Summary

Sets the extensions that contain template function or operator definitions.

Usage

ExtensionAutoloadPath[]= directory name1

ExtensionAutoloadPath[]= director namey2

...

Description

eZ publish will look for the file eztemplateautoload.php inside the directory ”/extension/
directory name/autoloads”. The eztemplateautoload.php file should contain the function and
operator definitions provided by the corresponding extension.

This setting is typically set in the settings for each extension that contain template operators
of functions.

Examples

ExtensionAutoloadPath[]=myextension

This setting will make eZ publish load template function and operator definitions from the
file ”/extension/myextension/autoloads/eztemplateautoload.php”

5.13.32 Configuration files / site.ini 1611

5

AutoloadPathList

Summary

Sets the directories inside eZ publish itself where eZ publish will look for operator and func-
tion definitions.

Usage

AutoloadPathList[]= directory1

AutoloadPathList[]= directory2

...

Description

If you want to specify additional paths that eZ publish should search for template operators
and functions use the ExtensionAutoLoadPath setting.

Note: Do not change this setting unless you know what you are doing.

5.13.32 Configuration files / site.ini 1612

5

[TimeZoneSettings]

TimeZone (page 1613)
Sets the timezone to use in eZ publish.

5.13.32 Configuration files / site.ini 1613

5

TimeZone

Summary

Sets the timezone to use in eZ publish.

Usage

TimeZone= Area/Location

Description

In order to run multiple installations of eZ publish on one server using different timezones
it is now possible to override the OS default timezone. The time zones are named as ”Area/
Location”, where ”Area” is the name of a continent or ocean, and ”Location” is the name of a
specific location within that region, usually cities or small islands. (The list of timezones can
be found at http://www.php.net/manual/en/timezones.php)

Examples

TimeZone=America/Antigua

This will instruct the system to use the ”America/Antigua” timezone instead of the OS default
timezone.

http://www.php.net/manual/en/timezones.php

5.13.32 Configuration files / site.ini 1614

5

[TipAFriend]

FromEmail (page 1615)
Sets the from address used when sending tip a friend e-mail.

MaxRequestsPerTimeframe (page 1616)
Set the maximum number of tip a friend mail the system will send to one email address.

TimeFrame (page 1617)
Sets the time frame for the tip a friend functionality.

5.13.32 Configuration files / site.ini 1615

5

FromEmail

Summary

Sets the from address used when sending tip a friend e-mail.

Usage

FromEmail= email address

Description

The specified e-mail address is used as the ”From:” address when sending ”tip-a-friend” e-
mails. This setting is empty by default, so the email address specified in the ”tip-a-friend”
form will be used as the ”From:” address when sending the e-mail.

Examples

FromEmail=no@spam.org

This makes eZ Publish use ”no@spam.org” as the from address when sending ”tip-a-friend”
e-mails.

5.13.32 Configuration files / site.ini 1616

5

MaxRequestsPerTimeframe

Summary

Set the maximum number of tip a friend mail the system will send to one email address.

Usage

MaxRequestsPerTimeframe= number

Description

eZ Publish will not allow anyone to send more than MaxRequestsPerTimeframe tip a friend
mail per TimeFrame (page 1617) to any single mail address. This prevents the possibility to
spam a certain email address.

Examples

MaxRequestsPerTimeframe=10

TimeFrame=2

Using these settings eZ Publish will not allow users to send more than 10 tip a friend mails to
a single email address per two hours.

5.13.32 Configuration files / site.ini 1617

5

TimeFrame

Summary

Sets the time frame for the tip a friend functionality.

Usage

TimeFrame= number of hours

Description

You can control the maximum number of tip a friend mail the system can send to one address
using this setting and the MaxRequestsPerTimeframe (page 1616) setting.

5.13.32 Configuration files / site.ini 1618

5

[UnitSettings]

BinaryUnits (page 1620)
Sets which units eZ publish considers binary units.

UseSIUnits (page 1619)
Sets if eZ publish should use OSI or SI prefixes for binary numbers

5.13.32 Configuration files / site.ini 1619

5

UseSIUnits

Summary

Sets if eZ publish should use OSI or SI prefixes for binary numbers

Usage

UseSIUnits=true|false

Description

If this setting is set to true eZ publish will use SI prefixes for binary numbers. If the setting
is set to false eZ publish uses OSI prefixes for binary numbers. You can set the units that eZ
publish should consider binary with the BinaryUnits (page 1620) setting.

5.13.32 Configuration files / site.ini 1620

5

BinaryUnits

Summary

Sets which units eZ publish considers binary units.

Usage

BinaryUnits= unit1 ; unit2 ;...

Description

Binary units will get binary prefixes in front of the ’B’ for byte or ’b’ for bit. The possible units
are listed in units.ini (page 1661).

Use the UseSIUnits (page 1619) settings to force eZ publish to use SI prefixes instead of the
standard OSI approved prefixes.

The configuration file units.ini (page 1661) allows you to alter the prefixes.

Examples

OSI prefixes

The binary number 1 048 576 byte will be displayed as 1 MB
The binary number 1 048 576 bit will be displayed as 1 Mb

SI prefixes

The binary number 1 048 576 byte will be displayed as 1 MiB
The binary number 1 048 576 bit will be displayed as 1 Mib

5.13.32 Configuration files / site.ini 1621

5

[URLTranslator]

MaximumWildcardIterations (page 1622)
Sets how many times the wildcard matches can iterate

Translation (page 1624)
Enables/disables the URL translation functionality

WildcardTranslation (page 1623)
Enables subtree URL translation

5.13.32 Configuration files / site.ini 1622

5

MaximumWildcardIterations

Summary

Sets how many times the wildcard matches can iterate

Usage

MaximumWildcardIterations= number of iterations

Description

The wildcard matcher system will iterate if the translated url is not a complete url, this allows
urls lookup to be recursive and is required for proper subtree history.

Note:This is an implementation specific setting which should not be changed unless you know
what you are doing.

5.13.32 Configuration files / site.ini 1623

5

WildcardTranslation

Summary

Enables subtree URL translation

Usage

WildcardTranslation=enabled|disabled

Description

Wildcard translations can be used to translate a complete node tree into another one. This is
used for example if you move a complete tree of nodes. It is also possible to specify wildcard
translations from the admin interface.

Note:Do no disable this option unless you are having problems with wildcardtranslations.

5.13.32 Configuration files / site.ini 1624

5

Translation

Summary

Enables/disables the URL translation functionality

Usage

Translation=enabled|disabled

Description

When URL translation is enabled, eZ Publish automatically generates easy URL’s for all con-
tent objects based on the object names. These URL’s can be used instead of using system
URL’s. Additionaly the custom URL translation system (available from the admin interface)
is enabled.

More information about URL translation can be found in the URL translation (page 157)
section

5.13.32 Configuration files / site.ini 1625

5

[UserSettings]

AnonymousUserID (page 1645)
Sets the eZ Publish user that should be used for anonymous page requests.

AuthenticateMatch (page 1633)
Sets the fields that are accepted for login authentication.

DefaultSectionID (page 1643)
Sets the section ID of self registered users.

DefaultUserPlacement (page 1644)
Sets the parent object of all users who register themselves

ExtensionDirectory (page 1628)
Sets the extensions that contain login handlers

GeneratePasswordIfEmpty (page 1647)
Sets if eZ Publish should generate passwords if the password field is empty.

GeneratePasswordLength (page 1646)
Sets the length of passwords generated by eZ Publish.

HashType (page 1635)
Sets the algorithm used to encrypt the user passwords stored in the database.

LoginHandler (page 1629)
Sets the various methods eZ Publish will try to authenticate user logins.

LoginRedirectionUriAttribute (page 1627)
Sets which attribute of the user/usergroup class contains redirection URI for the user.

LogoutRedirect (page 1630)
Sets which page to redirect to when a user has logged out.

RegistrationEmail (page 1640)
Sets the receiver of notification emails about new users.

RegistrationFeedback (page 1642)
Sets the kind of feedback that is sent to users that have registered.

RequireUniqueEmail (page 1632)
Sets if all users must have unique email addresses when registering.

UpdateHash (page 1634)
Sets if eZ Publish should update hashes if you have changed the HashType setting

UserClassGroupID (page 1637)
Sets which classes you can create in the user section in the administration interface.

UserClassID (page 1639)
Sets the class to use for user registration

UserCreatorID (page 1636)
Sets the user that will bet set as the creator of self registering users.

5.13.32 Configuration files / site.ini 1626

5

UserGroupClassID (page 1638)
Sets the class ID of the class that represents user groups.

UseSpecialCharacters (page 1631)
Sets if special characters are allowed in passwords.

VerifyUserEmail (page 1641)
Sets if new users have to verify their account by email.

5.13.32 Configuration files / site.ini 1627

5

LoginRedirectionUriAttribute

Summary

Sets which attribute of the user/usergroup class contains redirection URI for the user.

Usage

LoginRedirectionUriAttribute[user]= attribute identifier1

LoginRedirectionUriAttribute[group]= attribute identifier2

Description

The redirection URI can be specified for a user/usergroup using an attribute of the ”Text
line” datatype. The ”LoginRedirectionUriAttribute” setting specifies which attribute of the
user/usergroup class is used for storing the redirection URI. Please refer to the ”Advanced
redirection after login (page 314)” section of the ”Features” chapter for more information.

Examples

Example 1

[UserSettings]

LoginRedirectionUriAttribute[user]=redirection_uri

This will tell the system that a user should always be redirected after login to the URL that is
specified in the ”redirection uri” attribute for this user.

Example 2

[UserSettings]

LoginRedirectionUriAttribute[group]=start_page

This will tell the system that a user should always be redirected after login to the URL that is
specified in the ”start page” attribute for the user group that this user belongs to.

Example 3

[UserSettings]

LoginRedirectionUriAttribute[user]=redirection_uri

LoginRedirectionUriAttribute[group]=start_page

This will tell the system that a user should always be redirected after login to the URL that is
specified in the ”redirection uri” attribute for this user. If no URL is specified in this attribute
then the user will be redirected to the URL that is specified in the ”start page” attribute for
the user group that this user belongs to.

5.13.32 Configuration files / site.ini 1628

5

ExtensionDirectory

Summary

Sets the extensions that contain login handlers

Usage

ExtensionDirectory[]= extension name1

ExtensionDirectory[]= extension name2

...

Description

It is possible to provide custom login handlers using the extension system. This setting spec-
ifies the extensions that contain a login handler. eZ Publish will look for the handlers in the
path:
extension/ extension name/login handler/

5.13.32 Configuration files / site.ini 1629

5

LoginHandler

Summary

Sets the various methods eZ Publish will try to authenticate user logins.

Usage

LoginHandler[]= handler1

LoginHandler[]= handler2

...

Description

eZ Publish will try to authenticate users using the login handlers in the order they are speci-
fied. eZ Publish provides the following login handlers:

• standard - The default login handler for eZ Publish. Users are authenticated using the
user objects found in eZ Publish itself.

• LDAP - The LDAP login handler. Users are authenticated through an LDAP server. Set-
tings related to the LDAP login handler can be found in ldap.ini (page 1398).

• textfile - The textfile login handler allows users to be specified in a textfile similar to
the passwd file on *NIX systems. Settings related to the textfile login handler can be
found in textfile.ini (page 1657).

Common for the login handlers different from the standard login handler is that eZ Publish
automatically creates these users in eZ Publish itself. These users can then log in using the
standard log in handler. Users created this way are updated automatically using cronjobs.

Examples

LoginHandler[]=standard
LoginHandler[]=LDAP

This configuration will try to log in users using the standard handler. If the standard handler
fails, eZ Publish will try to authenticate the user via LDAP. If that also fails, the login is
unsuccessful.

5.13.32 Configuration files / site.ini 1630

5

LogoutRedirect

Summary

Sets which page to redirect to when a user has logged out.

Usage

LogoutRedirect= URL

Examples

LogoutRedirect=/user/login

The default setting redirects the user to the log in page when logging out.

5.13.32 Configuration files / site.ini 1631

5

UseSpecialCharacters

Summary

Sets if special characters are allowed in passwords.

Usage

UseSpecialCharacters=true|false

Description

If UseSpecialCharacters is set to false, eZ Publish will only accept passwords with characters
in the range a-z, A-Z and 0-9.

5.13.32 Configuration files / site.ini 1632

5

RequireUniqueEmail

Summary

Sets if all users must have unique email addresses when registering.

Usage

RequireUniqueEmail=true|false

Description

We highly recomend setting RequireUniqueEmail to true.

5.13.32 Configuration files / site.ini 1633

5

AuthenticateMatch

Summary

Sets the fields that are accepted for login authentication.

Usage

AuthenticateMatch= type1 [; type2]

Description

Types accepted are

• login - The username field can be used identify a user.

• email - The email field can be used to identify a user. If your site allows several users
with the same email address, all the users with this email address will be tested for the
correct password.

In order to log in successfully the password field must always be provided.

Examples

AuthenticateMatch=login;email
The default setting allows users to log in using both the email address or the username.

AuthenticateMatch=login
This setting allows users to log in using only the username.

5.13.32 Configuration files / site.ini 1634

5

UpdateHash

Summary

Sets if eZ Publish should update hashes if you have changed the HashType setting

Usage

UpdateHash=true|false

Description

If this setting is enabled and eZ Publish discovers a password stored with one of the other
hash types the hash is automatically converted. Note that you can’t change between any of
the md5 settings and the plaintext setting.

5.13.32 Configuration files / site.ini 1635

5

HashType

Summary

Sets the algorithm used to encrypt the user passwords stored in the database.

Usage

HashType=md5 password|md5 user|md5 site|plaintext

Description

You can choose between several different md5 algorithms and plaintext storage. We strongly
recommend using one of the md5 algorithms since plaintext storage imposes a huge security
risk for your users.

• md5 password - A hash is generated based solely on the users password.

• md5 user - A hash is generated based on the username and the password.

• md5 site - A hash is generated based on the sitename, username and password. Note
that if you change the sitename your users can not log on anymore.

• plaintext -

5.13.32 Configuration files / site.ini 1636

5

UserCreatorID

Summary

Sets the user that will bet set as the creator of self registering users.

Usage

UserCreatorID= userid

Description

Users that register themselves will have a user object generated by eZ Publish. This setting
controls which user on the system that will be considered the creator of the user objects.
Note that userid is equal to the ID number of the actual object that represents the user ac-
count.

5.13.32 Configuration files / site.ini 1637

5

UserClassGroupID

Summary

Sets which classes you can create in the user section in the administration interface.

Usage

UserClassGroupID= class group id

Description

This setting controls the classes that are listed in the ”Create here” dropdown menu in the
users section. You must specify a class group that contains all the user types and group types
that you want to create.

Note that there can be only one usergroup class and that all classes representing users must
have the ezuser datatype.

5.13.32 Configuration files / site.ini 1638

5

UserGroupClassID

Summary

Sets the class ID of the class that represents user groups.

Usage

UserClassGroupID= classid

Description

There can only be one class representing user groups on your system.
Note that classid is the ID number of the class (not the identifier of the class).

5.13.32 Configuration files / site.ini 1639

5

UserClassID

Summary

Sets the class to use for user registration

Usage

UserClassID= classid

Description

The UserClassID must specify a content class containing the ezuser datatype. This class will
be used when new users are registering on your site.
Note that classid is the ID number of the class (not the identifier of the class).

5.13.32 Configuration files / site.ini 1640

5

RegistrationEmail

Summary

Sets the receiver of notification emails about new users.

Usage

RegistrationEmail= email address

Description

If RegistrationEmail is left empty the setting [MailSettings], AdminEmail will be used instead.

Examples

RegistrationEmail=no@spam.org

eZ Publish will send notification emails about new users to ”no@spam.org”.

5.13.32 Configuration files / site.ini 1641

5

VerifyUserEmail

Summary

Sets if new users have to verify their account by email.

Usage

VerifyUserEmail=enabled|disabled

Description

If enabled, new users can’t log in to your site before they have activated their account. An
email will be sent to the new users with a link that activates their user.

5.13.32 Configuration files / site.ini 1642

5

RegistrationFeedback

Summary

Sets the kind of feedback that is sent to users that have registered.

Usage

RegistrationFeedback=email

Description

email is the only feedback type supported at the moment.

5.13.32 Configuration files / site.ini 1643

5

DefaultSectionID

Summary

Sets the section ID of self registered users.

Usage

DefaultSectionID= number

Description

This setting controls the section ID assigned to new self registering users. If DefaultSectionID
is set to ”0”, new self registering users will get the section id from the parent object set by the
DefaultUserPlacement (page 1644) setting.

5.13.32 Configuration files / site.ini 1644

5

DefaultUserPlacement

Summary

Sets the parent object of all users who register themselves

Usage

DefaultUserPlacement= nodeid

Description

DefaultUserPlacement should be set to the ID of the node that should hold all self registered
users.

5.13.32 Configuration files / site.ini 1645

5

AnonymousUserID

Summary

Sets the eZ Publish user that should be used for anonymous page requests.

Usage

AnonymousUserID= userid

Description

When a user that is not logged in is accessing an eZ Publish installation, the request will be
handled with the permissions of the anonymous user. You can select any user on your system
to represent the anonymous user.
Take care to give the correct permissions to the anonymous user since these permissions are
available for all users on your site.
Note that userid is equal to the ID number of the actual object that represents the user ac-
count.

5.13.32 Configuration files / site.ini 1646

5

GeneratePasswordLength

Summary

Sets the length of passwords generated by eZ Publish.

Usage

GeneratePasswordLength= number

Description

This setting controls the length of passwords generated if GeneratePasswordIfEmpty (page
1647) is set to true

5.13.32 Configuration files / site.ini 1647

5

GeneratePasswordIfEmpty

Summary

Sets if eZ Publish should generate passwords if the password field is empty.

Usage

GeneratePasswordIfEmpty=true|false

Description

If GeneratePasswordIfEmpty is set to true, eZ Publish will automatically accept and generate
passwords for users if the password field is empty. You can simply leave out the password
field in the user register template.

If GeneratePasswordIfEmpty is set to false the user must select a password that is at least
three characters long. Shorter passwords will not be accepted.

5.13.33 Configuration files / soap.ini 1648

5

5.13.33 soap.ini

5.13.34 Configuration files / staticcache.ini 1649

5

5.13.34 staticcache.ini

The configuration blocks are documented in the following sections:

• [CacheSettings] (page 1650)

5.13.34 Configuration files / staticcache.ini 1650

5

[CacheSettings]

AlwaysUpdateArray (page 1651)
Sets the static caches that should always be updated when an object is published.

CachedURLArray (page 1652)
Sets the content that should be statically cached.

HostName (page 1655)
Sets the hostname of the machine generating the static content.

MaxCacheDepth (page 1653)
Sets the number of levels that will be statically cached relative to the root of your
installation.

StaticStorageDir (page 1654)
Sets the directory where the static cache is stored.

5.13.34 Configuration files / staticcache.ini 1651

5

AlwaysUpdateArray

Summary

Sets the static caches that should always be updated when an object is published.

Usage

AlwaysUpdateArray[]= url1

AlwaysUpdateArray[]= url2

...

Description

Each line specifies the url of a node that will have its static cache removed whenever an object
is updated on the system.
In addition to this the static cache of each node is updated whenever the corresponding object
is updated.

5.13.34 Configuration files / staticcache.ini 1652

5

CachedURLArray

Summary

Sets the content that should be statically cached.

Usage

CachedURLArray[]= url1 [*]

CachedURLArray[]= url2 [*]

...

Description

Each line specifies one part of the content tree that will be statically cached. You can specify
single nodes or complete subtrees using a wildcard (*). You must specify the full URL of the
nodes, not the node names.

Note that the wildcard literally matches all characters. E.g the rule ”/weblog*” will match
both ”/weblog/hello” and ”/weblogs/hello”.

Examples

CachedURLArray[]=/

CachedURLArray[]=/news*

CachedURLArray[]=/weblog*

This setup will statically cache the root node and all nodes under the node with the URL news
and all nodes under the node with the URL weblog.

5.13.34 Configuration files / staticcache.ini 1653

5

MaxCacheDepth

Summary

Sets the number of levels that will be statically cached relative to the root of your installation.

Usage

MaxCacheDepth= number

5.13.34 Configuration files / staticcache.ini 1654

5

StaticStorageDir

Summary

Sets the directory where the static cache is stored.

Usage

StaticStorageDir= directory name

Description

StaticStorageDir is set relative to the root directory of your eZ Publish installation. Note that
you must adjust your rewrite rules if you change this setting.

Examples

StaticStorageDir=static

This setup will make eZ Publish store the statically cached files in ”/static”.

5.13.34 Configuration files / staticcache.ini 1655

5

HostName

Summary

Sets the hostname of the machine generating the static content.

Usage

Hostname= hostname [: portnumber]

Description

HostName sets the host of the server that serves the uncached pages. The static cache feature
uses this to retrieve the generated content if there is no cache available.

Examples

HostName=localhost

The server that generates the pages is available on localhost.

5.13.35 Configuration files / template.ini 1656

5

5.13.35 template.ini

5.13.36 Configuration files / textfile.ini 1657

5

5.13.36 textfile.ini

5.13.37 Configuration files / texttoimage.ini 1658

5

5.13.37 texttoimage.ini

5.13.38 Configuration files / toolbar.ini 1659

5

5.13.38 toolbar.ini

5.13.39 Configuration files / transform.ini 1660

5

5.13.39 transform.ini

5.13.40 Configuration files / units.ini 1661

5

5.13.40 units.ini

5.13.41 Configuration files / upload.ini 1662

5

5.13.41 upload.ini

5.13.42 Configuration files / viewcache.ini 1663

5

5.13.42 viewcache.ini

The configuration blocks are documented in the following sections:

• [class identifier] (page 1664)

• [ViewCacheSettings] (page 1669)

5.13.42 Configuration files / viewcache.ini 1664

5

[class identifier]

ClearCacheMethod (page 1667)
Sets which method(s) to use when clearing the view caches for additional (parent)
nodes.

DependentClassIdentifier (page 1668)
Sets which content classes that will be considered as ”dependent classes” when an object
of the ”class identifier” class is changed.

MaxParents (page 1665)
Limits clearing the view caches for additional nodes to a specified number of levels.

ObjectFilter (page 1666)
Limits clearing the view caches for additional nodes to a specified list of object IDs.

5.13.42 Configuration files / viewcache.ini 1665

5

MaxParents

Summary

Limits clearing the view caches for additional nodes to a specified number of levels.

Usage

MaxParents=number

Description

If smart viewcache cleaning is enabled, this directive can be used to set a limitation for clear-
ing the view caches of additional nodes. When a published object of the ”class identifier”
class is changed, svcs will scan the parent nodes that are listed in the ”path string” attribute
for all the object’s nodes/locations and clear the view cache for each parent node that encap-
sulates an object of a dependent class. The maximal quantity of nodes that will be scanned is
controlled by the ”MaxParents” setting.

You can find more information and examples in the ”Smart view cache cleaning (page 387)”
section.

5.13.42 Configuration files / viewcache.ini 1666

5

ObjectFilter

Summary

Limits clearing the view caches for additional nodes to a specified list of object IDs.

Usage

ObjectFilter[]=object id1

ObjectFilter[]=object id2

...

Description

If smart viewcache cleaning is enabled, this directive can be used to set a limitation for clear-
ing the view caches of additional nodes (svcs will only clear the view caches of those addi-
tional nodes that encapsulate the objects listed in the ”ObjectFilter[]” configuration array).
You can find more information and examples in the ”Smart view cache cleaning (page 387)”
section.

5.13.42 Configuration files / viewcache.ini 1667

5

ClearCacheMethod

Summary

Sets which method(s) to use when clearing the view caches for additional (parent) nodes.

Usage

ClearCacheMethod[]=method1

ClearCacheMethod[]=method2

...

Description

If smart viewcache cleaning is enabled, this directive sets which method(s) that will be used
when clearing the view caches for additional (parent) nodes. This setting is an array of
strings where only the following pre-defined values can be used: ”object”, ”parent”, ”relating”,
”keyword”, ”siblings”, ”all”. These methods are described in the ”Smart view cache cleaning
(page 387)” section.

5.13.42 Configuration files / viewcache.ini 1668

5

DependentClassIdentifier

Summary

Sets which content classes that will be considered as ”dependent classes” when an object of
the ”class identifier” class is changed.

Usage

DependentClassIdentifier[]=class identifier1

DependentClassIdentifier[]=class identifier2

...

Description

If smart viewcache cleaning is enabled, this directive can be used to specify the list of de-
pendent classes. When a published object of the ”class identifier” class is changed, svcs will
check the parent nodes that are listed in the ”path string” attribute for all the object’s nodes/
locations and clear the view cache for each parent node that encapsulates an object of a de-
pendent class. You can find more information and examples in the ”Smart view cache cleaning
(page 387)” section.

5.13.42 Configuration files / viewcache.ini 1669

5

[ViewCacheSettings]

ClearRelationTypes (page 1670)
Controls whether the view caches for objects related in various ways should be cleared
or not.

SmartCacheClear (page 1672)
Sets if the smart viewcache cleaning system is turned on/off.

5.13.42 Configuration files / viewcache.ini 1670

5

ClearRelationTypes

Summary

Controls whether the view caches for objects related in various ways should be cleared or not.

Usage

ClearRelationTypes[]=type1

ClearRelationTypes[]=type2

...

Description

This directive sets which related and reverse related objects the view caches should be cleared
for as a response to the view cache being cleared for a specific object. More precisely, it can
be used to control whether the view caches for objects that are related in various ways should
be cleared or not. This setting is an array of strings where only four pre-defined values can
be used (refer to the following table).

Type Description
object Clear cache for related objects that have re-

lations at the object level.
reverse object Clear cache for reverse related objects that

have relations at the object level.
attribute Clear cache for related objects that have re-

lations at the attribute level.
reverse attribute Clear cache for reverse related objects that

have relations at the attribute level.

Note that if you need to set up additional/custom rules that control which nodes the view
cache should be cleared for when the view cache for a specific object is being cleared, you’ll
have to use smart viewcache cleaning (page 387).

The ”ClearRelationTypes” setting is only available in eZ Publish 3.8.7 and later versions.

Examples

Example 1

[ViewCacheSettings]

ClearRelationTypes[]

SmartCacheClear=disabled

When clearing the view cache for an object, the system will automatically clear the view cache
for the following nodes:

• All published nodes of this object and their parent nodes

• Nodes of the objects that have the same keyword (if any)

5.13.42 Configuration files / viewcache.ini 1671

5

Since the ”ClearRelationTypes” configuration array is empty, the view caches for related and
reverse related objects will not be cleared.

Example 2

[ViewCacheSettings]

ClearRelationTypes[]

ClearRelationTypes[]=object

ClearRelationTypes[]=reverse_object

SmartCacheClear=disabled

When clearing the view cache for an object, the system will automatically clear the view cache
for the following nodes:

• All published nodes of this object and their parent nodes

• Nodes of the objects that have the same keyword (if any)

• Nodes of related and reverse related objects that have relations at the object level

Note that the first two items on the list are not controlled by the ”ClearRelationTypes” setting.

5.13.42 Configuration files / viewcache.ini 1672

5

SmartCacheClear

Summary

Sets if the smart viewcache cleaning system is turned on/off.

Usage

SmartCacheClear=enabled|disabled

Description

This setting makes it possible to activate the smart viewcache cleaning system (page 387)
(disabled by default).

5.13.43 Configuration files / webdav.ini 1673

5

5.13.43 webdav.ini

5.13.44 Configuration files / wordtoimage.ini 1674

5

5.13.44 wordtoimage.ini

5.13.45 Configuration files / workflow.ini 1675

5

5.13.45 workflow.ini

You can find an overview over the workflow system in the workflows (page 171) concept
chapter.

The configuration blocks are documented in the following sections:

• [EventSettings] (page 1681)

• [OperationSettings] (page 1679)

• [SimpleShippingWorkflow] (page 1676)

5.13.45 Configuration files / workflow.ini 1676

5

[SimpleShippingWorkflow]

ShippingCost (page 1678)
Sets the cost of the shipping.

ShippingDescription (page 1677)
Sets the description that will appear on the order when using the simle shipping work-
flow.

5.13.45 Configuration files / workflow.ini 1677

5

ShippingDescription

Summary

Sets the description that will appear on the order when using the simle shipping workflow.

Usage

ShippingDescription= description

5.13.45 Configuration files / workflow.ini 1678

5

ShippingCost

Summary

Sets the cost of the shipping.

Usage

ShippingCost= number

Description

Adds the specified amount to orders if the workflow is enabled.. The currency is the same as
the currency of the order.

Note: This workflow does not work with multilangauge sites.

5.13.45 Configuration files / workflow.ini 1679

5

[OperationSettings]

AvailableOperations (page 1680)
Sets the triggers that are avaible from the administration interface.

5.13.45 Configuration files / workflow.ini 1680

5

AvailableOperations

Summary

Sets the triggers that are avaible from the administration interface.

Usage

AvailableOperations=[before|after] module1 trigger1 [;[before|after]

module2 trigger2 [;...]

Description

The availableOperations specifies the triggers that are available in the system. Triggers are
specified per module and are given a trigger name. Additionally, each trigger point can have
both a before and after trigger. Each section of AvailableOperations specifies one module and
a trigger name. Additionally you can specify if the trigger is a before trigger by adding before
or after in front of the module name. If the trigger is both a before and an after trigger, simply
don’t specify anything.

eZ publish will look for the file operation definition.php in the module directory. Each trig-
ger activated in this setting must be properly set up in the operation definition.php of the
corresponding module.

Examples

AvailableOperations=content_publish;before_shop_confirmorder;shop_checkout

These settings will enable and make eZ publish search for the following triggers:

Module Trigger name Trigger time
content publish before
content publish after
shop confirmorder before
shop checkout before
shop checkout after

5.13.45 Configuration files / workflow.ini 1681

5

[EventSettings]

AvailableEventTypes (page 1682)
Sets the name of the event types that eZ publish should search for.

ExtensionDirectories (page 1683)
Sets the extensions that contain event types.

RepositoryDirectories (page 1684)
Sets the directories where eZ publish will search for event types.

5.13.45 Configuration files / workflow.ini 1682

5

AvailableEventTypes

Summary

Sets the name of the event types that eZ publish should search for.

Usage

AvailableEventTypes[]= event group1 event name1

AvailableEventTypes[]= event group2 event name2

...

Description

This setting contains a list of event types. These event types consist of an event group and an
event name. These two items are separated with an underscore ().

The combination of the settings ExtensionDirectories (page 1683), and AvailableEventTypes
specify where eZ publish will look for additional event types.
eZ publish will search for the extensions in ”/extension/ extension name/eventtypes/ event
group/ event nametype.php” where extension name is specified by ExtensionDirectories (page
1683) and event group and event name are specified by AvailableEventTypes.

Examples

ExtensionDirectories[]=ezpaynetdirect

AvailableEventTypes[]=event_ezapprove

AvailableEventTypes[]=paynet_ezpaynetdirect

These settings will make eZ publish search for the following files for the events.
extensions/ezpaynetdirect/eventtypes/event/ezapprove/ezapprove.php
extensions/ezpaynetdirect/eventtypes/paynet/ezpaynetdirect/ezpaynetdirecttype.php

5.13.45 Configuration files / workflow.ini 1683

5

ExtensionDirectories

Summary

Sets the extensions that contain event types.

Usage

ExtensionDirectories[]= extension1

ExtensionDirectories[]= extension2

...

Description

eZ publish will automatically search the extensions specified by ExtensionDirectories for event
types. By default eZ publish will search inside the ”eventtypes” directory inside your exten-
sion. The exact location of the events in this directory is specified with the AvailableEvent-
Types (page 1682) setting.

Most frequently ExtensionDirectories is specified in the workflow.ini.append inside custom
extensions to indicate that the extensions has custom event types. This makes eZ publish
recognize the events as soon as the extension is enabled.

Examples

ExtensionDirectories[]=ezpaynetdirect

The ezpaynetdirect extension uses a workflow which is located in: ”/extension/
ezpaynetdirect/eventtypes/ AvailabeEventTypes”
This setting makes eZ publish search for event types in ”/extension/ezpaynetdirect/
eventtypes/ AvailabeEventTypes”.

The AvailableEventTypes are described in the AvailableEventTypes (page 1682) setting.

5.13.45 Configuration files / workflow.ini 1684

5

RepositoryDirectories

Summary

Sets the directories where eZ publish will search for event types.

Usage

RepositoryDirectories[]= directory1

RepositoryDirectories[]= directory2

...

Description

The RepositoryDirectories specifies a list of directories where built in workflow event types
can be found. The exact location of the workflow in this directory is specified with the Avail-
ableEventTypes (page 1682) setting.

If you have an extension with a workflow, then use the ExtensionDirectories (page 1683)
setting to register the event types.

Note: Don’t change this setting unless you know what you are doing.

5.14 Libraries 1685

5

5.14 Libraries

ezdb (page 1686)
Provides a database abstraction layer.

ezdbschema (page 1687)
Provides a cross database schema checker and update tool.

ezfile (page 1688)
Provides cross platform file and compression utilities.

ezi18n (page 1689)
Provides functionality for reading ”.ts” files and for translating text in templates.

ezimage (page 1690)
Provides an abstracted image manipulation interface.

ezlocale (page 1691)
Provides functionality for localizing dates, currencies, etc.

ezpdf (page 1692)
Provides a solution for using the template system to generate PDFs.

ezsoap (page 1693)
Provides a low level interface for the SOAP protocol.

eztemplate (page 1694)
Provides the template interpreter, compiler and the basic functions and operators.

ezutils (page 1695)
Provides small utilities (ini file parser, MIME type handlers, E-mail handling, etc.).

ezwebdav (page 1696)
Provides a low level communication interface for the WebDAV protocol.

ezxml (page 1697)
Provides low level XML DOM parsing and construction utilities.

5.14.1 Libraries / ezdb 1686

5

5.14.1 ezdb

Provides a database abstraction layer.

5.14.2 Libraries / ezdbschema 1687

5

5.14.2 ezdbschema

Provides a cross database schema checker and update tool.

5.14.3 Libraries / ezfile 1688

5

5.14.3 ezfile

Provides cross platform file and compression utilities.

5.14.4 Libraries / ezi18n 1689

5

5.14.4 ezi18n

Provides functionality for reading ”.ts” files and for translating text in templates.

5.14.5 Libraries / ezimage 1690

5

5.14.5 ezimage

Provides an abstracted image manipulation interface.

5.14.6 Libraries / ezlocale 1691

5

5.14.6 ezlocale

Provides functionality for localizing dates, currencies, etc.

5.14.7 Libraries / ezpdf 1692

5

5.14.7 ezpdf

Provides a solution for using the template system to generate PDFs.

5.14.8 Libraries / ezsoap 1693

5

5.14.8 ezsoap

Provides a low level interface for the SOAP protocol.

5.14.9 Libraries / eztemplate 1694

5

5.14.9 eztemplate

Provides the template interpreter, compiler and the basic functions and operators.

5.14.10 Libraries / ezutils 1695

5

5.14.10 ezutils

Provides small utilities (ini file parser, MIME type handlers, E-mail handling, etc.).

5.14.11 Libraries / ezwebdav 1696

5

5.14.11 ezwebdav

Provides a low level communication interface for the WebDAV protocol.

5.14.12 Libraries / ezxml 1697

5

5.14.12 ezxml

Provides low level XML DOM parsing and construction utilities.

5.15 XML tags 1698

5

5.15 XML tags

The ”XML block” (page 497) datatype supports the following tags / elements:

• Headings (page 499)

• Bold text (page 500)

• Italic text (page 501)

• Unformatted text (page 502)

• Lists (page 503)

• Tables (page 504)

• Hyperlinks (page 505)

• Anchors (page 507)

• Object embedding (page 508)

• Custom tags (page 510)

• Paragraphs (page 511)

	Installation
	Normal installation
	Requirements for doing a normal installation
	Installing eZ publish on a Linux/UNIX based system
	Installing eZ publish on Windows

	Bundled installation
	Requirements for doing a bundled installation
	Installing an eZ publish bundle on a Linux based system
	Installing an eZ publish bundle on Windows

	Manual installation
	Requirements for doing a manual installation
	Manual installation on a Linux/UNIX based system
	Manual installation on Windows
	Manual configuration of eZ publish

	Automated installation
	Requirements for doing an automated installation
	Automated installation of eZ publish

	The setup wizard
	Virtual host setup
	Virtual host example

	Upgrading
	from 3.6.x or 3.7.x to 3.8.0
	from 3.8.x to 3.8.y

	Removing eZ Publish
	Removing an eZ Publish bundle

	Extensions
	Extracting the files
	Activating the extension

	Troubleshooting

	Concepts and basics
	The internal structure of eZ publish
	Directory structure

	Content and design
	Storage

	Content management
	Datatypes
	The content class
	Class attributes
	The content object
	Object versioning
	Multiple languages
	The content node
	The content node tree
	Top level nodes
	Node visibility
	Object relations
	Sections
	URL storage
	Information collection

	Configuration
	Site management
	Extension siteaccess settings
	Access methods

	Modules and views
	URL translation
	Designs
	Design combinations

	Access control
	Webshop
	Workflows

	Templates
	Template basics
	Node templates
	System templates

	The pagelayout
	The page head
	Variables in pagelayout

	The template language
	Comments
	Variable types
	Variable usage
	Array and object inspection
	Control structures
	Functions and operators

	Basic template tasks
	URL handling

	Information extraction
	Outputting node and object data

	The template override system
	Template override example

	Features
	Policy functions
	Single Sign On (SSO) handlers
	Multi-language
	Configuring your site locale
	Configuring the site languages
	Managing the translation languages
	Multilingual objects
	Working with translations
	The bit-field algorithm
	Language based permissions

	Clustering
	Setting it up

	Packages
	Package types
	Creating new packages
	Exporting packages to files
	Importing packages to the system
	Removing packages from repository
	Installing packages
	Uninstalling packages
	package.xml format
	Custom install scripts

	Cronjobs
	The cronjob scripts
	Configuring cronjobs
	Running cronjobs

	Advanced redirection after login
	VAT charging system
	Assigning VAT types to products
	Three approaches to VAT charging
	Product category
	User country
	Displaying VATs on the actual site
	Managing VAT types
	Managing product categories
	Managing VAT rules
	VAT settings
	Creating new VAT handlers

	Improved shipping handling
	Multi-currency
	Custom prices and auto prices
	Rounding auto prices
	Currency rates
	Creating a new currency
	Editing a currency
	Removing a currency
	Preferred currency
	Multi-price products
	Products overview
	Exchange rates update handlers
	Upgrading your webshop

	View caching
	Configuring the view cache
	Clearing the view cache
	Smart view cache cleaning
	Pre-generation of view cache

	Notifications
	Using the admin interface
	Using an actual site
	Adding a "Keep me updated" button
	Customizing the E-mails
	Granting access to notifications
	Notification events
	Notification handlers
	Frequently Asked Questions

	Search engine
	WebDAV
	Setting it up

	Reference
	Datatypes
	Authors
	Checkbox
	Country
	Date
	Date and time
	E-mail
	Enum
	File
	Float
	Identifier
	Image
	Ini setting
	Ini setting
	Integer
	ISBN
	Keywords
	Matrix
	Media
	Multi-option
	Multi-price
	Object relation
	Object relations
	Option
	Price
	Product category
	Range option
	Selection
	Subtree subscription
	Text block
	Text line
	Time
	URL
	User account
	XML block

	Content classes
	Content
	Media
	Users

	Modules
	class
	collaboration
	content
	error
	ezinfo
	form
	infocollector
	layout
	notification
	package
	pdf
	reference
	role
	rss
	search
	section
	setup
	shop
	trigger
	url
	user
	workflow

	Views
	Objects
	ezauthor
	ezbasket
	ezbinaryfile
	ezcontentbrowsebookmark
	ezcontentbrowserecent
	ezcontentclass
	ezcontentclassattribute
	ezcontentclassclassgroup
	ezcontentclassgroup
	ezcontentlanguage
	ezcontentobject
	ezcontentobjectattribute
	ezcontentobjecttranslation
	ezcontentobjecttreenode
	ezcontentobjectversion
	ezcurrencydata
	ezdate
	ezdatetime
	ezimagealiashandler
	ezimagelayer
	ezimageobject
	ezinformationcollection
	ezinformationcollectionattribute
	ezkeyword
	ezlocale
	ezmatrix
	ezmedia
	ezmultioption
	ezmultiprice
	eznodeassignment
	ezoption
	ezorder
	ezorderstatus
	ezpolicy
	ezprice
	ezproductcategory
	ezproductcollectionitem
	ezrangeoption
	ezrole
	ezsection
	ezsimplifiedxmlinput
	ezsubtreenotificationrule
	eztime
	ezurl
	ezuser
	ezvatrule
	ezvattype
	ezxhtmlxmloutput
	ezxmlinputhandler
	ezxmloutputhandler
	ezxmltext

	Workflow events
	Approve
	Multiplexer
	Payment gateway
	Simple shipping
	Wait until date

	Template operators
	Arrays
	Data and information extraction
	Formatting and internationalization
	Images
	Logical operations
	Mathematics
	Miscellaneous
	Strings
	URLs
	Variable and type handling

	Template functions
	Debugging
	Miscellaneous
	Variables
	Visualization

	Template control structures
	Conditional control
	Looping
	Deprecated

	Template override conditions
	class/edit.tpl
	class/groupedit.tpl
	class/view.tpl
	content/advancedsearch.tpl
	content/browse.tpl
	content/collectedinfo/*.tpl
	content/collectedinfo/*.tpl
	content/collectedinfomail/*.tpl
	content/datatype/edit/*.tpl
	content/datatype/view/*.tpl
	content/edit.tpl
	content/search.tpl
	content/versions.tpl
	content/versionview.tpl
	content/view/*.tpl
	layout/set.tpl
	node/view/*.tpl
	node/view/pdf.tpl
	pagelayout.tpl
	workflow/edit.tpl
	workflow/groupedit.tpl
	workflow/view.tpl

	Template fetch functions
	Template PDF functions
	anchor
	create_index
	filled_circle
	filled_rectangle
	footer
	footer_block
	frame_header
	frontpage
	header
	header_block
	image
	keyword
	line
	link
	new_line
	new_page
	page_number
	set_font
	set_margin
	strike
	table
	text
	text_box
	text_frame
	toc
	ul

	Configuration files
	binaryfile.ini
	browse.ini
	collaboration.ini
	collect.ini
	content.ini
	contentstructuremenu.ini
	cronjob.ini
	datatype.ini
	datetime.ini
	dbschema.ini
	debug.ini
	design.ini
	error.ini
	extendedattributefilter.ini
	ezxml.ini
	fetchalias.ini
	file.ini
	i18n.ini
	icon.ini
	image.ini
	layout.ini
	ldap.ini
	logfile.ini
	menu.ini
	module.ini
	notification.ini
	override.ini
	package.ini
	paymentgateways.ini
	setup.ini
	shopaccount.ini
	site.ini
	soap.ini
	staticcache.ini
	template.ini
	textfile.ini
	texttoimage.ini
	toolbar.ini
	transform.ini
	units.ini
	upload.ini
	viewcache.ini
	webdav.ini
	wordtoimage.ini
	workflow.ini

	Libraries
	ezdb
	ezdbschema
	ezfile
	ezi18n
	ezimage
	ezlocale
	ezpdf
	ezsoap
	eztemplate
	ezutils
	ezwebdav
	ezxml

	XML tags

